JPH07114753B2 - Heating container and manufacturing method thereof - Google Patents

Heating container and manufacturing method thereof

Info

Publication number
JPH07114753B2
JPH07114753B2 JP3147077A JP14707791A JPH07114753B2 JP H07114753 B2 JPH07114753 B2 JP H07114753B2 JP 3147077 A JP3147077 A JP 3147077A JP 14707791 A JP14707791 A JP 14707791A JP H07114753 B2 JPH07114753 B2 JP H07114753B2
Authority
JP
Japan
Prior art keywords
container
fluororesin
water
discharge treatment
heating container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3147077A
Other languages
Japanese (ja)
Other versions
JPH04371116A (en
Inventor
信一郎 渡辺
義信 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kasei Co Ltd
Original Assignee
Toho Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kasei Co Ltd filed Critical Toho Kasei Co Ltd
Priority to JP3147077A priority Critical patent/JPH07114753B2/en
Publication of JPH04371116A publication Critical patent/JPH04371116A/en
Publication of JPH07114753B2 publication Critical patent/JPH07114753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cookers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水等の有極性分子を含
む液体を加熱する加熱容器に関し、特に、容器の内面に
弗素樹脂を少なくとも一成分とする被膜が形成され、被
膜の表面が高周波放電処理又は高周波コロナ放電処理さ
れている加熱容器及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating container for heating a liquid containing polar molecules such as water. In particular, a film containing at least one component of fluororesin is formed on the inner surface of the container, and the surface of the film is The present invention relates to a heating container that has been subjected to high-frequency discharge treatment or high-frequency corona discharge treatment, and a method for manufacturing the heating container.

【0002】[0002]

【従来の技術】従来、水等の液体を入れる容器と、容器
の外面を加熱する発熱源とを有し、容器内面の少なくと
も発熱源と対向する部分には、容器を構成する物質より
も接着エネルギーの小さい物質、例えば弗素樹脂等から
なる被膜を形成することにより、液体の沸騰音を小さく
する試みが提案されている(特公昭52−14665号
公報)。
2. Description of the Related Art Conventionally, a container for containing a liquid such as water and a heat source for heating the outer surface of the container are provided, and at least a portion of the inner surface of the container facing the heat source is bonded more than a substance forming the container. There has been proposed an attempt to reduce the boiling noise of a liquid by forming a coating film made of a substance having a small energy, for example, a fluorine resin (Japanese Patent Publication No. 52-14665).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、容器の
内面に、容器を構成する物質よりも接着エネルギーの小
さい物質からなる被膜を単に形成するだけでは、液体の
沸騰音がそれほど小さくならないということが、本発明
者らによる実験や研究から判明している。例えば、耐候
性や非粘着性に優れた弗素樹脂等は、その表面が疎水性
の性質を有し、有極性分子である水との接着エネルギー
は比較的小さい物質として知られている。ここで、接着
エネルギーとは、固体表面に接触する液体を固体から引
き離すのに要する仕事量を意味する。
However, the fact that the boiling sound of a liquid does not become so small by simply forming a coating film on the inner surface of the container made of a substance having a smaller adhesive energy than the substance forming the container, It is known from experiments and research conducted by the present inventors. For example, a fluororesin or the like having excellent weather resistance and non-adhesiveness has a hydrophobic surface, and is known as a substance having a relatively small adhesive energy with water which is a polar molecule. Here, the adhesion energy means the work amount required to separate the liquid contacting the surface of the solid from the solid.

【0004】ここで、弗素樹脂からなる被膜を有する容
器に水を入れて沸騰点まで加熱する場合に、容器内の微
小な部分に注目して沸騰現象を説明する。加熱された容
器の一部が温度上昇して周囲の水に熱を伝え、その水分
子の一部が沸騰点に達すると水蒸気になって液体から気
体へ相転移する。図2aに示すように、水蒸気になると
体積が膨脹して気泡6が発生し、気泡6の浮力が弗素樹
脂3と気泡6との接着エネルギーより大きくなるまで、
弗素樹脂3に付着した状態が持続する。このとき、弗素
樹脂3の疎水性、即ち弗素樹脂3と水5との接着エネル
ギーが小さいために、気泡6の周囲に存する水5は気泡
6と弗素樹脂3のすき間に入らない傾向となり、気泡6
と弗素樹脂3の接着性が増加することにより、気泡6の
体積がかなり大きくなるまで容器の内面に付着すること
になる。
Here, when water is put into a container having a coating made of a fluororesin and heated to the boiling point, the boiling phenomenon will be described by paying attention to a minute portion in the container. Part of the heated container rises in temperature and transfers heat to the surrounding water, and when part of its water molecules reaches the boiling point, it becomes water vapor and undergoes a phase transition from liquid to gas. As shown in FIG. 2a, when it becomes water vapor, the volume expands to generate bubbles 6, and until the buoyancy of the bubbles 6 becomes larger than the adhesive energy between the fluororesin 3 and the bubbles 6,
The state of being attached to the fluororesin 3 continues. At this time, since the hydrophobicity of the fluororesin 3, that is, the adhesive energy between the fluororesin 3 and the water 5 is small, the water 5 existing around the bubble 6 tends not to enter the gap between the bubble 6 and the fluororesin 3, and 6
Due to the increase in the adhesiveness between the fluororesin 3 and the fluorine resin 3, the bubbles 6 adhere to the inner surface of the container until the volume of the bubbles 6 becomes considerably large.

【0005】ところで、容器の底部に温度センサーを設
けて、水の沸騰点を検知してヒータ等の加熱源の制御を
行う場合に、上述のように容器の内底部に大きい気泡が
付着すると、気泡の断熱効果により、水と温度センサー
との間の熱抵抗が増加して、実際の水の温度は沸点より
もかなり低いにもかかわらず、温度センサーが気泡の温
度を検出してしまい、水の正確な温度検出が困難になる
という課題があった。例えば、円筒状容器の底部に面状
に形成されたカートリッジヒータ、及び底部中央に温度
センサーを配置して、温度センサーが水の沸騰点に相当
する信号を出力したときに、カートリッジヒータの通電
を停止するように温度検知を行ったところ、容器内の水
の実際の温度は約80℃であるにもかかわらず、温度セ
ンサーの出力は約100℃に相当する信号として検知し
てしまい、通電が切れてしまうので、それ以上の温度に
加熱できないという好ましくない状態になるという問題
があったまた、大きい気泡は、その発生、容器からの
離脱、液面での破裂等の過程にお いて、より大きな沸騰
音を発生する。従って、容器の内面に弗素樹脂からなる
被膜を単に形成するだけでは、沸騰音の音量低下が困難
であるという問題があった。
By the way, when a temperature sensor is provided at the bottom of the container to detect the boiling point of water to control a heating source such as a heater, if large bubbles adhere to the inner bottom of the container as described above, Due to the adiabatic effect of the bubbles, the thermal resistance between the water and the temperature sensor increases, and the temperature sensor detects the temperature of the bubbles even though the actual temperature of the water is much lower than the boiling point. However, there is a problem that it is difficult to detect the temperature accurately. For example, a cartridge heater formed in a planar shape on the bottom of a cylindrical container and a temperature sensor arranged at the center of the bottom, and when the temperature sensor outputs a signal corresponding to the boiling point of water, the cartridge heater is energized. When the temperature was detected to stop, the output of the temperature sensor was detected as a signal corresponding to about 100 ° C, even though the actual temperature of the water in the container was about 80 ° C, and the current flowed. since thus cut, problem of undesirable condition can not be heated to a higher temperature
There was In addition, large bubbles are generated,
Withdrawal, and have you in the process of rupture or the like in the liquid surface, the larger boiling
Produces sound. Therefore, the inner surface of the container is made of fluororesin
It is difficult to reduce the volume of boiling noise by simply forming a film
There was a problem that was.

【0006】本発明は、前記従来の問題を解決するた
め、容器の内面に弗素樹脂からなる被膜が形成されて、
前記被膜の表面に親水性の性質を付与することにより、
水の正確な温度検出ができるとともに沸騰音の音量低下
等を実現する加熱容器及びその製造方法を提供すること
を目的とする。
In order to solve the above-mentioned conventional problems , the present invention forms a coating film made of a fluororesin on the inner surface of a container,
By imparting hydrophilic properties to the surface of the coating,
It is an object of the present invention to provide a heating container capable of accurately detecting the temperature of water and reducing the volume of boiling noise, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するた
め、本発明の加熱容器は、容器の内面に弗素樹脂を少な
くとも一成分とする被膜が形成された加熱容器であっ
て、前記被膜の少なくとも加熱部表面がクラックを有し
且つ親水性の性質を有することを特徴とする。
In order to solve the above-mentioned problems, the heating container of the present invention is a heating container in which a coating film containing at least one component of a fluororesin is formed on the inner surface of the container, and at least the coating film is formed. It is characterized in that the surface of the heating portion has cracks and has a hydrophilic property.

【0008】また、本発明の加熱容器の製造方法は、容
器の内面に、弗素樹脂を少なくとも一成分とする樹脂を
焼き付け塗装して被膜を形成し、次に、前記被膜の表面
を高周波放電処理又は高周波コロナ放電処理して、前記
被膜の少なくとも加熱部表面にクラックを形成するとと
もに親水性を付与することを特徴とする。
Further, in the method for manufacturing a heating container according to the present invention, a resin containing at least one component of a fluororesin is baked and coated on the inner surface of the container to form a film, and then the surface of the film is subjected to a high frequency discharge treatment. Alternatively, high frequency corona discharge treatment is performed to form cracks on at least the surface of the heating portion of the coating film and impart hydrophilicity thereto.

【0009】[0009]

【作用】前記した本発明の構成によれば、加熱容器の弗
素樹脂被膜の少なくとも加熱部表面がクラックを有し且
つ親水性であることにより、沸騰する際の気泡の体積が
小さくなる。すなわち、親水性処理とクラックとの相乗
作用により、加熱時に発生する泡が微細になり、この結
果、容器の底部に設けられた温度センサーは水の温度を
精度良く検知することが可能になり、温度制御の動作が
安定化する。また、沸騰音の音量を小さくすることがで
きる。 さらに詳細に説明すると、容器の内面に弗素樹脂
からなる被膜を形成し、被膜の表面に高周波放電処理又
は高周波コロナ放電処理を施すことにより、疎水性であ
った弗素樹脂の表面が、分子の鎖の切開又は表面漸崩、
交差結合、酸化、水素結合、オゾン化等により、表面張
力が大きくなり、親水性の性質が付与され又は増強され
ると共に、微小なクラックが形成される。そのため、図
2bに示すように有極性分子である水5との接着エネル
ギーが大きくなり、容器の内面で気泡6が発生すると、
気泡6の周囲に存する水5が即座に気泡6と弗素樹脂3
のすき間に侵入して、気泡6の体積が小さいうちに容器
から離脱することになる
According to the above-mentioned configuration of the present invention, the fluorine of the heating container is
At least the surface of the heated portion of the base resin coating has cracks and
By being hydrophilic, the volume of bubbles when boiling is
Get smaller. That is, the synergy between hydrophilic treatment and cracking
Due to the action, the bubbles generated during heating become fine and
As a result, the temperature sensor installed at the bottom of the container
It becomes possible to detect with high accuracy, and the temperature control operation
Stabilize. You can also reduce the volume of the boiling sound.
Wear. More specifically, the inner surface of the container is made of fluororesin.
And a high frequency discharge treatment or
Is subjected to high-frequency corona discharge treatment, the surface of the fluororesin, which was hydrophobic, is dissected from the molecular chains or the surface gradually collapses.
Due to cross-linking, oxidation, hydrogen bonding, ozonation, etc., the surface tension is increased, the hydrophilic property is imparted or enhanced, and minute cracks are formed. Therefore, as shown in FIG. 2b, when the adhesion energy with water 5 which is a polar molecule becomes large and bubbles 6 are generated on the inner surface of the container,
The water 5 existing around the bubbles 6 immediately becomes the bubbles 6 and the fluororesin 3
The bubbles 6 will enter the gap and will be removed from the container while the volume of the bubble 6 is small .

【0010】従って、弗素樹脂の表面が親水性の性質を
有するため、気泡が容器に付着し難くなって、水と温度
センサーとの間の熱抵抗の増加を防ぐことができる。ま
た、水との濡れ性が良好になるため、容器の底部に設け
られた温度センサーは水の温度を精度良く検知すること
が可能になる。また、気泡の成長が抑制されるので、気
泡の発生、容器からの離脱、液面での破裂等の過程にお
ける沸騰音の音量が小さくなる。
Therefore, since the surface of the fluororesin has a hydrophilic property, it becomes difficult for bubbles to adhere to the container, and it is possible to prevent an increase in thermal resistance between the water and the temperature sensor. Further, since the wettability with water is improved, the temperature sensor provided at the bottom of the container can detect the temperature of water with high accuracy. In addition, since the growth of bubbles is suppressed,
In the process of foam generation, separation from the container, rupture on the liquid surface, etc.
The volume of the boiling sound is reduced.

【0011】加えて、例えば金属製の容器の表面に弗素
樹脂からなる被膜を形成しているため、容器の耐薬品
性、非粘着性、疎水性、耐候性、防汚性が良好になり、
その寿命も長くなる。
In addition, for example, since a coating made of a fluororesin is formed on the surface of a metal container, the container has good chemical resistance, non-adhesiveness, hydrophobicity, weather resistance and stain resistance,
It also has a long life.

【0012】また、本発明の加熱容器の製造方法は、容
器の内面に、弗素樹脂を少なくとも一成分とする樹脂を
焼き付け塗装して被膜を形成した後、前記被膜の表面を
高周波放電処理又は高周波コロナ放電処理することによ
り、弗素樹脂の表面に親水性、濡れ性を付与して表面エ
ネルギーを向上させることが容易に実現できる。
Further, in the method for producing a heating container of the present invention, a resin containing at least one component of a fluororesin is baked and coated on the inner surface of the container to form a film, and then the surface of the film is subjected to a high frequency discharge treatment or a high frequency treatment. By the corona discharge treatment, hydrophilicity and wettability can be imparted to the surface of the fluororesin to improve the surface energy easily.

【0013】[0013]

【実施例】以下、本発明の加熱容器の一実施例につい
て、図面を用いて説明する。図1は、本発明の加熱容器
の断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the heating container of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of the heating container of the present invention.

【0014】ステンレスやアルミニウム等の金属で加工
された容器本体2の内面に、弗素樹脂からなる被膜3が
形成されている。なお、理解容易のために樹脂断面の厚
さを強調して図示しており、現実には容器本体2の厚さ
が約1mm程度であり、被膜3の厚さは5μm〜100
μmの範囲が好ましい。
A coating 3 made of a fluororesin is formed on the inner surface of the container body 2 made of metal such as stainless steel or aluminum. In order to facilitate understanding, the thickness of the resin cross section is exaggerated in the drawing. In reality, the thickness of the container body 2 is about 1 mm, and the thickness of the coating film 3 is 5 μm to 100 μm.
The range of μm is preferred.

【0015】本発明に用いられる弗素樹脂は、ポリテト
ラフルオロエチレン(PTFE)、テトラフルオロエチ
レン−ヘキサフルオロプロピレン共重合体(PEP)、
エチレン−テトラフルオロエチレン共重合体(ETF
E)、テトラフルオロエチレン−パーフルオロアルキル
ビニルエーテル共重合体(PFA)、エチレン−クロロ
トリフルオロエチレン共重合体(ECTFE)、テトラ
フルオロエチレン−ヘキサフルオロプロピレン−パーフ
ルオロアルキルビニルエーテル共重合体(PEPE)、
ポリクロロトリフルオロエチレン(PCTFE)、ポリ
ビニリデンフルオライド(PVdF)等があり、特にP
TFE、PFA、及び耐熱樹脂にPTFEまたはPFA
を分散させた変性PTFE、変性PFAなどが好まし
い。
The fluororesin used in the present invention is polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (PEP),
Ethylene-tetrafluoroethylene copolymer (ETF
E), tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-hexafluoropropylene-perfluoroalkylvinylether copolymer (PEPE),
There are polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVdF), etc., especially P
PTFE or PFA for TFE, PFA and heat resistant resin
Modified PTFE, modified PFA and the like in which are dispersed are preferable.

【0016】被膜3の表面は、高周波放電処理又は高周
波コロナ放電処理が施されており、親水性や濡れ性等の
性質が付与されている。ここで、走査電子顕微鏡(SE
M)を用いて、被膜の表面状態を観察した結果を説明す
る。図3は高周波放電処理前の被膜表面のSEM写真の
模写図であり、図4は、高周波放電処理後の被膜表面の
SEM写真の模写図である。
The surface of the coating film 3 is subjected to high-frequency discharge treatment or high-frequency corona discharge treatment to impart properties such as hydrophilicity and wettability. Here, the scanning electron microscope (SE
The result of observing the surface state of the coating film using M) will be described. FIG. 3 is a copy of the SEM photograph of the coating surface before the high frequency discharge treatment, and FIG. 4 is a copy of the SEM photograph of the coating surface after the high frequency discharge treatment.

【0017】処理前の図3aを観察すると、斜線で示し
た部分が影となった大きな周期の凹凸の中に、あばた状
の窪みが一様に分布している様子が判る。図3bは、図
3aの約7倍に拡大したSEM写真の模写図であり、あ
ばた状の窪みに対応した影が斜線部分に見られると共
に、細く且つ小規模のひび割れ状のクラックが新たな微
細構造として観察される。
Observing FIG. 3a before the treatment, it can be seen that the pock-shaped depressions are uniformly distributed in the irregularities having a large period in which shaded portions are shaded. FIG. 3b is a copy of an SEM photograph enlarged about 7 times as large as that of FIG. 3a. A shadow corresponding to a pock-shaped depression is seen in the shaded area, and thin and small crack-like cracks are newly formed. Observed as a structure.

【0018】次に、処理後の図4aを観察すると、図3
aと同様に、大きな周期の凹凸の中にあばた状の窪みが
一様に分布している。しかし、約7倍に拡大された図4
bを見ると、太く且つ大規模のクラックが高周波放電処
理によって多数形成されている様子が判る。このような
大規模のクラックは、樹脂の表面に分子の鎖の切開又は
表面漸崩、交差結合、酸化、水素結合、オゾン化等の存
在を間接的に示している。
Next, when observing FIG. 4A after the treatment, FIG.
Similar to “a”, pit-shaped depressions are uniformly distributed in the irregularities having a large period. However, FIG. 4 enlarged about 7 times.
Looking at b, it can be seen that a large number of thick and large-scale cracks are formed by the high frequency discharge treatment. Such large-scale cracks indirectly indicate the presence of molecular chain incision or surface disintegration, cross-linking, oxidation, hydrogen bonding, ozonation, etc. on the surface of the resin.

【0019】このような加熱容器の底部に温度センサー
とヒータを設けて、水を加熱する様子を図5に示す。温
度センサー11は、加熱容器の底部の窪みに固定され容
器底部の温度を検出し、間接的に水の温度を検出する。
温度センサー11の出力は、温度制御回路14に入力さ
れる。カートリッジヒータ12は加熱容器の底部全体が
加熱されるように設けられ、そのリード線はリレー等の
スイッチング装置15を介して、商用電源等の電力供給
源へ接続される。通電を開始して容器内の水が沸騰点に
到達すると、温度センサー11の出力が基準値発生器1
3の出力より大きくなり、温度制御回路14がスイッチ
ング装置15に指令して通電を停止する。容器内の水が
自然放熱等により温度が別の基準値以下に下がると、温
度制御回路14がスイッチング装置15に指令して通電
を開始する。このようにして容器内の水の温度が沸騰点
近傍に設定される。
FIG. 5 shows how water is heated by providing a temperature sensor and a heater at the bottom of such a heating container. The temperature sensor 11 is fixed to a depression at the bottom of the heating container and detects the temperature of the bottom of the container and indirectly detects the temperature of water.
The output of the temperature sensor 11 is input to the temperature control circuit 14. The cartridge heater 12 is provided so that the entire bottom of the heating container is heated, and its lead wire is connected to a power supply source such as a commercial power source via a switching device 15 such as a relay. When the water in the container reaches the boiling point when the energization is started, the output of the temperature sensor 11 changes to the reference value generator 1.
3, the temperature control circuit 14 commands the switching device 15 to stop energization. When the temperature of the water in the container falls below another reference value due to natural heat radiation or the like, the temperature control circuit 14 commands the switching device 15 to start energization. In this way, the temperature of the water in the container is set near the boiling point.

【0020】ここで、水が盛んに沸騰している状態を説
明すると、弗素樹脂を少なくとも一成分とする被膜に高
周波放電処理が施されていることにより、親水性の性質
が付与され又は増強されるため、図2bに示すように樹
脂3と水5との接着エネルギーが大きくなり、容器の内
面で気泡5が発生すると体積が小さいうちに容器から離
脱する。そのため、気泡の発生、容器からの離脱、液面
での破裂等の過程における沸騰音の音量が極めて小さく
なった。
Here, the state in which water is actively boiling will be described. The hydrophilic property is imparted or enhanced by the high-frequency discharge treatment of the coating film containing at least one component of the fluororesin. Therefore, as shown in FIG. 2b, the adhesion energy between the resin 3 and the water 5 becomes large, and when the bubbles 5 are generated on the inner surface of the container, they are separated from the container while the volume is small. Therefore, the volume of the boiling sound during the process of bubble generation, separation from the container, rupture on the liquid surface, etc. became extremely small.

【0021】また、樹脂の表面と水との濡れ性が良好に
なるため、容器の底部に設けられた温度センサーは、気
泡の断熱性が減少して、水の温度を精度良く検知するこ
とでき、安定した温度制御が実現できた。
Further, since the wettability between the surface of the resin and water becomes good, the temperature sensor provided at the bottom of the container can detect the temperature of water with high accuracy because the heat insulating property of bubbles is reduced. It was possible to realize stable temperature control.

【0022】次に、本発明の加熱容器の製造方法の一実
施例について、図面を用いて説明する。耐熱樹脂である
ポリエーテルサルホン中に、弗素樹脂であるポリテトラ
フルオロエチレンを5重量%〜70重量%を混合して、
金属からなる容器の内表面に所定の厚さになるように塗
布して、乾燥させた後、焼き付けることにより被膜を形
成した。
Next, one embodiment of the method for manufacturing a heating container according to the present invention will be described with reference to the drawings. Polyethersulfone, which is a heat-resistant resin, is mixed with polytetrafluoroethylene, which is a fluorine resin, in an amount of 5% by weight to 70% by weight,
A coating was formed by coating the inner surface of a container made of metal so as to have a predetermined thickness, drying, and baking.

【0023】そして、図6に示すような高周波放電処理
装置を用いて、被膜の表面に親水性を付与する。ここ
で、高周波放電処理の概要を説明する。発振機21は、
18kHz〜25kHzの周波数で約175Vの電圧を
出力し、昇圧トランス23の1次側に接続される。昇圧
トランス23の2次側は2つのコイルを直列接続するこ
とにより約50kVの電圧を出力する。一方の出力は放
電電極24に接続され、他方の出力は対向電極25に接
続される。
Then, the surface of the coating is rendered hydrophilic by using a high frequency discharge treatment apparatus as shown in FIG. Here, the outline of the high frequency discharge processing will be described. The oscillator 21 is
It outputs a voltage of about 175 V at a frequency of 18 kHz to 25 kHz and is connected to the primary side of the step-up transformer 23. The secondary side of the step-up transformer 23 outputs a voltage of about 50 kV by connecting two coils in series. One output is connected to the discharge electrode 24, and the other output is connected to the counter electrode 25.

【0024】2つの電極の間に容器等のワークを挿入し
て、スイッチ22を入れる。すると、放電電極24の周
囲が高電圧電界となり、空気中の自由電子が加速して空
気中の気体分子に衝突してイオンを生成し電子を放出
し、次々と電子の数が増加して加速される「なだれ現
象」が発生する。放電の中で活性化された電子は、ワー
クの表面に形成された被膜の表面に衝突して、被膜表面
の分子の鎖の切開又は表面漸崩、交差結合、酸化、水素
結合、オゾン化等を生じさせる。このため、親水性の性
質が付与され又は増強され、被膜表面の表面張力が大き
くなる。このように、加熱容器の樹脂被膜に対して高周
波放電処理を施す方法を使用することにより、被膜表面
に親水性を備えることが容易に行うことができる。
A work such as a container is inserted between the two electrodes and the switch 22 is turned on. Then, a high voltage electric field is generated around the discharge electrode 24, and free electrons in the air are accelerated and collide with gas molecules in the air to generate ions to emit electrons, and the number of electrons is increased one after another to accelerate. "Avalanche phenomenon" occurs. The electrons activated in the discharge collide with the surface of the coating film formed on the surface of the work, and the molecular chains on the surface of the coating film are dissociated or broken down, cross-bonded, oxidized, hydrogen-bonded, ozonized, etc. Cause Therefore, the hydrophilic property is imparted or enhanced, and the surface tension of the coating surface becomes large. As described above, by using the method of subjecting the resin coating of the heating container to the high frequency discharge treatment, it is possible to easily provide the coating surface with hydrophilicity.

【0025】また、前述の高周波放電処理の代わりに、
高周波コロナ放電処理を施すことによっても、被膜表面
に親水性を容易に付与することができる。図7は、本発
明の加熱容器の製造方法に使用される高周波コロナ放電
処理装置の一例の概略図である。図6に示す高周波放電
処理装置と比較して、放電電極24の表面全体にガラス
やセラミックス等からなる絶縁被膜26が形成されてい
る点が相違する。なお、図7の放電電極24は、円盤状
導電板の中心部から導線が接続された形状をなしている
が、容器の形状に応じた電極形状を使用することが好ま
しい。特に、被処理部材が平面形状の場合は、図8に示
すように、コ字状導線の表面に絶縁被膜26を形成した
放電電極24を使用することができる。
Further, instead of the above-mentioned high frequency discharge treatment,
The hydrophilicity can be easily imparted to the surface of the coating film also by performing the high frequency corona discharge treatment. FIG. 7 is a schematic view of an example of a high frequency corona discharge treatment device used in the method for manufacturing a heating container according to the present invention. It differs from the high-frequency discharge treatment apparatus shown in FIG. 6 in that an insulating coating 26 made of glass, ceramics or the like is formed on the entire surface of the discharge electrode 24. The discharge electrode 24 in FIG. 7 has a shape in which a conductive wire is connected from the center of a disk-shaped conductive plate, but it is preferable to use an electrode shape according to the shape of the container. In particular, when the member to be processed has a planar shape, as shown in FIG. 8, the discharge electrode 24 having the insulating coating 26 formed on the surface of the U-shaped conductive wire can be used.

【0026】コロナ放電は絶縁被膜26と容器1との間
で発生し、高周波放電処理と同様に、放電の中の活性化
電子が被膜表面に衝突して、分子の鎖の切開又は表面漸
崩、交差結合、酸化、水素結合、オゾン化等を生じさ
せ、被膜表面に親水性の性質が付与される。
Corona discharge occurs between the insulating coating 26 and the container 1, and similarly to the high frequency discharge treatment, the activated electrons in the discharge collide with the coating surface to dissect molecular chains or gradually collapse the surface. , Cross-linking, oxidation, hydrogen bonding, ozonation, etc. are caused, and hydrophilic property is imparted to the film surface.

【0027】次に、本発明の加熱容器の製造方法の具体
的な実施例を詳説する。アルミニウムからなる容器の表
面を脱脂し、サンドブラストにより表面を粗面化した
後、透明の弗素樹脂塗料(ダイキン工業株式会社製TC
−7808GY)を厚さ約15μmになるように塗布し
て、約100℃で乾燥後、約380℃で焼き付けた。
Next, specific examples of the method of manufacturing the heating container of the present invention will be described in detail. After degreasing the surface of the container made of aluminum and roughening the surface by sandblasting, a transparent fluororesin paint (TC manufactured by Daikin Industries, Ltd.
-7808GY) was applied to a thickness of about 15 μm, dried at about 100 ° C., and then baked at about 380 ° C.

【0028】次に、図6に示すような放電処理装置を用
いて、加熱容器と放電電極の距離を約4cmに設定し
て、約40kVの高周波電圧を5秒間から10秒間程度
印加した。このようにして、本発明の加熱容器を容易に
得ることができた。
Next, using a discharge treatment device as shown in FIG. 6, the distance between the heating container and the discharge electrode was set to about 4 cm, and a high frequency voltage of about 40 kV was applied for about 5 to 10 seconds. In this way, the heating container of the present invention could be easily obtained.

【0029】[0029]

【発明の効果】以上詳説したように、本発明の加熱容器
は、容器の内面に弗素樹脂を少なくとも一成分とする被
膜が形成され、被膜の表面が高周波放電処理されている
ことにより、クラックが形成され、かつ水との接着エネ
ルギーが大きくなって親水性の性質が付与又は増強さ
れ、沸騰する際の気泡の体積が小さくなる。すなわち、
親水性処理とクラックとの相乗効果により、加熱時に発
生する泡が微細になり、この結果、容器の底部に設けら
れた温度センサーは水の温度を精度良く検知することが
可能になり、温度制御の動作が安定化する。また、沸騰
音の音量を小さくすることができる。
As described in detail above, the heating container of the present invention has a coating film containing at least one component of a fluororesin formed on the inner surface of the container, and the surface of the coating film is subjected to high-frequency discharge treatment, which causes cracks. When formed , the adhesive energy with water is increased to impart or enhance the hydrophilic property, and the volume of bubbles during boiling is reduced. That is,
Due to the synergistic effect of hydrophilic treatment and cracks,
The resulting bubbles become finer and, as a result, can be placed at the bottom of the container.
The built-in temperature sensor can detect the temperature of water accurately.
This enables the temperature control operation to be stabilized. Further , the volume of the boiling sound can be reduced.

【0030】また、本発明の加熱容器の製造方法は、弗
素樹脂を少なくとも一成分とする樹脂の表面に親水性、
濡れ性を付与して表面エネルギーを向上させるのが容易
に実現できるため、本発明の加熱容器の製品価格を下げ
ることができる。
Further, in the method of manufacturing the heating container of the present invention, the surface of the resin containing at least one component of the fluororesin is hydrophilic,
Since it is easy to provide the wettability and improve the surface energy, the product price of the heating container of the present invention can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の加熱容器の断面図である。FIG. 1 is a cross-sectional view of a heating container according to an embodiment of the present invention.

【図2】沸騰時の気泡発生の様子の断面図であり、図2
aは樹脂被膜が未処理の場合で、図2bは本発明の一実
施例の樹脂被膜が高周波放電処理された場合である。
FIG. 2 is a cross-sectional view showing how bubbles are generated during boiling.
2A shows the case where the resin coating is untreated, and FIG. 2B shows the case where the resin coating of one embodiment of the present invention is subjected to the high frequency discharge treatment.

【図3】本発明の一実施例の高周波放電処理前の被膜表
面のSEM写真の模写図である。
FIG. 3 is a copy of an SEM photograph of the surface of the coating film before the high frequency discharge treatment according to the embodiment of the present invention.

【図4】本発明の一実施例の高周波放電処理後の被膜表
面のSEM写真の模写図である。
FIG. 4 is a copy of an SEM photograph of the surface of the coating film after the high frequency discharge treatment according to the embodiment of the present invention.

【図5】本発明の加熱容器の底部に温度センサーとヒー
タを設けて水を加熱する様子の一例である。
FIG. 5 is an example of how water is heated by providing a temperature sensor and a heater at the bottom of the heating container of the present invention.

【図6】本発明の加熱容器の製造方法に使用される高周
波放電処理装置の一例の概略図である。
FIG. 6 is a schematic view of an example of a high-frequency discharge treatment device used in the method for manufacturing a heating container according to the present invention.

【図7】本発明の加熱容器の製造方法に使用される高周
波コロナ放電処理装置の一例の概略図である。
FIG. 7 is a schematic view of an example of a high-frequency corona discharge treatment device used in the method for manufacturing a heating container according to the present invention.

【図8】高周波コロナ放電処理装置の放電電極の一例で
ある。
FIG. 8 is an example of a discharge electrode of a high frequency corona discharge treatment device.

【符号の説明】[Explanation of symbols]

1 加熱容器 2 容器本体 3 樹脂製被膜 5 水 6 気泡 11 温度センサー 12 カートリッジヒータ 13 基準値発生器 14 温度制御回路 15 スイッチング装置 21 発振機 22 スイッチ 23 昇圧トランス 24 放電電極 25 対向電極 26 絶縁被膜 1 Heating Container 2 Container Body 3 Resin Coating 5 Water 6 Bubbles 11 Temperature Sensor 12 Cartridge Heater 13 Reference Value Generator 14 Temperature Control Circuit 15 Switching Device 21 Oscillator 22 Switch 23 Boost Transformer 24 Discharge Electrode 25 Counter Electrode 26 Insulating Coating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器の内面に弗素樹脂を少なくとも一成
分とする被膜が形成された加熱容器であって、前記被膜
の少なくとも加熱部表面がクラックを有し且つ親水性の
性質を有することを特徴とする加熱容器。
1. A heating container in which a coating film containing at least one component of a fluororesin is formed on the inner surface of the container, wherein at least the surface of the heating portion of the coating film has cracks and has a hydrophilic property. And heating container.
【請求項2】 容器の内面に、弗素樹脂を少なくとも一
成分とする樹脂を焼き付け塗装して被膜を形成し、次
に、前記被膜の表面を高周波放電処理又は高周波コロナ
放電処理して、前記被膜の少なくとも加熱部表面にクラ
ックを形成するとともに親水性を付与することを特徴と
する加熱容器の製造方法。
2. An inner surface of a container is baked and coated with a resin containing at least one component of a fluororesin to form a coating film, and then the surface of the coating film is subjected to a high frequency discharge treatment or a high frequency corona discharge treatment to form the coating film. A method for producing a heating container, which comprises forming a crack on at least the surface of the heating portion and imparting hydrophilicity thereto.
JP3147077A 1991-06-19 1991-06-19 Heating container and manufacturing method thereof Expired - Lifetime JPH07114753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147077A JPH07114753B2 (en) 1991-06-19 1991-06-19 Heating container and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147077A JPH07114753B2 (en) 1991-06-19 1991-06-19 Heating container and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04371116A JPH04371116A (en) 1992-12-24
JPH07114753B2 true JPH07114753B2 (en) 1995-12-13

Family

ID=15421953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147077A Expired - Lifetime JPH07114753B2 (en) 1991-06-19 1991-06-19 Heating container and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07114753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266462A (en) * 2005-12-06 2010-11-25 Hitachi High-Technologies Corp Method for manufacturing reaction cell for automatic analyzer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847669A (en) * 1994-08-05 1996-02-20 Sumitomo Metal Ind Ltd Resin-coated metal material having excellent weather resistance and contamination resistance
US8673449B2 (en) * 2009-12-18 2014-03-18 Saint-Gobain Performance Plastics Corporation Cooking release sheet materials and release surfaces
EP3529322A4 (en) 2016-10-24 2020-07-29 Saint-Gobain Performance Plastics Corporation Polymer compositions, materials, and methods of making
CN109330351A (en) * 2018-12-04 2019-02-15 广东天际电器股份有限公司 A method of reduction stews noise

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112274A (en) * 1974-07-17 1976-01-30 Matsushita Electric Ind Co Ltd YUWAKASHIKI
JPS627225Y2 (en) * 1981-02-26 1987-02-19
JPS59141920U (en) * 1983-03-15 1984-09-21 三洋電機株式会社 Heating tanks for sake bottles, etc.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266462A (en) * 2005-12-06 2010-11-25 Hitachi High-Technologies Corp Method for manufacturing reaction cell for automatic analyzer

Also Published As

Publication number Publication date
JPH04371116A (en) 1992-12-24

Similar Documents

Publication Publication Date Title
JP2657850B2 (en) Plasma generator and etching method using the same
JP4414765B2 (en) Plasma processing apparatus and plasma processing method
JP4460014B2 (en) Plasma electrode
JPH0773994A (en) Hollow cathode array and surface treatment using it
US3288638A (en) Method and apparatus for the treatment of plastic materials
JPH0233057B2 (en)
JPH07114753B2 (en) Heating container and manufacturing method thereof
JP2023505325A (en) plasma generator
JP2018531211A6 (en) Low temperature plasma ozone generator
JP2018531211A (en) Low temperature plasma ozone generator
JP4936276B2 (en) Nitriding equipment
JP2007134056A (en) Plasma surface treatment device and manufacturing method of surface treatment cylinder base material
JP2005235448A (en) Plasma processing method and apparatus thereof
JP2002020514A (en) Method for modifying surface of fluororesin
JP2002143795A (en) Method for cleaning glass substrate for liquid crystal
JP3577601B2 (en) Atmospheric pressure glow discharge plasma treatment method
JP2005166457A (en) Plasma discharge device
JP2007258096A (en) Plasma processing apparatus
JP2007258097A (en) Plasma processing apparatus
JP3558320B2 (en) Pattern forming method and pattern forming apparatus
JP4935214B2 (en) Surface-coated fluororesin substrate and method for producing the same
US3987306A (en) Treatment of material by ultra-violet irradiation
JP2005353551A (en) Plasma treatment device
JP3285764B2 (en) Surface treatment method using discharge plasma
JP2009167323A (en) Surface-coated resin base body and method and apparatus for producing the same