JPH07116844A - Controller for arc welding robot - Google Patents

Controller for arc welding robot

Info

Publication number
JPH07116844A
JPH07116844A JP26468693A JP26468693A JPH07116844A JP H07116844 A JPH07116844 A JP H07116844A JP 26468693 A JP26468693 A JP 26468693A JP 26468693 A JP26468693 A JP 26468693A JP H07116844 A JPH07116844 A JP H07116844A
Authority
JP
Japan
Prior art keywords
arc welding
welding
robot
short
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26468693A
Other languages
Japanese (ja)
Inventor
Shigeru Shimogama
茂 下釜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26468693A priority Critical patent/JPH07116844A/en
Publication of JPH07116844A publication Critical patent/JPH07116844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To easily control an arc welding waveform in the real time even during arc welding. CONSTITUTION:A fine adjustment value (level variation) for every arc welding waveform control factor is expressed by the number of steps from a standard value and an adjustment value is inputted from a monitoring part 11 of a robot controller 10 which operates and controls arc welding, by which the arc welding waveform during arc welding can be controlled. Accordingly, the time required for forming arc welding conditions can drastically be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アーク溶接を行う溶接
ロボットの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding robot controller for performing arc welding.

【0002】[0002]

【従来の技術】従来、アーク溶接においては、アーク溶
接機のアーク溶接波形制御に係わるパラメータは溶接電
源制御装置内のCPUの作動命令等を格納するROM内
に標準値が設定されており、容易には変更できない構成
であり、アーク溶接波形制御を実施する場合はROM内
に格納されている標準値を設定変更した新たなROMを
作成し、新ROMへ交換して試し溶接を行い良好な結果
が得られるまで前記の作業を繰り返していた。
2. Description of the Related Art Conventionally, in arc welding, standard parameters for arc welding waveform control of an arc welding machine are set in a ROM for storing operating instructions of a CPU in a welding power source control device, which is easy. If you want to perform arc welding waveform control, create a new ROM in which the standard value stored in the ROM is changed, replace it with a new ROM, and perform trial welding to obtain a good result. The above operation was repeated until

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した方法
では、アーク溶接波形制御の因子ごとの微調整値を変更
する毎に該微調整値を変更したROMを作成し、かつ試
し溶接を行わねばならず、溶接施工に膨大な時間が生じ
るという問題点があった。
However, in the above-described method, every time the fine adjustment value for each factor of the arc welding waveform control is changed, the ROM in which the fine adjustment value is changed must be created and the trial welding must be performed. However, there is a problem that a huge amount of time is required for welding work.

【0004】本発明は、上記問題点を解決するものでア
ーク溶接を作動制御するロボット制御装置とアーク溶接
を行う溶接電源制御装置との間でアーク溶接波形制御因
子の微調整値を変更したい場合はその都度、アーク溶接
施工中でもアーク溶接波形制御を実施可能とするアーク
溶接ロボット制御装置を提供することを目的とするもの
である。
The present invention solves the above problems and is intended to change the fine adjustment value of the arc welding waveform control factor between the robot controller that controls the operation of arc welding and the welding power source controller that performs arc welding. The object of the present invention is to provide an arc welding robot control device capable of performing arc welding waveform control even during arc welding each time.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明のアーク溶接ロボット制御装置において、ア
ーク溶接波形制御因子ごとの微調整値(レベル変化量)
を標準値からのステップ数で表現し該微調整値をアーク
溶接を作動制御するロボット制御装置のモニタ部(手元
で操作できるティーチペンダント)より入力し入力完了
した時点で、あるいはロボットの各教示点ごとのシーケ
ンス命令として登録しておくことにより、溶接電源制御
装置へアーク溶接波形制御因子ごとの微調整値(レベル
変化量)を通信手段を用いて伝送し、アーク溶接施工中
でもアーク溶接波形制御を実施可能とするよう構成した
ものである。
In order to achieve the above object, in the arc welding robot controller of the present invention, a fine adjustment value (level change amount) for each arc welding waveform control factor.
Is expressed as the number of steps from the standard value, and the fine adjustment value is input from the monitor section (teach pendant that can be operated at hand) of the robot control device that controls the operation of arc welding, and when the input is completed, or each teaching point of the robot By registering as a sequence command for each, the fine adjustment value (level change amount) for each arc welding waveform control factor is transmitted to the welding power source control device using communication means, and arc welding waveform control is performed even during arc welding. It is configured to be practicable.

【0006】[0006]

【作用】まず、所望する溶接電流・電圧にてアーク溶接
施工を実施するが、同時に先の構成によって、アーク溶
接波形制御因子の微調整作業を同アーク溶接施工中に行
うことにより容易に、よりよい溶接施工条件を得ること
が可能となりアーク溶接施工条件だしにかかる時間の大
幅な短縮が図れる。
[Operation] First, arc welding is carried out at a desired welding current and voltage, but at the same time, by the above configuration, fine adjustment work of the arc welding waveform control factor can be performed easily during the arc welding. It is possible to obtain good welding work conditions, and it is possible to significantly reduce the time required to obtain arc welding work conditions.

【0007】また、前記で求めた標準値からの微調整値
をロボットのシーケンス命令としてロボット教示点ごと
に可変できるので実溶工程での最適な溶接が、また溶接
時間の短縮が図れる。
Further, since the fine adjustment value from the standard value obtained above can be changed for each robot teaching point as a robot sequence command, optimum welding in the actual melting process can be achieved and welding time can be shortened.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面を参照しなが
ら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0009】本実施例では、CO2・MAG溶接につい
て実施した。図1は、本発明の一実施例による溶接ロボ
ットシステムの構成図、図2はCO 2・MAG溶接波形
制御因子の内容と単位ステップあたりの微調整値(レベ
ル変化量)を示す図、図3はCO2・MAG溶接波形制
御因子が該溶接波形のどこの部位にあたるかを示す図、
図4はCO2・MAG溶接波形制御因子ごとのステップ
変化に対する傾向を示す図、図5はモニタ部でCO2
MAG溶接波形制御因子ごとの微調整値(ステップ数)
を設定する画面を表示した図、図6は実施例を実施する
アーク溶接ロボット制御装置の要部ブロック図である。
In this embodiment, CO2・ About MAG welding
It was carried out. FIG. 1 shows a welding robot according to an embodiment of the present invention.
Fig. 2 is a CO configuration diagram 2・ MAG welding waveform
Contents of control factor and fine adjustment value per unit step (level
Change amount), FIG. 3 shows CO2・ MAG welding waveform control
A diagram showing which part of the welding waveform the control factor corresponds to,
Figure 4 is CO2・ Step for each MAG welding waveform control factor
FIG. 5 is a diagram showing a tendency with respect to changes, and FIG.2
Fine adjustment value for each MAG welding waveform control factor (number of steps)
FIG. 6 shows an example of a screen displaying a screen for setting
It is a principal part block diagram of an arc welding robot control device.

【0010】図1の溶接ロボットシステムにおいて、2
は1のモニタ部から入力された情報によってアーク溶接
を実施するプログラムが作成され、アーク電流を検出し
て溶接の継続、異常判定などを行うロボット制御装置、
3は溶接を司る制御装置と溶接パワー部である。本実施
例においては、ロボット制御装置と溶接電源制御装置間
の通信経路をできるだけ最短長にするため図1に示す様
に溶接電源(溶接電源制御装置を含む)3を金属板で密
閉し、ロボット制御装置2の箱内に装脱可能に具備した
構造とした。今回実施したCO2・MAG短絡アーク溶
接の制御因子としては図2に示すスローダウン、短絡初
期時間TSO、短絡電流屈折点ISC、短絡電流勾配2I
SL2、突っ掛かり防止時間TSP、アーク電流屈折点Iao
を取り上げた。
In the welding robot system of FIG. 1, 2
Is a robot control device that creates a program for performing arc welding based on the information input from the monitor unit 1, detects arc current, and continues welding, determines abnormality, etc.
Reference numeral 3 is a control device that controls welding and a welding power unit. In this embodiment, in order to make the communication path between the robot controller and the welding power source controller as short as possible, the welding power source (including the welding power source controller) 3 is sealed with a metal plate as shown in FIG. The control device 2 has a structure that is detachably mounted in the box. As the control factors of the CO 2 MAG short-circuit arc welding performed this time, the slowdown shown in FIG. 2, the short-circuit initial time T SO , the short-circuit current bending point I SC , and the short-circuit current gradient 2I.
SL2 , plunge prevention time T SP , arc current refraction point I ao
Was taken up.

【0011】それぞれの内容は、スローダウンがアーク
スタート直前のワイヤ送給速度を変化させるもの、短絡
初期時間(TSO)がワイヤ短絡発生時からワイヤ破断電
流が立ち上がるまでの時間、短絡電流屈折点(ISC)が
ワイヤ破断短絡電流の勾配が変曲する点、短絡電流勾配
2(ISL2)がワイヤ短絡時間が少し長い場合のアーク
再生前の短絡電流の勾配、突っ掛かり防止時間(TSP
が溶接電圧が低い時等ワイヤ短絡時間が極めて長い場合
のワイヤ突っ掛かり防止電流が出力されるまでの時間、
アーク電流屈折点(Iao)がアーク再生後のアーク電流
の変曲する点である。
The respective contents are that the slowdown changes the wire feeding speed immediately before the arc start, the initial short circuit time (T SO ) is the time from the occurrence of the wire short circuit to the rise of the wire breaking current, and the short circuit current bending point. (I SC ) is the point at which the gradient of the wire breaking short-circuit current is inflection, the short-circuit current gradient 2 (I SL2 ) is the gradient of the short-circuit current before arc regeneration when the wire short-circuit time is a little long, and the trapping prevention time (T SP )
Is the time until the wire rush current is output when the wire short circuit time is extremely long, such as when the welding voltage is low,
The arc current refraction point (I ao ) is the point at which the arc current after the arc is regenerated changes.

【0012】本実施例においては、各因子に対するステ
ップ数は±3ステップとし単位ステップに対する微調整
値(レベル変化量)は図2に示す値とした。ここで、今
回取り上げたCO2・MAG短絡アーク溶接の各制御因
子がCO2・MAG短絡アーク溶接波形のどの部位にあ
たるかを図3で示した。ここで、ワイヤスローダウンは
もちろん、溶接波形とは直接関係がないので図3には表
現されない。また、今回取り上げたCO2・MAG短絡
アーク溶接の各制御因子を図2に示す単位ステップあた
りの変化量でレベルを変化させると図4に示す傾向がみ
られる。今回取り上げたCO2・MAG短絡アーク溶接
の各制御因子が短絡アーク溶接に及ぼす影響はスローダ
ウンがアークスタート性、短絡初期時間(TSO)がアー
クの規則性、短絡電流屈折点(ISC)がスパッタの量、
短絡電流勾配2(ISL2)と突っ掛かり防止時間
(TSP)がワイヤ突っ掛かり、アーク電流屈折点
(Iao)がアークの広がりである。
In the present embodiment, the number of steps for each factor is ± 3 steps, and the fine adjustment value (level change amount) for a unit step is the value shown in FIG. Here, showed that each regulator of the current taken up with CO 2 · MAG short arc welding corresponds to which part of the CO 2 · MAG short arc welding waveform in FIG. Here, the wire slowdown, of course, is not directly related to the welding waveform, and thus is not represented in FIG. Further, when the level of each control factor of CO 2 MAG short-circuit arc welding taken up this time is changed by the amount of change per unit step shown in FIG. 2, the tendency shown in FIG. 4 is seen. The influence of each control factor of CO 2 / MAG short-circuit arc welding on the short-circuit arc welding, which was taken up this time, is the arc start property in the slowdown, the arc regularity in the initial short-circuit time (T SO ), the short-circuit current refraction point (I SC ). Is the amount of spatter,
The short-circuit current gradient 2 (I SL2 ) and the plunge prevention time (T SP ) plunge into the wire, and the arc current bending point (I ao ) is the arc spread.

【0013】次に、溶接作業中に作業者は溶接施工状態
やビード概観をみながら図5に示すモニタ部により、今
回取り上げたCO2・MAG短絡アーク溶接の各制御因
子それぞれに対するステップ数を図5に示すモニタ部の
液晶表示部を通して変更し設定する。実変更操作として
は、カーソル移動キーにより所望のCO2・MAG短絡
アーク溶接の制御因子のステップ数値の所にブリンク
(点滅)カーソルを一致させて「記憶選択」キーを押し
てステップ数(レベル変化量)を変更設定する。CO2
・MAG短絡アーク溶接の各制御因子それぞれに対して
変更設定し終わったら「終了」キーを押すが、該キーを
押した時点でCO2・MAG短絡アーク溶接の各制御因
子のステップ数(レベル変化量)が図6に示すロボット
制御装置側から溶接電源制御装置側へ通信される。ここ
で、図6においてアーク溶接ロボット制御装置10のモ
ニタ部11から変更設定されたCO2・MAG短絡アー
ク溶接の各制御因子のステップ数はロボット制御装置側
のCPU12が読み取りバス18に接続されている通信
インターフェース24を通ってバス25を介しCPU2
0が読み取りCO2・MAG短絡アーク溶接の各溶接波
形制御因子のステップ数(レベル変化量)に応じたCO
2・MAG短絡アーク溶接波形制御を即座に溶接中でも
行える。
Next, during the welding operation, the operator observes the welding condition and the bead appearance, and the monitor section shown in FIG. 5 shows the number of steps for each control factor of the CO 2 / MAG short-circuit arc welding taken up this time. It is changed and set through the liquid crystal display section of the monitor section shown in FIG. As the actual change operation, use the cursor movement keys to bring the blink (blinking) cursor to the step number of the desired CO 2 · MAG short-circuit arc welding control factor, and press the “memory selection” key to select the number of steps (level change amount). ) Is changed and set. CO 2
・ After changing and setting each control factor of MAG short-circuit arc welding, press the "End" key. At the time of pressing the key, the number of steps of each control factor of CO 2 · MAG short-circuit arc welding (level change) Quantity) is communicated from the robot controller side shown in FIG. 6 to the welding power source controller side. Here, the number of steps of each control factor of CO 2 MAG short-circuit arc welding changed and set from the monitor unit 11 of the arc welding robot controller 10 in FIG. 6 is determined by the CPU 12 on the robot controller side being connected to the bus 18. CPU 2 through the bus 25 through the communication interface 24
0 is read CO according to the number of steps (level change amount) of each welding waveform control factor of CO 2 · MAG short circuit arc welding
2 -MAG short-circuit arc welding Waveform control can be performed immediately even during welding.

【0014】ここで、通信プロトコルは、 伝送速度:9600bps、伝送の方向性:全二重、デー
タ長:8ビット+偶数パリティ1ビット、通信フロー制
御:X’ONなし、モデムインタフェース:RS422 としている。
Here, the communication protocol is: transmission speed: 9600 bps, transmission direction: full duplex, data length: 8 bits + even parity 1 bit, communication flow control: no X'ON, modem interface: RS422. .

【0015】ROM13,ROM21はCPU12,C
PU20を動作させるそれぞれのアルゴリズムが格納さ
れている。RAM14に教示されたプログラム(ロボッ
ト動作手順)に従ってCPU12はモータ制御部15、
サーボドライバ部16を介してロボット本体19に固定
されている溶接トーチを移動させる。また、RAM22
はCPU20のワークエリアでCPU20がCPU12
より通信にて指示された各種の溶接施工条件等を一時的
に格納しておく。該溶接施工条件等に従い、溶接制御部
23を介して溶接電流を溶接用ワイヤへ供給しCO2
MAG短絡アーク溶接を行っている。この様にして、C
2・MAG短絡アーク溶接波形制御因子ごとの溶接波
形制御ステップ数(レベル変化量)を通信手段を用いて
溶接施工中でも溶接電源制御装置側へ送信できるのでC
2・MAG短絡アーク溶接波形制御の調整に要する労
力が従来の方法と比較してはるかに少なくできる。ま
た、CO2・MAG短絡アーク溶接法に係わらず他のア
ーク溶接法に関してもアーク溶接波形制御因子を抽出し
て各溶接波形制御因子ごとの標準値と単位ステップあた
りの微調整変化量を予め定義しておくことで容易に展開
できることは明白である。
ROM 13 and ROM 21 are CPU 12 and C
Each algorithm for operating the PU 20 is stored. In accordance with the program (robot operation procedure) taught in the RAM 14, the CPU 12 causes the motor control unit 15,
The welding torch fixed to the robot body 19 is moved via the servo driver unit 16. In addition, RAM22
Is the work area of the CPU 20 and the CPU 20 is the CPU 12
Various welding construction conditions etc. instructed by the communication are temporarily stored. According to the welding construction conditions and the like, a welding current is supplied to the welding wire through the welding control unit 23 to generate CO 2
MAG short circuit arc welding is performed. In this way, C
O 2 · MAG short circuit arc Welding waveform control The number of welding waveform control steps (level change amount) for each factor can be transmitted to the welding power source control device side even during welding by using the communication means.
The effort required for adjusting the O 2 · MAG short-circuit arc welding waveform control can be far reduced as compared with the conventional method. Also, regardless of the CO 2 / MAG short-circuit arc welding method, arc welding waveform control factors are extracted for other arc welding methods as well, and standard values for each welding waveform control factor and fine adjustment change amount per unit step are defined in advance. Obviously, it will be easy to develop if you do so.

【0016】[0016]

【発明の効果】以上のように本発明によれば、CO2
MAG短絡アーク溶接の各溶接波形制御因子ごとの標準
値と単位ステップあたりの微調整変化量を予め定義して
おいて、溶接施工中でも通信にて該ステップ数を溶接電
源制御装置へ送信し、CO2・MAG短絡アーク溶接の
各溶接波形制御因子のステップ数(レベル変化量)に応
じたCO2・MAG短絡アーク溶接波形制御を手元で操
作できるティーチペンダントを使用して容易にしかも実
時間で行える。従って、従来のようにCO2・MAG短
絡アーク溶接の各溶接波形制御因子のステップ数(レベ
ル変化量)を変更設定する毎にROMを作成して試し溶
接施工を行う必要が無く、CO2・MAG短絡アーク溶
接施工をきめ細かく行えるので所望の溶接施工条件を短
時間で得られる。
As described above, according to the present invention, CO 2
A standard value for each welding waveform control factor of MAG short-circuit arc welding and a fine adjustment change amount per unit step are defined in advance, and the number of steps is transmitted to the welding power source control device by communication even during welding, and CO performed by easily and real-time using a teach pendant can be manipulated 2 · MAG short number of steps each weld waveform regulator of arc welding (level variation) CO 2 · MAG short arc welding waveform control according to the at hand . Therefore, as in the prior art CO 2 · MAG short number of steps each weld waveform regulator of arc welding (level variation) is not necessary to perform the change created try welding the ROM each time set, CO 2 · Since the MAG short-circuit arc welding process can be performed finely, desired welding process conditions can be obtained in a short time.

【0017】また、前記で求めた標準値からの微調整値
をロボットのシーケンス命令としてロボット教示点ごと
に可変できるので実溶工程での最適な溶接が、また溶接
時間の短縮が図れる。
Further, since the fine adjustment value from the standard value obtained above can be changed for each robot teaching point as a robot sequence command, optimum welding in the actual melting step and shortening of welding time can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の溶接ロボットシステム構成
FIG. 1 is a configuration diagram of a welding robot system according to an embodiment of the present invention.

【図2】本発明で実施したCO2・MAG短絡アーク溶
接法における抽出した溶接波形制御因子と定義した単位
ステップあたりのレベル変化量を示した図
FIG. 2 is a diagram showing the level change amount per unit step defined as the extracted welding waveform control factor in the CO 2 MAG short circuit arc welding method carried out in the present invention.

【図3】本発明で実施したCO2・MAG短絡アーク溶
接法における抽出した溶接波形制御因子が溶接波形のど
こにあたるのかを示した図
FIG. 3 is a diagram showing where in the welding waveform the extracted welding waveform control factor in the CO 2 MAG short circuit arc welding method implemented in the present invention corresponds.

【図4】本発明で実施したCO2・MAG短絡アーク溶
接法における抽出した溶接波形制御因子ごとのステップ
(レベル)変化に対する傾向を示した図
FIG. 4 is a diagram showing a tendency for a step (level) change for each extracted welding waveform control factor in the CO 2 MAG short circuit arc welding method carried out in the present invention.

【図5】本発明で実施したCO2・MAG短絡アーク溶
接法における抽出した溶接波形制御因子ごとのステップ
数(レベル変化度合)を入力するモニタ部の図
FIG. 5 is a diagram of a monitor unit for inputting the number of steps (level change degree) for each extracted welding waveform control factor in the CO 2 / MAG short-circuit arc welding method implemented in the present invention.

【図6】本発明で実施したCO2・MAG短絡アーク溶
接ロボット制御装置の要部ブロック図
FIG. 6 is a block diagram of a main part of a CO 2 MAG short-circuit arc welding robot controller implemented in the present invention.

【符号の説明】[Explanation of symbols]

1 ティーチペンダント(モニタ) 2 ロボット制御装置 3 溶接電源 10 アーク溶接ロボット制御装置 11 モニタ部 12 CPU 13 ROM 14 RAM 15 モータ制御部 16 サーボドライバ部 17 通信インタフェース 18 バス 19 ロボット本体 20 CPU 21 ROM 22 RAM 23 溶接制御部 24 通信インタフェース 25 バス 1 Teach Pendant (Monitor) 2 Robot Controller 3 Welding Power Supply 10 Arc Welding Robot Controller 11 Monitor 12 CPU 13 ROM 14 RAM 15 Motor Controller 16 Servo Driver 17 Communication Interface 18 Bus 19 Robot Main Body 20 CPU 21 ROM 22 RAM 23 Welding controller 24 Communication interface 25 Bus

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アーク溶接を作動制御するよう構成され
た産業用ロボット制御装置から前記アーク溶接を行う溶
接電源制御装置部へ通信を手段として、アーク溶接波形
制御因子ごとの標準値からの微調整量を伝送することで
溶接運転中のアーク溶接波形制御を実施可能としたこと
を特徴とするアーク溶接ロボットの制御装置。
1. Fine adjustment from a standard value for each arc welding waveform control factor by means of communication from an industrial robot control device configured to control arc welding to a welding power supply control device section for performing the arc welding. A control device for an arc welding robot, which is capable of performing arc welding waveform control during welding operation by transmitting the amount.
【請求項2】 アーク溶接波形制御因子ごとの標準値か
らの微調整量を溶接条件あわせを実施している時に手元
にあるティーチペンダントから実時間で微調整できるこ
とを、加えて、ロボット自動運転中にはロボットのプロ
グラム上にシーケンス命令としてロボット教示点ごとに
微調整量を変更可能としたことを特徴とするアーク溶接
ロボットの制御装置。
2. The amount of fine adjustment from the standard value for each arc welding waveform control factor can be finely adjusted in real time from the teach pendant at hand while adjusting welding conditions, and in addition, during robot automatic operation. The arc welding robot controller is characterized in that the fine adjustment amount can be changed for each robot teaching point as a sequence command on the robot program.
JP26468693A 1993-10-22 1993-10-22 Controller for arc welding robot Pending JPH07116844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26468693A JPH07116844A (en) 1993-10-22 1993-10-22 Controller for arc welding robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26468693A JPH07116844A (en) 1993-10-22 1993-10-22 Controller for arc welding robot

Publications (1)

Publication Number Publication Date
JPH07116844A true JPH07116844A (en) 1995-05-09

Family

ID=17406793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26468693A Pending JPH07116844A (en) 1993-10-22 1993-10-22 Controller for arc welding robot

Country Status (1)

Country Link
JP (1) JPH07116844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114088A (en) * 2002-09-26 2004-04-15 Daihen Corp Power supply device for short circuit arc welding, and robot welding equipment
JP2007160350A (en) * 2005-12-14 2007-06-28 Daihen Corp Method for setting welding condition of arc welding robot
JP2008181902A (en) * 2008-04-22 2008-08-07 Yaskawa Electric Corp Hand-held controller of industrial robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114088A (en) * 2002-09-26 2004-04-15 Daihen Corp Power supply device for short circuit arc welding, and robot welding equipment
JP2007160350A (en) * 2005-12-14 2007-06-28 Daihen Corp Method for setting welding condition of arc welding robot
JP2008181902A (en) * 2008-04-22 2008-08-07 Yaskawa Electric Corp Hand-held controller of industrial robot
JP4640712B2 (en) * 2008-04-22 2011-03-02 株式会社安川電機 Industrial robot handheld controller

Similar Documents

Publication Publication Date Title
KR102344904B1 (en) User interface with real time pictograph representation of parameter settings
US6717108B2 (en) Electric arc welder and method of designing waveforms therefor
US6734394B2 (en) Electric arc welder and controller to duplicate a known waveform thereof
JPS5978781A (en) Welding method in automatic welding machine
JPH06179077A (en) Arc welding control method for welding robot
JPH07116844A (en) Controller for arc welding robot
EP0169914A1 (en) Welding condition calculating system for a welding robot
JP3175661B2 (en) Control device and control method for arc welding robot
JPH04258375A (en) Arc welding power source
JP2843399B2 (en) Processing condition setting device for laser processing machine
JPH03114669A (en) Welding machine control system by robot
JP3391168B2 (en) Consumable electrode AC arc welding method
US5270940A (en) Contour configuration machining method
JPS6127180A (en) Arc welding equipment
JP3097276B2 (en) Electric discharge machine
JPH058037A (en) Controller for arc welding machine
JP4400714B2 (en) Welding system
Nishikawa High speed arc welding
JP4287920B2 (en) Cutting control method and apparatus for cutting machine
JP3269149B2 (en) Tack welding method
JPH11147190A (en) Method and control device for laser welding
JP2640467B2 (en) Numerical control unit
JPS6016459Y2 (en) Arc welding equipment
JP2638401B2 (en) Wire feeding speed control device for consumable electrode arc welding machine
TWM635817U (en) Welding system capable of automatically adjusting parameter