JPH07116274B2 - Method for producing spherical chelate resin - Google Patents
Method for producing spherical chelate resinInfo
- Publication number
- JPH07116274B2 JPH07116274B2 JP61311735A JP31173586A JPH07116274B2 JP H07116274 B2 JPH07116274 B2 JP H07116274B2 JP 61311735 A JP61311735 A JP 61311735A JP 31173586 A JP31173586 A JP 31173586A JP H07116274 B2 JPH07116274 B2 JP H07116274B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- chelate resin
- aqueous solution
- reaction
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Phenolic Resins Or Amino Resins (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は球状キレート樹脂の製造方法に関する。さらに
詳しくは、フェノール類、アルデヒド類及びイミノジ酢
酸から金属イオン交換容量の高い球状キレート樹脂を容
易にかつ高収率で製造する方法に関する。TECHNICAL FIELD The present invention relates to a method for producing a spherical chelate resin. More specifically, it relates to a method for easily and in high yield producing a spherical chelate resin having a high metal ion exchange capacity from phenols, aldehydes and iminodiacetic acid.
〔従来の技術〕 従来からキレート樹脂は廃水中に含有される重金属類を
分離除去する廃水処理、あるいは水中の有価金属類を分
離濃縮する金属の回収等に広く用いられてている。[Prior Art] Conventionally, chelate resins have been widely used for wastewater treatment for separating and removing heavy metals contained in wastewater, or for collecting metals for separating and concentrating valuable metals in water.
一般にキレート樹脂としては、官能基の種類又は樹脂母
体を構成する素材の種類により種々のキレート樹脂が挙
げられるが、イミノジ酢酸基を官能基として有するフェ
ノール系キレート樹脂は金属イオンの交換容量が比較的
大きく、金属の回収等に用いられている。In general, the chelate resin includes various chelate resins depending on the type of functional group or the type of material constituting the resin matrix, but the phenolic chelate resin having an iminodiacetic acid group as a functional group has a relatively high metal ion exchange capacity. It is widely used for metal recovery.
イミノジ酢酸基を官能基として有するフェノール系キレ
ート樹脂の製造法としては、1)フェノール類とホルム
アルデヒドとアミノカルボン酸の金属塩またはアンモニ
ウム塩を、アルカリ性触媒または2価金属イオン触媒の
存在下に反応させ、粘稠な樹脂を得、これを硬化、粉砕
してキレート樹脂を得る方法(特開昭49−51389)、
2)マンニッヒ反応により芳香環にイミノジ酢酸基を導
入したフェノール化合物を出発物質とし、これにフェノ
ール類とアルデヒド類を加え、加熱硬化し粉砕してキレ
ート樹脂を得る方法(特開昭49−99391特開昭50−9299
1、特開昭50−92993、特開昭50−103590)、3)イミノ
ジ酢酸基を導入したフェノール化合物とフェノール類、
アルデヒド類との高分子化反応を媒体中で行ない、球状
キレート樹脂を製造する方法(特公昭57−6441)等が知
られている。The method for producing a phenolic chelate resin having an iminodiacetic acid group as a functional group is as follows: 1) reacting phenols with formaldehyde and a metal salt or ammonium salt of aminocarboxylic acid in the presence of an alkaline catalyst or a divalent metal ion catalyst. A method of obtaining a viscous resin, curing and crushing this to obtain a chelate resin (JP-A-49-51389),
2) A method in which a phenol compound in which an iminodiacetic acid group is introduced into an aromatic ring by a Mannich reaction is used as a starting material, phenols and aldehydes are added to the starting material, and the mixture is heat-cured and crushed to obtain a chelate resin (JP-A-49-99391). Kaisho 50-9299
1, JP-A-50-92993, JP-A-50-103590), 3) Phenol compounds and phenols having iminodiacetic acid groups introduced,
A method of producing a spherical chelate resin by carrying out a polymerization reaction with an aldehyde in a medium (Japanese Patent Publication No. 57-6441) is known.
しかしながら、1)の方法ではフェノール類とホルムア
ルデヒドとアミノカルボン酸との反応をアルカリ性で行
なうため芳香核ヘのアミノカルボン酸の導入率が低いも
のとなり、得られるキレート樹脂の金属交換容量が低
く、又その形状が粉末状であるのでカラムに充填して使
用する場合、圧力損失が大きい、偏流を起し性能が十分
発揮されない等の問題があり、2)の方法では芳香核に
イミノジ酢酸基を導入してフェノール化合物を製造する
工程、得られるフェノール化合物とフェノール類、アル
デヒド類とで縮合反応を行ない樹脂を製造する工程ある
いはさらに硬化を促進させる工程等、キレート樹脂を製
造する工程数が多く、製造コストの高いものとなり、得
られるキレート樹脂は粉末状でカラム法で用いる場合
1)と同様な問題がある。また3)の方法はフェノール
化合物の製造工程、フェノール化合物とフェノール類、
アルデヒドとを重縮合反応して流動性を保ったプレポリ
マーを製造する工程、プレポリマーを媒体中で分散し硬
化する工程等工程数が多く製造コストの高いものとな
り、又プレポリマー製造工程における重縮合反応のコン
トロールが難しく、例えばプレポリマーの粘度が異なる
と媒体中に分散した時に粘度がバラツイて一定の粒度の
樹脂を収率よく得られない等の問題がある。However, in the method 1), since the reaction of phenols, formaldehyde and aminocarboxylic acid is performed in an alkaline manner, the introduction rate of aminocarboxylic acid into the aromatic nucleus is low, and the metal exchange capacity of the obtained chelate resin is low, and Since the shape is powder, there are problems such as large pressure loss when used packed in a column, insufficient flow and insufficient performance, and the method 2) introduces an iminodiacetic acid group into the aromatic nucleus. There are many steps for producing a chelate resin, such as a step for producing a phenol compound, a step for producing a resin by carrying out a condensation reaction with the resulting phenol compound and a phenol or an aldehyde, or a step for further promoting curing. The cost is high, and the resulting chelate resin has the same problem as in 1) when it is used in the powder form in the column method. . In addition, the method of 3) includes a phenol compound manufacturing process, a phenol compound and phenols,
The number of steps such as the step of producing a prepolymer that maintains fluidity by polycondensation reaction with aldehyde, the step of dispersing and curing the prepolymer in a medium is high, and the production cost is high. It is difficult to control the condensation reaction. For example, if the prepolymers have different viscosities, the viscosities vary when dispersed in a medium, and there is a problem that a resin having a certain particle size cannot be obtained in good yield.
本発明は上記の問題点に着目してなされたもので、フェ
ノール類、アルデヒド類及びイミノジ酢酸から金属イオ
ン交換容量の高い球状キレート樹脂を簡単な工程でかつ
高収率で製造する方法を提供することを目的とする。The present invention has been made in view of the above problems, and provides a method for producing a spherical chelate resin having a high metal ion exchange capacity from phenols, aldehydes and iminodiacetic acid in a simple process and at a high yield. The purpose is to
本発明者らは上記課題を解決するため鋭意検討を行なっ
た結果、フェノール類、アルデヒド類及びイミノジ酢酸
の混合水溶液を非水溶性溶剤に懸濁し、懸濁状のまま縮
合反応、硬化反応を行なうことにより、芳香核へのイミ
ノジ酢酸基の導入率が高く金属交換容量の高いキレート
樹脂を簡単な工程で製造することができると共に反応液
の粘度が一定であるため均一な粒径に懸濁することがで
き、粒径の揃ったキレート樹脂を高収率で製造する方法
を見い出し本発明に至った。As a result of intensive studies to solve the above-mentioned problems, the present inventors have suspended a mixed aqueous solution of phenols, aldehydes and iminodiacetic acid in a non-water-soluble solvent, and carry out a condensation reaction and a curing reaction in a suspended state. As a result, a chelate resin having a high introduction rate of iminodiacetic acid groups to the aromatic nucleus and a high metal exchange capacity can be produced by a simple process, and the viscosity of the reaction solution is constant, so that the suspension is suspended in a uniform particle size. The inventors have found a method for producing a chelate resin having a uniform particle size in a high yield, and have reached the present invention.
即ち本発明はフェノール類、アルデヒド類及びイミノジ
酢酸を用いてフェノール系キレート樹脂を製造する方法
において、フェノール類、アルデヒド類及びイミノジ酢
酸の混合水溶液をpH7以上に調整した後、それを非水溶
性溶剤に添加して懸濁重合反応を行ない、ついで懸濁液
に鉱酸を添加し加熱硬化することにより球状キレート樹
脂を製造する方法である。That is, the present invention is a method for producing a phenolic chelate resin using phenols, aldehydes and iminodiacetic acid, after adjusting the pH of the mixed aqueous solution of phenols, aldehydes and iminodiacetic acid to 7 or more, and then using a water-insoluble solvent Is added to the suspension to carry out a suspension polymerization reaction, and then a mineral acid is added to the suspension and cured by heating to produce a spherical chelate resin.
本発明に用いるフェノール類としては、フェノール、ク
レゾール、キシレノール等の1価フェノール、レゾルシ
ノール、アルキルレゾルシノール、カテコール、ヒドロ
キノン、ピロガロール等の多価フェノールが挙げられ、
これらは単独もしくは2種以上併用しても良い。Examples of the phenols used in the present invention include monohydric phenols such as phenol, cresol and xylenol, and polyhydric phenols such as resorcinol, alkylresorcinol, catechol, hydroquinone and pyrogallol.
These may be used alone or in combination of two or more.
本発明に用いるアルデヒド類としては、ホルムアルデヒ
ド、パラホルムアルデヒド、アセトアルデヒド、プロピ
オンアルデヒド、トリオキサン、フルフラール、ベンズ
アルデヒド、ブチルアルデヒド等が挙げられ、これらは
単独もしくは2種以上併用しても良い。Examples of aldehydes used in the present invention include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, trioxane, furfural, benzaldehyde, butyraldehyde and the like, and these may be used alone or in combination of two or more.
本発明のキレート樹脂を製造するには、まず所定量のフ
ェノール類、アレデヒド類及びイミノジ酢酸を含有する
pH7以上の混合水溶液を調整する。フェノール類とアル
デヒド類とイミノジ酢酸との反応モル比は1:2〜4:0.5〜
2が好ましく、フェノール類1モルに対しアルデヒド類
が2モル以下ではイミノジ酢酸の導入率が低くかつ得ら
れる樹脂の強度が小さく、また4モル以上ではアルデヒ
ド類が過剰となり、重縮合反応に関与しないで無駄に消
費されてしまうことになり経済的でない。To produce the chelating resin of the present invention, first, a predetermined amount of phenols, aldehydes and iminodiacetic acid are contained.
Prepare a mixed solution of pH 7 or above. The reaction molar ratio of phenols, aldehydes and iminodiacetic acid is 1: 2 to 4: 0.5
2 is preferable, and when the amount of aldehydes is 2 mols or less relative to 1 mol of phenols, the introduction rate of iminodiacetic acid is low and the strength of the resin obtained is low, and when it is 4 mols or more, the aldehydes are excessive and do not participate in polycondensation reaction It is not economical because it will be wastefully consumed.
イミノジ酢酸の使用量が0.5モル以下では金属イオンの
交換容量の低いキレート樹脂となり、2モル以上では得
られるキレート樹脂のイミノジ酢酸基の導入率が反って
低くなる。混合水溶液中の水を除く原料の合計濃度は10
重量%以上が好ましく、それが10重量%以下では硬化反
応の速度が遅くなる。混合水溶液のpHは7以上が好まし
い。pHが7以上であるとイミノジ酢酸の溶解性が低く、
かつ系が不均一となるためイミノジ酢酸基の導入率が低
くなる。When the amount of iminodiacetic acid used is 0.5 mol or less, the chelate resin has a low metal ion exchange capacity, and when it is 2 mol or more, the rate of introduction of iminodiacetic acid groups in the obtained chelate resin is low. The total concentration of raw materials excluding water in the mixed aqueous solution is 10
It is preferably at least 10% by weight, and if it is less than 10% by weight, the rate of the curing reaction becomes slow. The pH of the mixed aqueous solution is preferably 7 or more. When the pH is 7 or more, iminodiacetic acid has low solubility,
In addition, the system becomes heterogeneous, so the introduction rate of iminodiacetic acid groups becomes low.
pHの調整はアルカリ金属の水酸化物によって行なうこと
ができ、アルカリ金属の水酸化物としては水酸化ナトリ
ウム、水酸化カリウム等が挙げられる。また反応原料と
してイミノジ酢酸のモノアルカリ金属塩又はジアルカリ
金属塩を用いると上記混合水溶液のpH調整を省くことが
できる。この混合水溶液は非水溶性溶剤に懸濁する前
に、流動性を保ちうる粘度迄、予め重縮合反応を行なっ
ても良いが、各原料の溶解しpHを調整した混合水溶液を
そのまま非水溶性溶剤中に懸濁することで常に一定の粒
径に懸濁することができる。The pH can be adjusted with an alkali metal hydroxide, and examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. Further, when a monoalkali metal salt or a dialkali metal salt of iminodiacetic acid is used as a reaction raw material, the pH adjustment of the mixed aqueous solution can be omitted. Prior to suspending this mixed aqueous solution in a water-insoluble solvent, a polycondensation reaction may be performed in advance to a viscosity at which fluidity can be maintained. By suspending in a solvent, it is possible to always suspend to a constant particle size.
次に前記混合水溶液を非水溶性溶剤に添加し懸濁せしめ
た後撹拌下50〜150℃で2〜20時間加熱し、懸濁重合反
応を行なう。この工程における懸濁重合反応とは懸濁し
た粒子が撹拌を止め時にも懸濁粒子がくっつかない程度
に反応が進行していることを必要とする。非水溶性溶剤
としてはベンゼン、トルエン、キシレン、四塩化炭素、
クロロホルム、トリクロルエチレン、パークロルエチレ
ン、ジクロルメタン、ジクロベンゼン等の親水性の低い
溶剤が挙げられ、これらの溶剤を単独もしくは混合して
用いる。また混合水溶液を非水溶性溶剤に添加する際
に、予め非水溶性溶剤に界面活性剤(好ましくは非イオ
ン界面活性剤)を溶解させておくと混合水溶液が良好に
分散し、粒径を均一にすることができる。Next, the mixed aqueous solution is added to a water-insoluble solvent to suspend it, and then heated at 50 to 150 ° C. for 2 to 20 hours with stirring to carry out a suspension polymerization reaction. The suspension polymerization reaction in this step requires that the reaction of the suspended particles has proceeded to such an extent that the suspended particles do not stick to each other even when the stirring is stopped. Non-water soluble solvents include benzene, toluene, xylene, carbon tetrachloride,
Solvents having low hydrophilicity such as chloroform, trichloroethylene, perchlorethylene, dichloromethane, dichlorobenzene and the like can be mentioned, and these solvents can be used alone or in combination. When adding the mixed aqueous solution to the non-water-soluble solvent, if the surfactant (preferably nonionic surfactant) is dissolved in the non-water-soluble solvent in advance, the mixed aqueous solution will be well dispersed and the particle size will be uniform. Can be
混合水溶液を非水溶性溶剤中に懸濁し、50〜150℃に加
熱し懸濁重合反応を行なった後、ついで反応系に鉱酸を
添加して加熱硬化する。鉱酸の添加量は得られるキレー
ト樹脂が酸型になる量、即ち前記混合水溶液のpH調整に
要したアルカリ金属水酸化物を中和する量もしくはそれ
以上で、所定量の鉱酸を0.5〜6Nの水溶液として用い
る。鉱酸としては塩酸、硫酸、硝酸等が挙げられる。鉱
酸の添加後50〜100℃で1〜10時間加熱し硬化する。鉱
酸を添加し加熱硬化することで、樹脂の強度が繰り返し
再生して使用するに十分な強度が得られると共に、イミ
ノジ酢酸基の導入率の高い球状キレート樹脂が得られ
る。The mixed aqueous solution is suspended in a non-water-soluble solvent, heated to 50 to 150 ° C. to carry out a suspension polymerization reaction, and then a mineral acid is added to the reaction system to cure by heating. The amount of the mineral acid added is such that the resulting chelate resin becomes an acid type, that is, an amount that neutralizes the alkali metal hydroxide required for adjusting the pH of the mixed aqueous solution or more, and a predetermined amount of the mineral acid is 0.5 to Used as a 6N aqueous solution. Examples of the mineral acid include hydrochloric acid, sulfuric acid, nitric acid and the like. After the addition of the mineral acid, the mixture is heated at 50 to 100 ° C. for 1 to 10 hours to cure. By adding a mineral acid and curing by heating, the strength of the resin is repeatedly regenerated and sufficient strength for use can be obtained, and a spherical chelate resin having a high introduction rate of iminodiacetic acid groups can be obtained.
以上の球状キレート樹脂の製造工程は、キレート樹脂原
料の溶解調整工程と、球状化工程とよりなり、球状化の
工程は途中で所定量の鉱酸を添加するだけで一連の工程
として簡単な操作で行なうことができる。The above-mentioned spherical chelate resin manufacturing process consists of a chelate resin raw material dissolution adjusting process and a spheroidizing process. The spheroidizing process is a simple operation as a series of processes by adding a predetermined amount of mineral acid on the way. Can be done at.
得られた球状キレート樹脂は溶剤と分離した後、水洗し
て酸型のキレート樹脂として、またアルカリ金属、アル
カリ土類金属、鉄等各種金属の水酸化物の水溶液、もし
くはこれら金属の塩化物の水溶液で処理して相当する金
属塩型のキレート樹脂として、廃水中の重金属、除去、
水中の有価金属の回収に用いることができる。The obtained spherical chelate resin is separated from the solvent and then washed with water to obtain an acid-type chelate resin, or an aqueous solution of a hydroxide of various metals such as alkali metals, alkaline earth metals and iron, or chlorides of these metals. Treated with an aqueous solution as a corresponding metal salt type chelate resin, heavy metals in wastewater, removal,
It can be used to recover valuable metals in water.
以下実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
実施例1 フェノール94g、30%ホルマリン水溶液、250g、イミノ
ジ酢酸ナトリウム塩177gをイオン交換水170gに溶解し
て、pH10.5の混合水溶液を得た。Example 1 Phenol 94 g, 30% formalin aqueous solution, 250 g, and iminodiacetic acid sodium salt 177 g were dissolved in ion-exchanged water 170 g to obtain a mixed aqueous solution of pH 10.5.
温度計、還流冷却器、撹拌機を付した3の四ツ口フラ
コにジクロロベンゼンを1.3仕込み、撹拌下、このジ
クロロベンゼン中に上記混合水溶液を添加して懸濁せし
め、60〜70℃で10時間懸濁重合反応を行なった。次に50
%硫酸水溶液196gを懸濁液中に添加し、ジクロロベンゼ
ンの還流下に5時間反応を行ない硬化した。反応終了
後、球状樹脂を分離し、10倍量のメタノールで洗浄後、
さらにイオン交換水で十分水洗して5〜100メッシュの
褐色球状キレート樹脂(H型)を得た。Dichlorobenzene (1.3) was charged into a three-necked four-flaco equipped with a thermometer, a reflux condenser and a stirrer, and the above mixed aqueous solution was added to and suspended in the dichlorobenzene under stirring at 60 to 70 ° C. The suspension polymerization reaction was carried out for an hour. Then 50
% Sulfuric acid aqueous solution (196 g) was added to the suspension and the mixture was reacted for 5 hours under reflux of dichlorobenzene to cure. After the reaction was completed, the spherical resin was separated and washed with 10 times the amount of methanol,
Further, it was sufficiently washed with ion-exchanged water to obtain a brown spherical chelate resin (H type) of 5 to 100 mesh.
得られたキレート樹脂を用い銅イオン、ニッケルイオ
ン、コバルトイオン、鉄イオンの各金属イオンに対する
バッチ式での吸着試験、銅イオン水溶液を用いてのカラ
ムへと通水試験並びにくり返し再生使用による金属吸着
試験(以下これを「耐久試験」と称す)を行なった。バ
ッチ式での吸着試験の結果を表−1に、カラムへの通水
試験の結果を第1図に、耐久性試験の結果を第2図に示
す。Batch adsorption test for each metal ion of copper ion, nickel ion, cobalt ion, iron ion using the obtained chelate resin, water flow test to a column using copper ion aqueous solution and metal adsorption by repeated regeneration use A test (hereinafter referred to as "durability test") was performed. The results of the batch-type adsorption test are shown in Table-1, the results of the column water passage test are shown in FIG. 1, and the results of the durability test are shown in FIG.
各試験は以下の方法に従った。Each test followed the following method.
○ バッチ式での吸着試験 600ppmのCu2+水溶液(CuSO4使用)、50ppmのNi2+水溶液
(NiSO4使用)、40ppmのCo2+水溶液(CoCl2使用)、30p
pmのFe3+水溶液(FeCl3使用)を用い、各々の水溶液1
に20〜28メッシュのキレート樹脂1mlを添加し、25℃
で3時間撹拌した後、樹脂を濾別して、濾液中の金属イ
オンを測定し、原水中の金属イオン濃度との差から換算
してキレート樹脂1当りの吸着量を求めた。○ Batch type adsorption test 600ppm Cu 2+ solution (using CuSO 4 ), 50ppm Ni 2+ solution (using NiSO 4 ), 40ppm Co 2+ solution (using CoCl 2 ), 30p
Fe 3+ aqueous solution (using FeCl 3 ) of pm, each aqueous solution 1
Add 1 ml of 20-28 mesh chelating resin to 25 ℃
After stirring for 3 hours, the resin was filtered off, the metal ion in the filtrate was measured, and the adsorption amount per chelate resin 1 was calculated by converting from the difference from the metal ion concentration in the raw water.
○ カラムへの通水試験 20〜28メッシュのキレート樹脂10mlをガラス製カラム
(内径12mmφ)に充填し、20ppmのCu2+水溶液を通液速
度SV10、下向流にて通液し、任意の通液量における流水
液中の銅イオン濃度を測定した。○ Water flow test to column Fill a glass column (inner diameter 12 mmφ) with 10 ml of 20-28 mesh chelate resin and pass a 20 ppm Cu 2+ aqueous solution at a flow rate of SV10, downward flow, and The copper ion concentration in the running water solution was measured at the passing amount.
○ 耐久性試験 20〜48メッシュのキレート樹脂(H型)300mlをガラス
製カラム(内径25mmφ)に充填し、表−1に示す再生操
作(表−1の〜を1サイクルとする)を50回行な
い、その間再生を10回繰り返す毎に樹脂10mlをサンプリ
ングした。○ Durability test 300 ml of chelating resin (H type) of 20 to 48 mesh is packed in a glass column (inner diameter 25 mmφ), and the regenerating operation shown in Table-1 (-in Table-1 is one cycle) is performed 50 times. During this, 10 ml of resin was sampled each time the regeneration was repeated 10 times.
次に再生を行なっていない樹脂及びサンプリングした各
樹脂を用いて、バッチ式での吸着試験を行ないCu2+の吸
着量を測定し、再生のくり返しによる樹脂の劣化度を判
定した。樹脂の劣化度は新らしい樹脂のCu2+吸着量を10
0%とし、この割合に対する吸着量の割合で示した。Next, a non-regenerated resin and each sampled resin were used to perform a batch-type adsorption test to measure the amount of Cu 2+ adsorbed and to determine the degree of deterioration of the resin due to repeated regeneration. Degradation degree of resin is 10% Cu 2+ adsorption of new resin
It was set to 0%, and the ratio of the adsorption amount to this ratio was shown.
実施例2 イオン交換水480gにパラホルムアルデヒド(純度86%)
105g、フェノール37.5g、レゾルシン66g及びイミノジ酢
酸133gを溶解し(イミノジ酢酸は溶解せず分散状態)、
次いで20%水酸化ナトリウム水溶液でpH8.5に調整して
均一な混合水溶液を得た。 Example 2 Paraformaldehyde (purity 86%) in 480 g of ion-exchanged water
Dissolve 105 g, phenol 37.5 g, resorcin 66 g and iminodiacetic acid 133 g (iminodiacetic acid is not dissolved but dispersed state),
Then, the pH was adjusted to 8.5 with a 20% aqueous sodium hydroxide solution to obtain a uniform mixed aqueous solution.
実施例1と同様な反応容器に仕込んだ1400mlの四塩化炭
素に、撹拌下、上記で得られた混合水溶液を添加し、懸
濁させ、70〜80℃で6時間加熱して懸濁重合反応を行な
い、次いで懸濁液に20%塩酸水溶液250gを添加して、60
〜70℃で四塩化炭素の還流下に7時間反応を行ない樹脂
を硬化した。反応終了後、実施例1と同様に樹脂の分
離、メタノールによる洗浄、水洗を行なって5〜150メ
ッシュで暗褐色のH型球状キレート樹脂を得た。The mixed aqueous solution obtained above was added to 1400 ml of carbon tetrachloride charged in the same reaction vessel as in Example 1 with stirring, and suspended, and heated at 70 to 80 ° C. for 6 hours to carry out a suspension polymerization reaction. Then, add 250 g of 20% hydrochloric acid aqueous solution to the suspension,
The resin was cured by reacting at ~ 70 ° C under reflux of carbon tetrachloride for 7 hours. After the completion of the reaction, the resin was separated, washed with methanol and washed with water in the same manner as in Example 1 to obtain a dark brown H-type spherical chelate resin having 5 to 150 mesh.
得られたキレート樹脂を用いて、バッチ式吸着試験を行
ない、各種金属イオンの吸着性能を測定し、その結果を
表−2に示す。Using the obtained chelate resin, a batch type adsorption test was conducted to measure the adsorption performance of various metal ions, and the results are shown in Table 2.
実施例3 イオン交換水600gにトリオキサン60g、レゾルシン55g及
びイミノジ酢酸カリウム150gを溶解しpH10.8の混合溶液
を得た。Example 3 60 g of trioxane, 55 g of resorcin and 150 g of potassium iminodiacetate were dissolved in 600 g of ion-exchanged water to obtain a mixed solution of pH 10.8.
実施例1と同様な反応容器にトルエン1500mlを仕込み、
撹拌下、上記混合溶液を添加し、50〜60℃で2時間懸濁
重合反応後、60〜70℃で5時間反応を行ない、さらに懸
濁得液に30%硫酸水溶液270gを除去に添加した後、60〜
70℃で3時間反応を行なった。反応終了後、実施例1と
同様に樹脂の分離、メタノールによる洗浄、水洗を行な
って5〜150メッシュの暗褐色のH型球状キレート樹脂
を得た。To a reaction vessel similar to that of Example 1, was charged 1500 ml of toluene,
While stirring, the above mixed solution was added, followed by suspension polymerization reaction at 50 to 60 ° C. for 2 hours and then reaction at 60 to 70 ° C. for 5 hours, and 270 g of 30% sulfuric acid aqueous solution was added to the suspension liquid for removal. After 60 ~
The reaction was carried out at 70 ° C for 3 hours. After completion of the reaction, the resin was separated, washed with methanol and washed with water in the same manner as in Example 1 to obtain a dark brown H-type spherical chelate resin of 5 to 150 mesh.
得られたキレート樹脂を用いてバッチ式吸着試験を行な
い、各種金属イオンの吸着性能を測定し、その結果を表
−2に示す。A batch type adsorption test was conducted using the obtained chelate resin, and the adsorption performance of various metal ions was measured. The results are shown in Table 2.
比較例1 イオン交換水170gにフェノール94g、30%ホルマリン水
溶液250g、イミノジ酢酸ナトリウム塩177gを溶解してpH
10.6の混合水溶液を得た。Comparative Example 1 In 170 g of ion-exchanged water, 94 g of phenol, 250 g of 30% formalin aqueous solution, and 177 g of iminodiacetic acid sodium salt were dissolved to obtain pH.
A mixed aqueous solution of 10.6 was obtained.
実施例1と同様な反応容器にジクロロベンゼン1300mlを
仕込み、撹拌下、上記混合水溶液を添加し懸濁せしめ、
鉱酸を加えずに60〜70℃で15時間懸濁重合反応を行な
い、さらに実施例1と同様に樹脂を分離後、メタノール
による洗浄、水洗を行なってNa型キレート樹脂を得た。A reaction vessel similar to that of Example 1 was charged with 1300 ml of dichlorobenzene, and the above mixed aqueous solution was added to the suspension while stirring to suspend it.
A suspension polymerization reaction was carried out at 60 to 70 ° C. for 15 hours without adding a mineral acid, and the resin was separated in the same manner as in Example 1, followed by washing with methanol and water to obtain a Na-type chelate resin.
得られた樹脂を2N塩酸水溶液2000gに添加し、室温で2
時間撹拌しキレート形成基を酸型に調整した後、イオン
交換水で十分水洗して5〜100メッシュの暗褐色のH型
球状キレート樹脂を得た。The obtained resin was added to 2000 g of a 2N aqueous hydrochloric acid solution, and the mixture was stirred at room temperature for 2
After stirring for a while to adjust the chelate-forming group to an acid type, it was thoroughly washed with ion-exchanged water to obtain a dark brown H-type spherical chelate resin of 5 to 100 mesh.
得られたキレート樹脂を用いてバッチ式吸着試験、カラ
ム通液試験を行ない、バッチ式吸着試験結果を表−2
に、通液試験結果を第1図に示す。Using the obtained chelate resin, a batch adsorption test and a column liquid passing test were conducted, and the results of the batch adsorption test are shown in Table-2.
Fig. 1 shows the results of the liquid passing test.
比較例2 フェノール47g、30%ホルマリン水溶液50g、イミノジ酢
酸66.5gをイオン交換水10gに加え70℃で2時間撹拌し、
次いで30℃に冷却し同温度に保ちつつ3.5%塩酸水溶液1
0gを添加し、さらにイオン交換水10g、30%ホルマリン
水溶液75g、フェノール70gを加え、50℃で1時間反応を
行ない室温に冷却して予備縮合を行ないpH4.8の混合溶
液を得た。Comparative Example 2 Phenol 47 g, 30% formalin aqueous solution 50 g, and iminodiacetic acid 66.5 g were added to ion-exchanged water 10 g and stirred at 70 ° C. for 2 hours,
Then, cool it to 30 ℃ and keep it at the same temperature.
0 g was added, 10 g of ion-exchanged water, 75 g of a 30% formalin aqueous solution and 70 g of phenol were added, and the reaction was carried out at 50 ° C. for 1 hour and cooled to room temperature to carry out precondensation to obtain a mixed solution of pH 4.8.
実施例1と同様な反応容器に1500mlのジクロロベンゼン
を仕込み、撹拌下上記混合溶液を添加し懸濁せしめ、12
0℃で脱水しながら3時間反応を行なった。反応終了
後、実施例1と同様に樹脂の分離、メタノールによる洗
浄、水洗を行なって5〜100メッシュの暗褐色のH型キ
レート樹脂を得た。In a reaction vessel similar to that of Example 1, 1500 ml of dichlorobenzene was charged, and the above mixed solution was added with stirring to suspend the mixture.
The reaction was carried out for 3 hours while dehydrating at 0 ° C. After completion of the reaction, the resin was separated, washed with methanol and washed with water in the same manner as in Example 1 to obtain a dark brown H-type chelate resin of 5 to 100 mesh.
得られたキレート樹脂を用いてバッチ式吸着試験、カラ
ム通液試験、耐久性試験を行ない、バッチ式吸着試験結
果を表−2に、通液試験結果を第1図に、耐久試験結果
を第2図にそれぞれ示す。Using the obtained chelate resin, a batch type adsorption test, a column liquid passing test, and a durability test were conducted. The batch type adsorption test result is shown in Table-2, the liquid passing test result is shown in FIG. 1, and the durability test result is shown. Each is shown in FIG.
〔発明の効果〕 以上説明したように、本発明で得られたキレート樹脂
は、耐久性、耐熱性、耐薬品性に優れ、高温の廃水や金
属イオン以外にも多くの物質を含む研究所廃水、ゴム焼
却場廃水、病院廃水、工業廃水等の処理に用いても、従
来のキレート樹脂のように樹脂が侵されて劣化したり、
繰り返し再生使用によって樹脂が破砕したりして、吸着
量が著しく低下したりする虞れがなく、樹脂の寿命が大
幅に延長される。また本発明キレート樹脂は従来のキレ
ート樹脂の比して金属イオンの吸着性に優れ、効率良く
廃水処理を行なうことができる効果を有する。 [Effects of the Invention] As described above, the chelate resin obtained in the present invention is excellent in durability, heat resistance, and chemical resistance, and is a laboratory wastewater containing many substances other than high-temperature wastewater and metal ions. Even when used for treating rubber incinerator wastewater, hospital wastewater, industrial wastewater, etc., the resin is attacked and deteriorates like conventional chelate resins,
There is no risk that the resin will be crushed by repeated reuse and the amount of adsorption will be significantly reduced, and the life of the resin will be greatly extended. Further, the chelate resin of the present invention is superior to the conventional chelate resin in adsorbing metal ions, and has an effect that wastewater treatment can be efficiently performed.
第1図は実施例1と比較例1〜2の樹脂のCu2+に対する
通液試験の通液量と流出液中のCu2+濃度との関係を示す
グラフであり、第2図は実施例1と比較例2の樹脂の耐
久性試験の再生回数とCu2+吸着率との関係を示すグラフ
である。FIG. 1 is a graph showing the relationship between the liquid passing amount and the Cu 2+ concentration in the effluent of the liquid passing test for Cu 2+ of the resins of Example 1 and Comparative Examples 1 and 2, and FIG. 5 is a graph showing the relationship between the number of times of regeneration of the durability test of the resins of Example 1 and Comparative Example 2 and the Cu 2+ adsorption rate.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−27347(JP,A) 特公 昭53−32391(JP,B2) 特公 昭57−6441(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-27347 (JP, A) JP-B 53-32391 (JP, B2) JP-B 57-6441 (JP, B2)
Claims (1)
酢酸を用いてフェノール系キレート樹脂を製造する方法
において、フェノール類、アルデヒド類及びイミノジ酢
酸の混合水溶液をpH7以上に調整した後、それを非水溶
性溶剤に添加して懸濁重合反応を行ない、ついで懸濁液
に鉱酸を添加し、加熱して完全に硬化することを特徴と
する球状キレート樹脂の製造方法。1. A method for producing a phenolic chelate resin using phenols, aldehydes and iminodiacetic acid, wherein the pH of a mixed aqueous solution of phenols, aldehydes and iminodiacetic acid is adjusted to 7 or more, and then it is water-insoluble. A method for producing a spherical chelate resin, which comprises adding to a solvent to carry out a suspension polymerization reaction, then adding a mineral acid to the suspension, and heating to completely cure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61311735A JPH07116274B2 (en) | 1986-12-26 | 1986-12-26 | Method for producing spherical chelate resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61311735A JPH07116274B2 (en) | 1986-12-26 | 1986-12-26 | Method for producing spherical chelate resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63162717A JPS63162717A (en) | 1988-07-06 |
JPH07116274B2 true JPH07116274B2 (en) | 1995-12-13 |
Family
ID=18020839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61311735A Expired - Fee Related JPH07116274B2 (en) | 1986-12-26 | 1986-12-26 | Method for producing spherical chelate resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07116274B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7074861B2 (en) * | 2003-02-18 | 2006-07-11 | Indspec Chemical Corporation | Modified resorcinol resins and applications thereof |
WO2015042271A1 (en) * | 2013-09-20 | 2015-03-26 | Georgia-Pacific Chemicals Llc | Methods for making wet gels and dried gels therefrom |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5332391A (en) * | 1976-09-06 | 1978-03-27 | Oki Electric Ind Co Ltd | Construction of rotary switch |
JPS5527347A (en) * | 1978-08-16 | 1980-02-27 | Unitika Ltd | Preparation of globular phenolic chelate resin |
JPS576441A (en) * | 1980-06-13 | 1982-01-13 | Matsushita Electric Ind Co Ltd | Optical recorder and reproducer having formatting function |
-
1986
- 1986-12-26 JP JP61311735A patent/JPH07116274B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63162717A (en) | 1988-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4576969A (en) | Spherical ion exchange resin having matrix-bound metal hydroxide, method for producing the same and method for adsorption treatment using the same | |
JP2001098018A (en) | Preparation process and use for monodisperse ion exchange having chelating functional group | |
JPS6051491B2 (en) | Production method and adsorption treatment method for phenol/aldehyde/chelate resin | |
EP0352949B1 (en) | Ion exchange resin beads and processes for preparing them | |
JP5600541B2 (en) | Improved method for removing cations using chelating resins | |
CN101092332A (en) | Method for preparing methyl phenol from methylbenzene through catalytic oxidation in one step | |
US4250031A (en) | Phenolic chelate resin and method of adsorption treatment | |
US4197391A (en) | Phenolic chelate resin and method of adsorption treatment | |
US3936399A (en) | Process of producing phenolic chelate resin using iminodiacetic acid | |
JPH07116274B2 (en) | Method for producing spherical chelate resin | |
US4028284A (en) | Phenolic chelate resin | |
JP2000239335A (en) | High-density cured spherical phenolic resin | |
JPS59155406A (en) | Production of chelate resin | |
Ergozhin et al. | Redox polymers based on polyamines | |
JPS6348587B2 (en) | ||
CN1101829C (en) | Process for preparing spherical hydrazine coordinated sulfonated phenolic type redex resin | |
JP2670614B2 (en) | Method for removing impure metal ions from zinc plating waste liquid | |
CN101182368B (en) | Method for synthesizing high-molecular-weight thermoplastic phenol resin | |
RU2797595C1 (en) | Method for continuous production of resorcinol-formaldehyde resins for cesium extraction | |
JP4557749B2 (en) | Method for producing granular polyphenylene ether resin | |
JPS6186953A (en) | Phenol/aldehide type chelating ion exchange resin | |
JPS6160846B2 (en) | ||
SU1113387A1 (en) | Process for producing complexing ionite | |
JP2007533578A (en) | Method for purifying sulfuric acid | |
JPS6259729B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |