JPH0711480Y2 - CO laser device - Google Patents

CO laser device

Info

Publication number
JPH0711480Y2
JPH0711480Y2 JP11613889U JP11613889U JPH0711480Y2 JP H0711480 Y2 JPH0711480 Y2 JP H0711480Y2 JP 11613889 U JP11613889 U JP 11613889U JP 11613889 U JP11613889 U JP 11613889U JP H0711480 Y2 JPH0711480 Y2 JP H0711480Y2
Authority
JP
Japan
Prior art keywords
laser
gas
discharge
concentration
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11613889U
Other languages
Japanese (ja)
Other versions
JPH0356165U (en
Inventor
直人 山口
祐孝 金沢
卓郎 中島
辰二 平
勝 石渡
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP11613889U priority Critical patent/JPH0711480Y2/en
Publication of JPH0356165U publication Critical patent/JPH0356165U/ja
Application granted granted Critical
Publication of JPH0711480Y2 publication Critical patent/JPH0711480Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、ガス循環・放電励起型COレーザ装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a gas circulation / discharge excitation CO laser device.

[従来の技術] 3軸直交型の大出力放電励起型COレーザ装置は、COガス
の流れ方向と放電方向とレーザ光進行方向とが互いに直
交しており、第3図に示すようにCOを含むレーザガス
は、放電部2が形成されたガス循環路1内をガス循環機
4にて循環され、その放電部2に設けた電極3,3間での
放電で励起されて紙面方向に垂直なレーザ光を発振す
る。
[Prior Art] In a three-axis orthogonal high-power discharge-excited CO laser device, the flow direction of CO gas, the discharge direction, and the laser light traveling direction are orthogonal to each other, and as shown in FIG. The contained laser gas is circulated by the gas circulator 4 in the gas circulation path 1 in which the discharge part 2 is formed, and is excited by the discharge between the electrodes 3 provided in the discharge part 2 to be perpendicular to the paper surface direction. It oscillates laser light.

このCOレーザ装置では、CO,O2,He,N2,Xeなどの組成で構
成されているレーザガスを用い、このレーザガスをガス
循環路にて圧力30torrで放電部を亜音速で繰り返し循環
させ、亜音速流中の自己持続放電を用いてレーザガスを
励起してレーザの連続発振運転を行っている。また放電
によりレーザガスが加熱されるため、放電部2の入口側
に低温冷媒による熱交換器5を設け、その熱交換器5に
て冷却している。
In this CO laser device, CO, O 2 , He, N 2 , using a laser gas composed of a composition such as Xe, the laser gas is repeatedly circulated in the gas circulation path at a pressure of 30 torr at a subsonic speed, The continuous oscillation operation of the laser is performed by exciting the laser gas using the self-sustained discharge in the subsonic flow. Further, since the laser gas is heated by the electric discharge, the heat exchanger 5 for the low-temperature refrigerant is provided on the inlet side of the electric discharge part 2 and the heat exchanger 5 cools the heat exchanger 5.

従来レーザガス中の酸素は、放電を安定に行うためにCO
に対して2%以上で5%以下混入したものが用いられて
きた。(文献;(1)S.Sato,etal.,“Characteristics
of a 1-Kw electric discharge cw CO laser,"Proc. o
f 7th GCL,1988,(2)H.Kanazawa,et al.,“Developme
nt of a Multikillowatt Closed Cycle CO laser,"Pro
c.of 6th GCL,1986) [考案が解決しようとする課題] しかしながら、連続発振運転中、放電部ではCOガスが、
放電により(2CO→CO2+C,2CO+O2→2CO2)の反応にて
CO2ガスが発生し、レーザガス中のCO,O2濃度が減少し、
CO2の濃度が増加してレーザ出力が低下すると共に放電
が安定しない問題がある。
Oxygen in conventional laser gas is CO for stable discharge.
However, a mixture of 2% or more and 5% or less has been used. (Reference; (1) S. Sato, et al., “Characteristics
of a 1-Kw electric discharge cw CO laser, "Proc. o
f 7th GCL, 1988, (2) H.Kanazawa, et al., “Developme
nt of a Multikillowatt Closed Cycle CO laser, "Pro
c.of 6th GCL, 1986) [Problems to be solved by the invention] However, during continuous oscillation operation, CO gas is generated in the discharge part.
In the reaction of (2CO → CO 2 + C, 2CO + O 2 → 2CO 2 ) due to discharge
CO 2 gas is generated, the CO, O 2 concentration in the laser gas decreases,
There is a problem that the CO 2 concentration increases, the laser output decreases, and the discharge becomes unstable.

第2図は、放電時間に対する酸素濃度の経時変化を示し
たもので、初期ガス組成CO/N2/O2/He=4/16/0.2/bal
(モル%)、ガス圧力40torr、ガス温度240K、ガス流速
20m/s、放電電流6Aで発振運転を行った実験結果を示
す。第2図から判るようにO2濃度/CO濃度は、初期の5
%から15分経過後は0%までになってしまう。
Fig. 2 shows the change over time in oxygen concentration with respect to discharge time. The initial gas composition CO / N 2 / O 2 /He=4/16/0.2/bal
(Mol%), gas pressure 40 torr, gas temperature 240K, gas flow velocity
The experimental results of oscillation operation at 20 m / s and discharge current of 6 A are shown. As can be seen from FIG. 2 , the O 2 concentration / CO concentration was 5 in the initial stage.
% Will be 0% after 15 minutes.

本考案は上記事情を考慮してなされたもので、連続運転
中に放電が安定して行えるレーザ装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a laser device capable of performing stable discharge during continuous operation.

[課題を解決するための手段] 本考案は、上記の目的を達成するために、放電部とガス
循環機を設けたガス循環路内に、COを含むレーザガスを
封入したCOレーザ装置において、レーザガス中にCO濃度
に対して7〜25%の酸素を混入したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a laser gas in a CO laser device in which a laser gas containing CO is sealed in a gas circulation path provided with a discharge section and a gas circulation machine. It contains 7 to 25% oxygen with respect to the CO concentration.

[作用] 上記の構成によれば、レーザガス中にCO濃度に対して7
〜25%の酸素を混入してあるため、連続運転中、放電に
より酸素が多少減少しても放電が不安定となることがな
く、また酸素濃度が高く、その酸素自体が放電により生
じる炭素を酸化するため、放電電極に炭素が付着するの
を防止する。
[Operation] According to the above configuration, the concentration of CO in the laser gas is 7
Since ~ 25% of oxygen is mixed, the discharge does not become unstable even if the amount of oxygen decreases a little during continuous operation, and the oxygen concentration is high, and the oxygen itself generates carbon generated by the discharge. Oxidation prevents carbon from adhering to the discharge electrode.

[実施例] 以下、本考案の好適実施例を添付図面に基づいて説明す
る。
[Embodiment] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

先ずレーザ装置の全体構成は第3図で説明したとおりで
ある。
First, the overall configuration of the laser device is as described in FIG.

本考案においては、レーザガスの組成中O2濃度/CO濃度
を7〜25%にしたことを特徴とするもので、例えば組成
比をCO/N2/O2/He=4/16/0.28〜1.0/79.72〜79.0(モル
%)にしたものである。
The present invention is characterized in that the O 2 concentration / CO concentration in the composition of the laser gas is set to 7 to 25%. For example, the composition ratio is CO / N 2 / O 2 /He=4/16/0.28 It is set to 1.0 / 79.72 to 79.0 (mol%).

以上において、レーザガス中にCO濃度に対して7〜25%
の酸素を混入してあるため、連続運転中、放電により酸
素が多少減少しても放電が不安定となることがなく、ま
た酸素濃度が高く、その酸素自体が放電により生じる炭
素を酸化(C+O→CO)するため、放電電極に炭素が付
着するのを防止する。
In the above, 7-25% of the CO concentration in the laser gas
Since oxygen is mixed in, even if the amount of oxygen decreases a little during continuous operation, the discharge does not become unstable, and the oxygen concentration is high, and the oxygen itself oxidizes carbon (C + O) generated by the discharge. → CO), preventing carbon from adhering to the discharge electrode.

第1図はレーザガスの組成中O2濃度/CO濃度変化に対す
る最大レーザ出力の関係を示したもので、ガス圧力40to
rr、ガス温度180K、ガス流速18m/sの条件で、レーザガ
ス組成CO/N2/O2/He=4/16/x/80−x(モル%)とし順
次O2の比xを変え、かつその際放電電流を変えて安定し
て得られる最大レーザ出力を求めたものである。この第
1図から判るようにO2濃度/CO濃度が、7〜25%ではレ
ーザ出力は、O2濃度/CO濃度が2〜5%のレーザ出力
(1.5KW前後)と変化がないが、25%以上となると、そ
の出力は下がり好ましくない。また7%以下では、レー
ザ出力は良いが、放電による2CO+O2→2CO2の反応によ
り酸素が減少し、安定に発振可能な出力が短時間で低下
しやすいため好ましくない。
Figure 1 shows the relationship between the maximum laser output and the change in O 2 concentration / CO concentration in the composition of the laser gas. Gas pressure 40to
changing rr, gas temperature 180K, under the conditions of gas flow rate 18m / s, a laser gas composition CO / N 2 / O 2 / He = 4/16 / x / 80-x ratio x of (mol%) and sequentially O 2, At that time, the maximum laser output that can be stably obtained by changing the discharge current was obtained. As can be seen from FIG. 1, when the O 2 concentration / CO concentration is 7 to 25%, the laser output does not change from the laser output of O 2 concentration / CO concentration of 2 to 5% (around 1.5 KW), If it exceeds 25%, the output decreases and it is not preferable. On the other hand, if it is 7% or less, the laser output is good, but oxygen is reduced due to the reaction of 2CO + O 2 → 2CO 2 due to discharge, and the output capable of stable oscillation tends to decrease in a short time, which is not preferable.

[考案の効果] 以上説明したことから明らかなように本考案によれば次
のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above description, the present invention exhibits the following excellent effects.

(1)レーザガス中の酸素濃度を一酸化炭素に対して7
〜25%とすることで、放電が安定化し、安定したレーザ
光を出力できる。
(1) The oxygen concentration in the laser gas is 7 with respect to carbon monoxide.
By setting the content to -25%, the discharge is stabilized and stable laser light can be output.

(2)電極などに炭素の付着を防止できる。(2) It is possible to prevent carbon from adhering to electrodes and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案において、O2濃度/CO濃度とレーザ出力
の関係を示す図、第2図は従来例における酸素濃度の経
時変化を示す図、第3図はCOレーザ装置を示す図であ
る。 図中1はガス循環路、2は放電部、4はガス循環機であ
る。
FIG. 1 is a diagram showing a relationship between O 2 concentration / CO concentration and laser output in the present invention, FIG. 2 is a diagram showing a time-dependent change of oxygen concentration in a conventional example, and FIG. 3 is a diagram showing a CO laser device. is there. In the figure, 1 is a gas circulation path, 2 is a discharge part, and 4 is a gas circulator.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 平 辰二 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)考案者 石渡 勝 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuji Hira, No. 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa Ishi, Kawashima-Harima Heavy Industries Co., Ltd. Technical Research Institute (72) Katsu Ishiwata Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa No. 1 Ishi Kawashima Harima Heavy Industries Ltd. Technical Research Center

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】放電部とガス循環機を設けたガス循環路内
に、COを含むレーザガスを封入したCOレーザ装置におい
て、レーザガス中にCO濃度に対して7〜25%の酸素を混
入したことを特徴とするCOレーザ装置。
1. In a CO laser device in which a laser gas containing CO is enclosed in a gas circulation path provided with a discharge part and a gas circulation device, oxygen of 7 to 25% relative to the CO concentration is mixed in the laser gas. CO laser device characterized by.
JP11613889U 1989-10-04 1989-10-04 CO laser device Expired - Lifetime JPH0711480Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11613889U JPH0711480Y2 (en) 1989-10-04 1989-10-04 CO laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11613889U JPH0711480Y2 (en) 1989-10-04 1989-10-04 CO laser device

Publications (2)

Publication Number Publication Date
JPH0356165U JPH0356165U (en) 1991-05-30
JPH0711480Y2 true JPH0711480Y2 (en) 1995-03-15

Family

ID=31664438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11613889U Expired - Lifetime JPH0711480Y2 (en) 1989-10-04 1989-10-04 CO laser device

Country Status (1)

Country Link
JP (1) JPH0711480Y2 (en)

Also Published As

Publication number Publication date
JPH0356165U (en) 1991-05-30

Similar Documents

Publication Publication Date Title
JPH0711480Y2 (en) CO laser device
GB2219128B (en) Laser apparatus
Carnahan MICROWAVE INDUCED PLASMA. A VERSATILE SPECTROSCOPIC SOURCE
Shevchenko et al. Reaction of HfO sub 2 with oxides of lanthanum, praseodymium, and neodymium at high temperatures
JPS6054757B2 (en) Method for controlling heat source characteristics of reverse polarity plasma arc
JPS6185881A (en) Laser oscillator
JPH03166783A (en) Gas laser device
JPH02187091A (en) Nitrogen laser
JPH0722714A (en) Laser gas and discharge excitation type co gas laser
JPH0754859B2 (en) Gas laser oscillator
JPS637688A (en) Laser oscillator
KNIZE et al. Method of enhancing selective isotope desorption from metals[Patent Application]
Song et al. ON THE TRANSPASSIVATION-REPASSIVATION OF TYPE 304 STAINLESS STEEL IN HIGH POTENTIAL RANGE(Chinese)
JPS6329518A (en) Etching of gaas substrate
SU698464A1 (en) Method of producing active medium for gas laser
Basiev et al. The broadening of the oscillation spectrum of a Q-switched CO laser
JPH07283464A (en) Discharge excitation co gas laser and control thereof
Glazov et al. Degree of Dissociation of Congruently Melting Compounds on the Approximation of the Theory of Regular Solutions Allowing for the Temperature and Concentration Dependence of the Energy of Mixing
JPH0449693A (en) Carbon-dioxide gas laser oscillator
JPS6028159B2 (en) CO oxidation equipment for laser oscillator tubes
Miyata et al. Influence of the centrifugal force on the interfacial morphology of aluminum-silicon alloy
Muller Use of Microwave Gas Discharge in Optical Quantum Generators(Review)
BOIKO et al. High-speed laser visualization of detonation-sprayed particles
Masuda et al. Numerical analysis for the power of a supersonic flow CO chemical laser
JPH02187085A (en) Excimer laser device