JPH07116999B2 - Exhaust gas recirculation system for two-cycle internal combustion engine - Google Patents

Exhaust gas recirculation system for two-cycle internal combustion engine

Info

Publication number
JPH07116999B2
JPH07116999B2 JP63110452A JP11045288A JPH07116999B2 JP H07116999 B2 JPH07116999 B2 JP H07116999B2 JP 63110452 A JP63110452 A JP 63110452A JP 11045288 A JP11045288 A JP 11045288A JP H07116999 B2 JPH07116999 B2 JP H07116999B2
Authority
JP
Japan
Prior art keywords
valve
exhaust
exhaust gas
engine
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63110452A
Other languages
Japanese (ja)
Other versions
JPH01285651A (en
Inventor
良男 木戸
栄嗣 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63110452A priority Critical patent/JPH07116999B2/en
Publication of JPH01285651A publication Critical patent/JPH01285651A/en
Publication of JPH07116999B2 publication Critical patent/JPH07116999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/27Layout, e.g. schematics with air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2サイクル内燃機関の排気ガス再循環装置に関
する。
TECHNICAL FIELD The present invention relates to an exhaust gas recirculation device for a two-cycle internal combustion engine.

〔従来の技術〕[Conventional technology]

2サイクルディーゼル機関において燃焼室内の良好なル
ープ掃気を確保するためにシリンダ軸線側に位置する給
気弁周縁部と弁座間の開口、およびシリンダ軸線側に位
置する排気弁周縁部と弁座間の開口を給気弁および排気
弁のリフト量が小さいときに閉鎖するマスク壁を設け、
更に給気ポートおよび排気ポートをシリンダ軸線と平行
に上方に向けて延設した2サイクルディーゼル機関が公
知である(特開昭52−104613号公報)。この2サイクル
ディーゼル機関では給気ポートから流入した給気空気が
シリンダ内壁面に沿ってピストン頂面に向かい、次いで
ピストン頂面上において向きを変えてシリンダ内壁面に
沿い排気ポートに向けて流れるのでループ掃気を行なう
ことができる。
In a two-cycle diesel engine, an opening between the air intake valve peripheral portion located on the cylinder axis side and the valve seat and an opening between the exhaust valve peripheral portion located on the cylinder axis side and the valve seat in order to ensure good loop scavenging in the combustion chamber. A mask wall that closes when the lift amount of the air supply valve and the exhaust valve is small,
Further, there is known a two-cycle diesel engine in which an intake port and an exhaust port are extended upward in parallel with the cylinder axis (Japanese Patent Laid-Open No. 52-104613). In this two-cycle diesel engine, the supply air flowing in from the supply port heads to the piston top surface along the cylinder inner wall surface, then changes direction on the piston top surface and flows along the cylinder inner wall surface toward the exhaust port. Loop scavenging can be performed.

しかしながらこの2サイクルディーゼル機関では給気弁
および排気弁のリフト量が大きくなると給気弁と弁座間
に形成される開口が給気弁の全周に亙って燃焼室内に開
口し、排気弁と弁座間に形成される開口が排気弁の全周
に亙って燃焼室内に開口する。その結果、シリンダ軸線
側に位置する給気弁の開口から流入した吸入空気がシリ
ンダ内壁面に沿って進み、排気弁の開口を通って排気ポ
ート内に流出する。従ってこの2サイクルディーゼル機
関では一部の吸入空気のみしかループ掃気を行なうため
に使用されないので良好なループ掃気を確保できないと
いう問題がある。
However, in this two-cycle diesel engine, when the lift amount of the intake valve and the exhaust valve becomes large, the opening formed between the intake valve and the valve seat opens in the combustion chamber over the entire circumference of the intake valve and becomes the exhaust valve. The opening formed between the valve seats opens in the combustion chamber over the entire circumference of the exhaust valve. As a result, the intake air that has flowed in from the opening of the air supply valve located on the cylinder axis side travels along the inner wall surface of the cylinder, and flows out into the exhaust port through the opening of the exhaust valve. Therefore, in this two-cycle diesel engine, since only a part of the intake air is used for performing the loop scavenging, there is a problem that a good loop scavenging cannot be secured.

そこで強力なループ掃気を得るためにシリンダヘッド内
壁面から燃焼室に向けて延びるマスク壁を給気弁と排気
弁との間に形成してこのマスク壁により排気弁側に位置
する給気弁周縁部と弁座間の開口を給気弁の全開弁期間
に亙って閉鎖するようにした2サイクル内燃機関の本出
願人により既に提案されている(特願昭62−288390号参
照)。この2サイクル内燃機関では新気がマスク壁と反
対側の給気弁開口から燃焼室内に流入し、次いでこの新
気は給気弁下方のシリンダ内壁面に沿って下降した後ピ
ストン頂面で反転して排気弁方向に流れるために強力な
ループ掃気を得ることができる。
Therefore, in order to obtain a strong loop scavenging, a mask wall extending from the inner wall surface of the cylinder head toward the combustion chamber is formed between the intake valve and the exhaust valve, and the periphery of the intake valve located on the exhaust valve side by the mask wall. It has already been proposed by the applicant of the present invention of a two-cycle internal combustion engine in which the opening between the portion and the valve seat is closed over the full opening period of the air supply valve (see Japanese Patent Application No. 62-288390). In this two-cycle internal combustion engine, fresh air flows into the combustion chamber through the intake valve opening on the side opposite to the mask wall, then this fresh air descends along the cylinder inner wall surface below the intake valve and then reverses at the piston top surface. As a result, a strong loop scavenging can be obtained because it flows toward the exhaust valve.

ところがこのように強力なループ掃気を行なうようにす
ると燃焼が良好となるために燃焼温度が上昇し、斯くし
て多量のNOxが発生するという問題がある。そこでNOxの
発生を抑制するために排気ガス機関給気通路内に再循環
するようにした2サイクル内燃機関が本出願人により既
に提案されている(実願昭63−017017号参照)。この2
サイクル内燃機関では多量のNOxが発生すると考えられ
る運転領域、例えば機関回転数が一定以上でスロットル
弁開度が所定開度以下のときに排気ガスを再循環するよ
うにしている。
However, when the strong loop scavenging is performed in this way, the combustion is improved, so that the combustion temperature rises, so that a large amount of NOx is generated. Therefore, a two-cycle internal combustion engine in which the exhaust gas engine is recirculated in the air supply passage to suppress the generation of NOx has already been proposed by the present applicant (see Japanese Patent Application No. 63-017017). This 2
In a cycle internal combustion engine, exhaust gas is recirculated in an operating region where a large amount of NOx is considered to be generated, for example, when the engine speed is above a certain level and the throttle valve opening is below a predetermined opening.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら強力なループ掃気を行うなうことによって
燃焼温度が高くなると別の問題、即ち高温の残留ガスに
よって混合気が自己着火するという問題が生じてきた。
NOxは余分な酸素が存在するもとで燃焼温度が高くなる
と発生するが自己着火は余分な酸素があるか否かにかか
わらず燃焼温度が高くなると発生するのでNOxの発生条
件と自己着火の発生条件は若干異なっている。特に空燃
比を理論空燃比に制御するようにした場合には三元触媒
を用いることによってNOxを浄化することはできるが自
己着火の発生を阻止することはできない。従って実願昭
63−017017号に記載されているように機関回転数が一定
以上でスロット弁開度が所定開度以下のときに排気ガス
を再循環しても必ずしも自己着火の発生を阻止すること
はできない。
However, another problem has arisen when the combustion temperature is increased by performing strong loop scavenging, that is, the mixture is self-ignited by the high temperature residual gas.
NOx occurs when the combustion temperature rises in the presence of excess oxygen, but self-ignition occurs when the combustion temperature rises regardless of the presence of excess oxygen.Therefore, NOx generation conditions and occurrence of self-ignition The conditions are slightly different. In particular, when the air-fuel ratio is controlled to the stoichiometric air-fuel ratio, NOx can be purified by using a three-way catalyst, but the occurrence of self-ignition cannot be prevented. Therefore,
As described in No. 63-017017, even if the engine speed is equal to or higher than a certain value and the slot valve opening is equal to or lower than a predetermined opening, even if the exhaust gas is recirculated, the occurrence of self-ignition cannot always be prevented.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記問題点を解決するために本発明によれば2サイクル
内燃機関において、機関給気通路と機関排気通路とを連
結する排気ガス再循環通路内に排気ガス再循環弁を設
け、機関負荷が予め定められた上限値と下限値の間のと
きに排気ガス再循環弁を開閉せしめて排気ガスを給気通
路内に再循環するようにしている。
In order to solve the above problems, according to the present invention, in a two-cycle internal combustion engine, an exhaust gas recirculation valve is provided in an exhaust gas recirculation passage that connects an engine air supply passage and an engine exhaust passage, and an engine load is preliminarily set. The exhaust gas recirculation valve is opened / closed to recirculate the exhaust gas into the air supply passage between the upper limit value and the lower limit value.

〔実施例〕 第1図を参照すると、1は2サイクル内燃機関本体、2
は給気弁、3は給気ポート、4は給気ポート3内に燃料
を噴射するための燃料噴射弁、5は機関によって駆動さ
れる機械式過給機、7は給気ダクト、8は給気ダクト7
内に配置されたスロットル弁、9はエアフローメータ、
10は排気弁、11は排気ポート、12は三元触媒コンバー
タ、13は排気管、14は排気管13内に配置された酸素濃度
検出器、15はサブマフラ、16はメインマフラ、17は排気
管を夫々示す。メインマフラ16下流の排気管17からは再
循環排気ガス(以下EGRと称す)導管18が分岐され、こ
のEGR導管18は機械式過給機5の上流であってスロット
ル弁8下流の給気ダクト7に連結される。EGR導管18の
外周壁面上には環状をなす多数の冷却フィン19が設けら
れている。このEGR導管18内には電子制御ユニット30の
出力信号により開閉制御される開閉弁20が配置される。
[Embodiment] Referring to FIG. 1, 1 is a two-cycle internal combustion engine body, 2
Is an air supply valve, 3 is an air supply port, 4 is a fuel injection valve for injecting fuel into the air supply port 3, 5 is a mechanical supercharger driven by an engine, 7 is an air supply duct, and 8 is Air supply duct 7
Throttle valve arranged inside, 9 is an air flow meter,
10 is an exhaust valve, 11 is an exhaust port, 12 is a three-way catalytic converter, 13 is an exhaust pipe, 14 is an oxygen concentration detector arranged in the exhaust pipe 13, 15 is a sub-muffler, 16 is a main muffler, 17 is an exhaust pipe Are shown respectively. A recirculation exhaust gas (hereinafter referred to as EGR) conduit 18 is branched from an exhaust pipe 17 downstream of the main muffler 16, and this EGR conduit 18 is an upstream air supply duct of the mechanical supercharger 5 and a downstream of the throttle valve 8. Connected to 7. A large number of annular cooling fins 19 are provided on the outer peripheral wall surface of the EGR conduit 18. An opening / closing valve 20 which is controlled to open / close by an output signal of the electronic control unit 30 is arranged in the EGR conduit 18.

電子制御ユニット30は双方向性バス31によって相互に接
続されたROM(リードオンリメモリ)32、RAM(ランダム
アクセスメモリ)33、CPU(マイクロプロセッサ)34、
入力ポート35および出力ポート36を具備する。エアフロ
ーメータ9および酸素濃度検出器14の出力信号は夫々対
応するAD変換器37,38を介して入力ポート35に入力され
る。また、入力ポート35には機関回転数を表わす出力信
号を発生する回転数センサ21が接続される。また、出力
ポート36は夫々対応する駆動回路39,40を介して燃料噴
射弁4および開閉弁20に接続される。
The electronic control unit 30 includes a ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, which are interconnected by a bidirectional bus 31.
It has an input port 35 and an output port 36. The output signals of the air flow meter 9 and the oxygen concentration detector 14 are input to the input port 35 via the corresponding AD converters 37 and 38, respectively. Further, the input port 35 is connected to a rotation speed sensor 21 that generates an output signal representing the engine rotation speed. Further, the output port 36 is connected to the fuel injection valve 4 and the on-off valve 20 via the corresponding drive circuits 39 and 40, respectively.

第1図に示される実施例では酸素濃度検出器14の出力信
号に基いて機関シリンダ内に供給される混合気の空燃比
が理論空燃比となるように燃料噴射弁4からの燃料噴射
量が制御される。2サイクル内燃機関では掃気空気流が
排気ポート11内に吹き抜ける場合があり、このような場
合にはこの空気と排気ガスとを三元触媒コンバータ12内
で十分に混合し、空気中の酸素が三元触媒コンバータ12
内で酸化反応に用いられた後に排気ガス中の酸素濃度を
検出するために酸素濃度検出器14は三元触媒コンバータ
12の下流に配置されている。
In the embodiment shown in FIG. 1, the fuel injection amount from the fuel injection valve 4 is adjusted so that the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder becomes the stoichiometric air-fuel ratio based on the output signal of the oxygen concentration detector 14. Controlled. In a two-cycle internal combustion engine, the scavenging air flow may blow into the exhaust port 11, and in such a case, this air and exhaust gas are sufficiently mixed in the three-way catalytic converter 12, and oxygen in the air is reduced to three. Original catalytic converter 12
The oxygen concentration detector 14 is a three-way catalytic converter to detect the oxygen concentration in the exhaust gas after it has been used in the oxidation reaction in the
Located 12 downstream.

次に第2図および第3図を参照して2サイクル内燃機関
本体1の構造について説明する。
Next, the structure of the two-cycle internal combustion engine body 1 will be described with reference to FIGS. 2 and 3.

第2図および第3図を参照すると、50はシリンダブロッ
ク、51はシリンダブロック50内で往復動するピストン、
52はシリンダブロック50上に固定されたシリンダヘッ
ド、53はシリンダヘッド52の内壁面52aとピストン51の
頂面間に形成された燃焼室を夫々示す。シリンダヘッド
内壁面52a上には凹溝54が形成され、この凹溝54の底壁
面をなすシリンダヘッド内壁面部分52b上に給気弁2が
配置される。一方、凹溝54を除くシリンダヘッド内壁面
部分52cはほぼ平坦をなし、このシリンダヘッド内壁面
部分52c上に排気弁10が配置される。シリンダヘッド内
壁面部分52bとシリンダヘッド内壁面部分52cは凹溝54の
周壁55を介して互いに接続されている。この凹溝周壁55
は給気弁2の周縁部に極めて近接配置されかつ給気弁2
の周縁部に沿って円弧状に延びるマスク壁55aと、給気
弁2間に位置する新気ガイド壁55bと、シリンダヘッド
内壁面52aの周壁と給気弁2間に位置する新気ガイド壁5
5cとにより構成される。各マスク壁55aは最大リフト位
置にある給気弁2よりも下方まで燃焼室53に向けて延び
ており、従って排気弁10側に位置する給気弁2周縁部と
弁座56間の開口は給気弁2の開弁期間全体に亙ってマス
ク壁55aにより閉鎖されることになる。また、各新気ガ
イド壁55b,55cはほぼ同一平面内に位置しており、更に
これらの新気ガイド壁55b,55cは両給気弁2の中心を結
ぶ線に対してほぼ平行に延びている。点火栓57はシリン
ダヘッド内壁面52aの中心に位置するようにシリンダヘ
ッド内壁面部分52c上に配置されている。
2 and 3, 50 is a cylinder block, 51 is a piston that reciprocates in the cylinder block 50,
Reference numeral 52 denotes a cylinder head fixed on the cylinder block 50, and 53 denotes a combustion chamber formed between the inner wall surface 52a of the cylinder head 52 and the top surface of the piston 51. A concave groove 54 is formed on the cylinder head inner wall surface 52a, and the air supply valve 2 is arranged on the cylinder head inner wall surface portion 52b forming the bottom wall surface of the groove 54. On the other hand, the cylinder head inner wall surface portion 52c excluding the groove 54 is substantially flat, and the exhaust valve 10 is arranged on the cylinder head inner wall surface portion 52c. The cylinder head inner wall surface portion 52b and the cylinder head inner wall surface portion 52c are connected to each other via a peripheral wall 55 of the groove 54. This groove circumferential wall 55
Is arranged very close to the periphery of the air supply valve 2 and the air supply valve 2
A mask wall 55a extending in an arc shape along the peripheral edge of the air intake valve, a fresh air guide wall 55b located between the air supply valves 2, and a fresh air guide wall located between the peripheral wall of the cylinder head inner wall surface 52a and the air supply valve 2. Five
5c and. Each mask wall 55a extends toward the combustion chamber 53 below the intake valve 2 in the maximum lift position, so that the opening between the peripheral edge of the intake valve 2 located on the exhaust valve 10 side and the valve seat 56 is small. The air supply valve 2 is closed by the mask wall 55a over the entire opening period. Further, the fresh air guide walls 55b, 55c are located in substantially the same plane, and these fresh air guide walls 55b, 55c extend substantially parallel to the line connecting the centers of both air supply valves 2. There is. The spark plug 57 is arranged on the cylinder head inner wall surface portion 52c so as to be located at the center of the cylinder head inner wall surface 52a.

第4図は給気弁2および排気弁10の開弁期間の一例を示
している。第4図に示す例においては給気弁2よりも排
気弁10が先に開弁し、給気弁2よりも排気弁10が先に閉
弁する。
FIG. 4 shows an example of the opening period of the intake valve 2 and the exhaust valve 10. In the example shown in FIG. 4, the exhaust valve 10 opens before the intake valve 2 and the exhaust valve 10 closes before the intake valve 2.

ピストン51が下降して排気弁10が開弁すると燃焼室53内
の高圧既燃ガスが排気ポート11内に流出する。次いで給
気弁2が開弁すると給気ポート3から燃焼室53内に燃料
を含んだ新気が流入するが給気弁2の開口に対してマス
ク壁55aが設けられているために新気および燃料は主に
マスク壁55aと反対側の給気弁2の開口部から燃焼室53
内に流入する。次いでこの新気は第5図において矢印S
で示されるようにピストン51の頂面で向きを変えて排気
弁10に向かう。その結果、この掃気流によって燃焼室53
内の既燃ガスが排気ポート11内に押し出され、斯くして
ループ掃気が行なわれることになる。ところで第2図お
よび第3図に示す実施例では円弧状に延びるマスク壁55
aの長さが比較的長く、給気弁2とその弁座56間に形成
される開口のうちで排気弁10側に位置するほぼ1/3の開
口がマスク壁55aにより閉鎖され、排気弁10と反対側に
位置するほぼ2/3の開口から新気が供給される。更にこ
の実施例では給気弁2から流入した新気は新気ガイド壁
55b,55cによりシリンダ内壁面に沿って下方に向かうよ
うに案内される。従ってこの実施例では給気弁2が開弁
したときには大部分の新気がシリンダ内壁面に沿ってピ
ストン51の頂面に向かい、斯くして良好なループ掃気が
行なわれることになる。
When the piston 51 descends and the exhaust valve 10 opens, the high-pressure burned gas in the combustion chamber 53 flows into the exhaust port 11. Next, when the air supply valve 2 is opened, fresh air containing fuel flows into the combustion chamber 53 from the air supply port 3, but since the mask wall 55a is provided to the opening of the air supply valve 2, the fresh air is supplied. And the fuel mainly flows from the opening of the intake valve 2 on the side opposite to the mask wall 55a to the combustion chamber 53.
Flows in. Next, this fresh air is indicated by arrow S in FIG.
The direction is changed at the top surface of the piston 51 toward the exhaust valve 10 as shown by. As a result, this scavenging air flow causes combustion chamber 53
The burnt gas inside is pushed out into the exhaust port 11, and thus loop scavenging is performed. By the way, in the embodiment shown in FIGS. 2 and 3, the mask wall 55 extending in an arc shape is formed.
The length of a is relatively long, and of the openings formed between the air supply valve 2 and its valve seat 56, approximately 1/3 of the openings located on the exhaust valve 10 side are closed by the mask wall 55a. Fresh air is supplied from approximately 2/3 of the openings located on the opposite side of 10. Further, in this embodiment, the fresh air flowing from the air supply valve 2 is the fresh air guide wall.
It is guided by 55b and 55c so as to face downward along the inner wall surface of the cylinder. Therefore, in this embodiment, when the air supply valve 2 is opened, most of the fresh air is directed to the top surface of the piston 51 along the inner wall surface of the cylinder, and thus good loop scavenging is performed.

ところがこのような良好なループ掃気を行なうと良好な
燃焼が行なわれ、斯くして燃焼温度が高くなる。その結
果、シリンダ内に残留する既燃ガスの温度も高くなり、
斯くして新気が残留既燃ガスにより加熱されて自己着火
を生ずることになる。機関シリンダ内に供給される新気
量が少ないとき、即ち機関低負荷運転時には残留ガス量
は多いが残留ガス温は比較的低く、一方機関シリンダ内
に供給される新気量が多いとき、即ち機関高負荷運転時
には残留ガス温は高いが残留ガス量は少ない。これに対
して機関中負荷運転時は残留ガス温が比較的高く、残留
ガス量も比較的多いために残留ガスのもつ温度エネルギ
は機関中負荷運転時に最も高くなる。第6図は新気と残
留ガスの混合ガスの温度Tを示している。なお、第6図
において横軸はシリンダ内に供給される新気量(吸入空
気量Q/機関回転数N)、即ち負荷を表わしている。第6
図から機関中負荷運転時に混合ガス温Tが最も高くなる
ことがわかる。混合ガス温Tは負荷Q/Nに依存してお
り、混合ガス温TがT0よりも高くなると、即ち負荷Q/N
が下限値Aよりも大きく上限値Bよりも小さいときに自
己着火が発生する。そこで負荷Q/Nが下限値Aよりも大
きく上限値Bよりも小さいときに開閉弁20を開弁して低
温のEGRガスを給気ダクト7内に供給するようにしてい
る。
However, if such good loop scavenging is performed, good combustion is performed, and thus the combustion temperature becomes high. As a result, the temperature of burnt gas remaining in the cylinder also rises,
Thus, the fresh air is heated by the residual burnt gas and self-ignites. When the amount of fresh air supplied to the engine cylinder is small, that is, when the engine is operating at low load, the residual gas amount is large but the residual gas temperature is relatively low, while the amount of fresh air supplied to the engine cylinder is large, that is, During high engine load operation, the residual gas temperature is high but the amount of residual gas is small. On the other hand, the temperature of the residual gas is relatively high during the medium load operation of the engine and the amount of the residual gas is relatively large, so that the temperature energy of the residual gas is the highest during the medium load operation of the engine. FIG. 6 shows the temperature T of the mixed gas of fresh air and residual gas. In FIG. 6, the horizontal axis represents the fresh air amount (intake air amount Q / engine speed N) supplied to the cylinder, that is, the load. Sixth
From the figure, it can be seen that the mixed gas temperature T is highest during the engine medium load operation. The mixed gas temperature T depends on the load Q / N, and when the mixed gas temperature T becomes higher than T 0 , that is, the load Q / N
Is larger than the lower limit value A and smaller than the upper limit value B, self-ignition occurs. Therefore, when the load Q / N is larger than the lower limit value A and smaller than the upper limit value B, the on-off valve 20 is opened to supply the low temperature EGR gas into the air supply duct 7.

即ち、第7図に示されるようにステップ60において吸入
空気量Qを表わすエアフローメータ9の出力信号、およ
び機関回転数Nを表わす回転数センサ21の出力信号を読
込む。次いでステップ61において負荷Q/Nが下限値Aよ
りも大きく上限値Bよりも小さいか否かが判別される。
A<Q/N<Bであればステップ62に進んで開閉弁20を開
弁する。Q/NA又はBQ/Nであればステップ63に進ん
で開閉弁20を開弁する。
That is, as shown in FIG. 7, in step 60, the output signal of the air flow meter 9 representing the intake air amount Q and the output signal of the engine speed sensor 21 representing the engine speed N are read. Next, at step 61, it is judged if the load Q / N is larger than the lower limit value A and smaller than the upper limit value B.
If A <Q / N <B, the routine proceeds to step 62, where the on-off valve 20 is opened. If it is Q / NA or BQ / N, the routine proceeds to step 63, where the on-off valve 20 is opened.

第1図に示されるようにEGR導管18の一端はほぼ大気圧
となっている排気管17内に接続されており、EGR導管18
の他端は負圧が発生している給気ダクト7内に接続され
ている。従って開閉弁20が開弁するとEGRガスが給気ダ
クト7内に再循環せしめられることになる。また、排気
ガスはサブマフラ15およびメインマフラ16を経た後に排
気管17に達するので排気管17内の排気ガス温はかなり低
下しており、更にEGRガスは冷却フィン19を有するEGR導
管18内を流通する際に冷却される。従って給気ダクト7
内には低温のEGRガスが供給されることになる。
As shown in FIG. 1, one end of the EGR conduit 18 is connected to the inside of the exhaust pipe 17 which has a substantially atmospheric pressure.
The other end of is connected to the air supply duct 7 in which negative pressure is generated. Therefore, when the opening / closing valve 20 opens, the EGR gas is recirculated in the air supply duct 7. Further, since the exhaust gas reaches the exhaust pipe 17 after passing through the sub-muffler 15 and the main muffler 16, the exhaust gas temperature in the exhaust pipe 17 is considerably lowered, and the EGR gas flows in the EGR conduit 18 having the cooling fins 19. When cooled down. Therefore, the air supply duct 7
Low temperature EGR gas will be supplied inside.

第8図(a)はEGRガスを供給しない場合、第8図
(b)は同一負荷Q/N条件のもとでEGRガスを供給した場
合のシリンダ内のガス組成を示している。同一負荷Q/N
条件であるから第8図(a),(b)において新気の量
は同一であり、EGRガスを供給した場合には第8図
(b)に示されるように高温の残留ガスの一部が低温の
EGRガスに入れ代わる。従ってEGRガスを供給すると混合
ガス温T(第6図)が低下することになり、斯くして自
己着火の発生を阻止できることになる。尚、本実施例で
は、排気ガス再循環弁として、開閉弁20を用いている
が、弁の開口面積が連続的に変化するリニアソレノイド
弁を用い負荷の大きさに応じてEGRガス量を変えても良
い。
FIG. 8 (a) shows the gas composition in the cylinder when EGR gas is not supplied, and FIG. 8 (b) shows the gas composition in the cylinder when EGR gas is supplied under the same load Q / N conditions. Same load Q / N
Since the conditions are the same, the amount of fresh air is the same in FIGS. 8 (a) and 8 (b), and when EGR gas is supplied, as shown in FIG. 8 (b), part of the high temperature residual gas Is cold
Replaces EGR gas. Therefore, when the EGR gas is supplied, the mixed gas temperature T (FIG. 6) is lowered, and thus the occurrence of self-ignition can be prevented. In this embodiment, the on-off valve 20 is used as the exhaust gas recirculation valve, but a linear solenoid valve whose opening area of the valve continuously changes is used to change the EGR gas amount according to the size of the load. May be.

〔発明の効果〕〔The invention's effect〕

自己着火が生じる負荷条件のときにEGRガスを再循環す
ることによって自己着火の発生を阻止することができ
る。
The occurrence of auto-ignition can be prevented by recirculating EGR gas under load conditions where auto-ignition occurs.

【図面の簡単な説明】[Brief description of drawings]

第1図は2サイクル内燃機関の全体図、 第2図は2サイクル内燃機関本体の側面断面図、 第3図はシリンダヘッドの内壁面を示す図、 第4図は給排気弁の開弁期間を示す線図、 第5図はピストンが下降したところを示す側面断面図、 第6図はシリンダ内のガス温を示す線図、 第7図はEGR制御を実行するためのフローチャート、 第8図はシリンダ内のガス組成を説明するための図であ
る。 2……給気弁、7……給気ダクト、 10……排気弁、17……排気管、 18……EGR導管、20……開閉弁。
FIG. 1 is an overall view of a two-cycle internal combustion engine, FIG. 2 is a side sectional view of a two-cycle internal combustion engine body, FIG. 3 is a view showing an inner wall surface of a cylinder head, and FIG. FIG. 5, FIG. 5 is a side sectional view showing the position where the piston is lowered, FIG. 6 is a diagram showing the gas temperature in the cylinder, FIG. 7 is a flow chart for executing EGR control, and FIG. FIG. 4 is a diagram for explaining a gas composition in a cylinder. 2 ... Air supply valve, 7 ... Air supply duct, 10 ... Exhaust valve, 17 ... Exhaust pipe, 18 ... EGR conduit, 20 ... Open / close valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2サイクル内燃機関において、機関給気通
路と機関排気通路とを連結する排気ガス再循環通路内に
排気ガス再循環弁を設け、機関負荷が予め定められた上
限値と下限値の間のときに上記排気ガス再循環弁を開弁
せしめて排気ガスを給気通路内に再循環するようにした
2サイクル内燃機関の排気ガス再循環装置。
1. In a two-cycle internal combustion engine, an exhaust gas recirculation valve is provided in an exhaust gas recirculation passage that connects an engine air supply passage and an engine exhaust passage, and an engine load has a predetermined upper and lower limit value. An exhaust gas recirculation apparatus for a two-cycle internal combustion engine, wherein the exhaust gas recirculation valve is opened during the period between so as to recirculate the exhaust gas into the supply passage.
JP63110452A 1988-05-09 1988-05-09 Exhaust gas recirculation system for two-cycle internal combustion engine Expired - Lifetime JPH07116999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110452A JPH07116999B2 (en) 1988-05-09 1988-05-09 Exhaust gas recirculation system for two-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110452A JPH07116999B2 (en) 1988-05-09 1988-05-09 Exhaust gas recirculation system for two-cycle internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01285651A JPH01285651A (en) 1989-11-16
JPH07116999B2 true JPH07116999B2 (en) 1995-12-18

Family

ID=14536074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110452A Expired - Lifetime JPH07116999B2 (en) 1988-05-09 1988-05-09 Exhaust gas recirculation system for two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07116999B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69130976T2 (en) * 1990-11-06 1999-07-08 Mazda Motor Exhaust gas recirculation system for an internal combustion engine
FR2780099B1 (en) * 1998-06-22 2001-01-05 Daniel Drecq TWO-STROKE INTERNAL COMBUSTION ENGINE HAVING A PARTIAL EXHAUST GAS SUPPLY AND RECIRCULATION DEVICE

Also Published As

Publication number Publication date
JPH01285651A (en) 1989-11-16

Similar Documents

Publication Publication Date Title
EP1233151B1 (en) Automotive four-cycle engine
US5203311A (en) Exhaust gas recirculation system for an internal combustion engine
US7182075B2 (en) EGR system
US4270500A (en) Internal combustion engine with dual induction system
US4231338A (en) Internal combustion engine
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5926787B2 (en) Exhaust gas recirculation device for active thermal atmosphere combustion two-stroke internal combustion engine
US4069666A (en) Internal combustion gasoline engine
JP2001164979A (en) Internal combustion engine of compression self-ignition type using gasoline
US4325346A (en) Four-cycle internal combustion engine
JPH07116999B2 (en) Exhaust gas recirculation system for two-cycle internal combustion engine
JPS6128828B2 (en)
JP2003113730A (en) INTERNAL COMBUSTION ENGINE WITH NOx STORAGE CATALYST, AND COMBUSTION CONTROL METHOD FOR THE SAME
JP3464806B2 (en) EGR device for two-stroke engine
GB2087476A (en) I.C. Engine Cylinder Intake Passages
JPS5821090B2 (en) air injection gasoline engine
JPH06241127A (en) Exhaust gas recirculation device of two-cycle internal combustion engine
JPH0447153A (en) Internal exhaust gas recirculation type engine
JP3327940B2 (en) Engine combustion control device
JPS627943A (en) Exhaust reflux device of diesel engine
JPH06101577A (en) Exhaust gas recirculation device of 2-cycle internal combustion engine
JPH0513954Y2 (en)
JPS6132497B2 (en)
JPH0599078A (en) Two cycle internal combustion engine
JPS63201312A (en) Two-cycle internal combustion engine