JPH0711464B2 - Gas leak monitor - Google Patents

Gas leak monitor

Info

Publication number
JPH0711464B2
JPH0711464B2 JP26011391A JP26011391A JPH0711464B2 JP H0711464 B2 JPH0711464 B2 JP H0711464B2 JP 26011391 A JP26011391 A JP 26011391A JP 26011391 A JP26011391 A JP 26011391A JP H0711464 B2 JPH0711464 B2 JP H0711464B2
Authority
JP
Japan
Prior art keywords
infrared
gas
filter
gas leak
gas leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26011391A
Other languages
Japanese (ja)
Other versions
JPH0599778A (en
Inventor
富徳 佐藤
俊英 金川
幸一 隅田
武司 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP26011391A priority Critical patent/JPH0711464B2/en
Priority to DE69201709T priority patent/DE69201709T2/en
Priority to EP92116217A priority patent/EP0536586B1/en
Priority to KR1019920017502A priority patent/KR930008363A/en
Publication of JPH0599778A publication Critical patent/JPH0599778A/en
Priority to US08/228,146 priority patent/US5430293A/en
Publication of JPH0711464B2 publication Critical patent/JPH0711464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス漏れ監視対象領域
に向けて被検出ガスに吸収される波長の検出用赤外線を
照射する赤外線照射手段と、ガス漏れ監視対象領域の背
景から放射、或いは反射された赤外線を検出する赤外線
検出手段と、その赤外線検出手段により検出された赤外
線の強度からガス漏れの有無を判別するガス漏れ判別手
段とを備えて構成してあるガス漏れ監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared irradiating means for irradiating a gas leakage monitoring target area with detection infrared rays having a wavelength absorbed by a gas to be detected, and irradiating from the background of the gas leakage monitoring target area. The present invention relates to a gas leak monitoring device including an infrared detecting means for detecting reflected infrared rays and a gas leak judging means for judging the presence / absence of a gas leak from the intensity of the infrared rays detected by the infrared detecting means.

【0002】[0002]

【従来の技術】この種のガス漏れ監視装置は、従来おこ
なわれてきた、定点監視のものに対して提案されている
のである。
2. Description of the Related Art A gas leak monitoring device of this type has been proposed for a conventional fixed point monitoring device.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の従来技
術によるガス漏れ監視装置によれば、赤外線照射手段を
常に作動させるに必要があるが、光源となるレーザー発
振器の寿命が短くなるという欠点、さらには、検出用光
線束照射手段を作動させる電力の消費量が大となるとい
う欠点、又広域監視をレーザーで実施する場合には、高
価かつ大型の大パワーレーザーが必要であるという欠点
があった。本発明の目的は上述した従来欠点を解消する
点にある。
However, according to the above-mentioned gas leakage monitoring device of the prior art, it is necessary to always operate the infrared irradiating means, but there is a drawback that the life of the laser oscillator as a light source is shortened. Further, there is a drawback that the power consumption for operating the detection light flux irradiating means becomes large, and that a large-power laser that is expensive and large is required when performing wide area monitoring with a laser. It was An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明によるガス漏れ監視装置の特徴構成は、ガス
漏れ判別手段によりガス漏れと判別された場合に、赤外
線照射手段を作動させる赤外線照射制御手段を設けてあ
ることにある。上述の構成において、赤外線検出手段
を、前記検出用赤外線の波長を含む帯域の光線束を透過
するフィルタと、そのフィルタを透過した赤外線を受光
する受光素子で構成して、前記赤外線照射制御手段が、
前記赤外線照射手段を作動させる場合に、前記フィルタ
の帯域を狭くするフィルタ切替え手段を設けてあること
が好ましい。
In order to achieve this object, the gas leak monitoring device according to the present invention is characterized by an infrared irradiation for activating an infrared irradiating means when the gas leak judging means discriminates a gas leak. The control means is provided. In the above-mentioned configuration, the infrared ray detecting means is composed of a filter that transmits a light flux in a band including the wavelength of the infrared ray for detection and a light receiving element that receives the infrared ray that has passed through the filter, and the infrared ray irradiation control means is ,
It is preferable to provide filter switching means for narrowing the band of the filter when the infrared irradiation means is operated.

【0005】[0005]

【作用】赤外線照射手段を常時作動させるのではなく、
通常は、ガス漏れ監視対象領域の背景(たとえば、ガス
球形ホルダー等のガス関連施設や、樹木等の自然物)か
ら放射された赤外線(輻射熱)を赤外線検出手段により
検出して、その検出結果に基づき得られる被検出ガスに
吸収される波長の赤外線の強度からガス漏れ判別手段に
より、ガス漏れの有無を粗く判別する。即ち、ガス漏れ
判別手段は、ガス漏れの発生があれば、そのガスに吸収
される波長の赤外線の強度が低くなることを利用してガ
ス漏れの有無を判別する。ガス漏れ判別手段による粗い
精度でのガス漏れの発生が判別されると、赤外線照射制
御手段は、前記背景に向けて検出用赤外線を照射して、
前記背景からの反射赤外線の強度に基づくより精度の高
いガス漏れ判別を可能にすべく、赤外線照射手段を作動
させるのである。上述の構成において、赤外線検出手段
を、前記検出用赤外線の波長を含む帯域の光線束を透過
するフィルタと、そのフィルタを透過した赤外線を受光
する受光素子で構成してある場合には、前記赤外線照射
制御手段が、通常は帯域の広いフィルタに設定して微妙
なガス漏れも逃さないようにS/N比を下げた状態と
し、前記赤外線照射手段を作動させる場合に、フィルタ
切替え手段により前記フィルタの帯域を狭くすること
で、どの程度のガス漏れであるかを詳細に検出すべくS
/N比を上げることが好ましい。
[Function] Rather than constantly operating the infrared irradiation means,
Normally, infrared rays (radiant heat) emitted from the background of the gas leakage monitoring target area (for example, gas related facilities such as gas spherical holders and natural objects such as trees) are detected by the infrared detecting means, and based on the detection result. The presence / absence of gas leakage is roughly determined by the gas leakage determination means based on the intensity of infrared rays having a wavelength absorbed by the obtained gas to be detected. That is, if there is a gas leak, the gas leak determination means determines whether or not there is a gas leak by utilizing the fact that the intensity of the infrared ray having a wavelength absorbed by the gas becomes low. When it is determined that the gas leak has occurred with a coarse accuracy by the gas leak determination means, the infrared irradiation control means irradiates the detection infrared ray toward the background,
The infrared irradiating means is operated in order to enable more accurate gas leak determination based on the intensity of infrared rays reflected from the background. In the above-mentioned configuration, when the infrared detecting means is composed of a filter that transmits a light flux of a band including the wavelength of the detection infrared ray and a light receiving element that receives the infrared ray that has passed through the filter, the infrared ray The irradiation control means is usually set to a filter with a wide band and the S / N ratio is lowered so as not to miss a slight gas leak. When the infrared irradiation means is operated, the filter is switched by the filter switching means. By narrowing the band of S, it is necessary to detect in detail how much gas is leaking.
It is preferable to increase the / N ratio.

【0006】[0006]

【発明の効果】本発明によれば、光源となるレーザー発
振器の寿命を長く保ち、しかも、光源に消費される電力
消費量を低減しながらも、ガス漏れの発生を確実に検出
できるガス漏れ監視装置を提供することができるように
なった。さらに、広範囲をカバーしようとすればする
程、大出力レーザーが必要となるが、レーザーで限られ
た範囲を監視すればよいので、必ずしも大出力レーザー
が必要でない。
According to the present invention, a gas leak monitor capable of reliably detecting the occurrence of a gas leak while keeping the life of a laser oscillator as a light source long and reducing the power consumption consumed by the light source. Equipment can now be provided. Furthermore, a higher power laser is required to cover a wider area, but a high power laser is not necessarily required because a laser can monitor a limited range.

【0007】[0007]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。図1及び図2に示すように、ガス漏れ監視装置1
は、ガス製造工場における球形ホルダー2近辺、特に球
形ホルダー2に接続されている配管のフランジ接続部2
aにおけるガス漏れ監視を行うもので、ガス漏れ監視対
象領域Aに向けて被検出ガスgであるメタン、エタン、
プロパン、ブタンといった可燃性ガスgに吸収される波
長λの検出用赤外線Lを照射する赤外線照射手段Eと、
ガス漏れ監視対象領域Aの背景、例えば球形ホルダー2
等から放射、或いは反射された赤外線を検出する赤外線
検出手段Rと、その赤外線検出手段Rの検出結果に基づ
き被検出ガスgに吸収される波長の赤外線の強度からガ
ス漏れの有無を判別するガス漏れ判別手段Jとを備えて
構成してある。前記赤外線照射手段Eは、前記波長λの
検出用赤外線を発振するレーザ発振器E1と、レーザ発
振器E1により出力された赤外線Lをガス漏れ監視対象
領域Aに向けて照射する光束拡散装置E2とで構成して
ある。前記赤外線検出手段Rは、ガス漏れ監視対象領域
Aの背景である球形ホルダー2等のガス関連施設や樹木
等の自然物から放射され、或いは前記赤外線照射手段E
により照射された赤外線のうち反射された赤外線であっ
て、ガス漏れ監視対象領域Aを透過した赤外線強度を検
出するもので、干渉フィルタFと受光素子としての赤外
線イメージセンサR1とで構成してある。前記ガス漏れ
判別手段Jは、図3に示すように、前記赤外線検出手段
Rにより検出された赤外線エネルギーをガス濃度に対応
する二次元の濃淡画像に表すCRT等の表示装置J1
と、濃淡画像のうち所定の閾値(例えば、正常状態の背
影を代表する値をこの閾値とする。)より大なる濃度の
領域に前記被検出ガスgが分布していると判断する比較
装置J2とで構成してある。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, a gas leak monitoring device 1
Is near the spherical holder 2 in the gas manufacturing plant, particularly the flange connection portion 2 of the pipe connected to the spherical holder 2.
The gas leak monitoring is performed at a, and the detection target gas g is methane, ethane, and
Infrared irradiation means E for irradiating a detection infrared ray L having a wavelength λ absorbed by a combustible gas g such as propane or butane;
Background of the gas leakage monitoring target area A, for example, the spherical holder 2
Infrared detecting means R for detecting infrared rays radiated or reflected from the like, and a gas for discriminating the presence or absence of gas leakage from the intensity of infrared rays having a wavelength absorbed by the gas to be detected g based on the detection result of the infrared detecting means R. The leak determining means J is provided. The infrared irradiating means E includes a laser oscillator E1 that oscillates the detecting infrared ray having the wavelength λ, and a light flux diffuser E2 that irradiates the infrared ray L output from the laser oscillator E1 toward the gas leakage monitoring target area A. I am doing it. The infrared detecting means R is radiated from a gas-related facility such as the spherical holder 2 which is the background of the gas leakage monitoring target area A or a natural object such as a tree, or the infrared irradiating means E.
The infrared ray reflected by the infrared rays emitted by the sensor 1 detects the intensity of the infrared ray transmitted through the gas leakage monitoring target area A, and is composed of an interference filter F and an infrared image sensor R1 as a light receiving element. . As shown in FIG. 3, the gas leakage determination means J displays the infrared energy detected by the infrared detection means R in a two-dimensional grayscale image corresponding to the gas concentration, such as a display device J1 such as a CRT.
And a comparison device J2 that determines that the gas to be detected g is distributed in a region of the grayscale image having a concentration higher than a predetermined threshold value (for example, a value that represents a back shadow in a normal state). It consists of and.

【0008】以上に説明したガス漏れ監視装置における
各要素の諸元を箇条書きする。 レーザ発振器E1から出力される赤外線 レーザー型式 ヘリウム−ネオンレーザー 公称出力 8mW 中心波長 λ 3.39μm、 透過スペクトル幅 0.09μm 視野角 最大14° 背景との距離 数m〜数100m 赤外線イメージセンサR1 検知波長域 3μm〜5μm 最大検知温度差 0.15℃以下(NET
D)
The specifications of each element in the gas leak monitoring device described above will be listed. Infrared laser type helium-neon laser output from laser oscillator E1 Nominal output 8 mW Center wavelength λ 3.39 μm, Transmission spectrum width 0.09 μm Viewing angle maximum 14 ° Distance to background Several m to several 100 m Infrared image sensor R1 Detection wavelength Area 3 μm to 5 μm Maximum detection temperature difference 0.15 ° C or less (NET
D)

【0009】[0009]

【数1】 バンドパスフィルターFの幅 α+β 0.1〜2μm ## EQU1 ## Width of bandpass filter F α + β 0.1 to 2 μm

【0010】前記ガス漏れ監視装置1には、ガス漏れ判
別手段Jによりガス漏れと判別された場合に、前記赤外
線照射手段Eを作動させる赤外線照射制御手段Cを設け
てある。つまり、前記赤外線照射手段Eを常時作動させ
るのではなく、通常は、前記赤外線照射手段Eを停止さ
せて、ガス漏れ監視対象領域Aの背景から放射された赤
外線(輻射熱)を前記赤外線検出手段Rにより検出し
て、ガス漏れ判別手段Jによりガス漏れの有無を粗く判
別する。即ち、前記ガス漏れ判別手段Jは、ガス漏れの
発生があれば、そのガスに吸収される波長の赤外線の強
度が低くなることを利用して、設定強度より低い場合に
ガス漏れが発生しているといった場合にガス漏れの有無
を判別する。前記ガス漏れ判別手段Jによる粗い精度で
のガス漏れの発生が判別されると、赤外線照射制御手段
Cは、前記背景に向けて検出用赤外線Lを照射して、前
記背景からの反射赤外線の強度に基づくより精度の高い
ガス漏れ判別を可能にすべく、赤外線照射手段Eを作動
させるのである(この場合、通常時の監視域より狭い領
域に赤外線を集光して、照射する)。詳述すると、検出
用赤外線Lがガス漏れ監視対象領域Aを介して球形ホル
ダー2を背景とする地域に向けて照射されると、この背
景からその検出用赤外線Lが反射して前記赤外線検出手
段Rに入射することになり、この信号を検出して前記ガ
ス漏れ判別手段Jに出力する。ここで、ガス漏れ監視対
象領域Aに被検出ガスgがあると、このガスgに検出用
赤外線Lが往路及び復路において吸収され、検出用赤外
線Lに空間的な(二次元写像とされた場合の異なった位
置で)強度差を生じることとなる。従って、この情報が
イメージセンサR1で検知され、表示される場合は、図
3に示すように、その画像がガスの有無、濃度に従って
濃淡画像、もしくは異なった色彩画像(このような処理
をおこなう場合は)として表示することが可能となるの
である。
The gas leak monitoring device 1 is provided with an infrared irradiation control means C for activating the infrared irradiation means E when the gas leak judging means J judges that a gas leak has occurred. That is, the infrared irradiating means E is not always operated, but normally the infrared irradiating means E is stopped and infrared rays (radiant heat) emitted from the background of the gas leakage monitoring target area A are detected by the infrared detecting means R. The gas leak determining means J roughly determines whether or not there is a gas leak. That is, the gas leakage determination means J takes advantage of the fact that if there is a gas leakage, the intensity of the infrared ray having a wavelength absorbed by the gas becomes low, and if the intensity is lower than the set intensity, the gas leakage occurs. If there is a gas leak, determine whether there is a gas leak. When the occurrence of gas leakage with rough accuracy is determined by the gas leakage determination unit J, the infrared irradiation control unit C irradiates the detection infrared L toward the background, and the intensity of the reflected infrared light from the background. The infrared irradiating means E is operated to enable more accurate gas leakage determination based on (in this case, infrared rays are condensed and irradiated in an area narrower than the normal monitoring area). More specifically, when the detection infrared ray L is radiated through the gas leak monitoring target area A toward an area having the spherical holder 2 as a background, the infrared ray L for detection is reflected from the background and the infrared detection means. It is incident on R, and this signal is detected and output to the gas leak determination means J. Here, when the gas to be detected g is present in the gas leakage monitoring target area A, the infrared rays L for detection are absorbed in the forward and backward paths by the gas g, and the infrared rays L for detection are spatially (in the case of a two-dimensional mapping). Intensity at different positions). Therefore, when this information is detected and displayed by the image sensor R1, as shown in FIG. 3, the image is a grayscale image or a different color image according to the presence or absence of gas and the concentration (when such a process is performed. Can be displayed as).

【0011】さて、ガス漏れ監視装置1の監視動作は以
上のようであるが、前記赤外線照射手段Eの作動状態、
非作動状態にかかわらず、単一の干渉フィルタFを用い
た場合には、前記表示装置J1に於ける表示画面が太陽
光等の影響で過度に明るくなったり暗くなったりするこ
とがあり、さらに、監視対象のガス濃度に対する表示画
面上での明度差が低く、例え表示されたとしても明確に
ガスの存在が目視確認できない等の問題が起こることが
ある。イメージセンサR1で検知される真に必要な赤外
線の強度信号は波長λが3.39μm付近に対応するも
のであるが、微妙なガス漏れをも逃さないために、前記
赤外線照射手段Eの非作動状態では前記干渉フィルタF
として検知波長域がより広い帯域の赤外線強度を検出す
る必要がある。その強度信号で濃淡を表現すべく正規化
されたイメージセンサR1に対して、前記赤外線照射手
段Eを作動させて背景から反射するエネルギーの大なる
赤外線を検出すると、波長λが3.39μm付近での強
度信号は一定値以上で飽和して濃淡が識別できなくなる
からである。そこで、図4及び図5に示すように、前記
赤外線照射制御手段Cが、通常は帯域の広いフィルタR
3に設定して微妙なガス漏れも逃さないようにS/N比
を下げた状態とし、前記赤外線照射手段Eを作動させる
場合に、フィルタ切替え手段FCにより前記フィルタF
の帯域を狭くしたフィルタR2に切り換えることで、ど
の程度のガス漏れであるかを詳細に検出すべくS/N比
を上げるように構成してある。
The monitoring operation of the gas leakage monitoring device 1 is as described above. The operating state of the infrared irradiating means E is as follows.
When the single interference filter F is used regardless of the non-operating state, the display screen of the display device J1 may become excessively bright or dark due to the influence of sunlight or the like. However, there is a problem that the difference in brightness on the display screen with respect to the concentration of the gas to be monitored is low, and even if it is displayed, the presence of gas cannot be visually confirmed clearly. The truly necessary infrared intensity signal detected by the image sensor R1 corresponds to a wavelength λ near 3.39 μm, but the infrared irradiating means E is not operated in order to prevent a slight gas leak. In the state, the interference filter F
As a result, it is necessary to detect infrared intensity in a wider detection wavelength range. When the infrared ray irradiating means E is operated to detect the infrared rays having large energy reflected from the background with respect to the image sensor R1 which is normalized to express the light and shade by the intensity signal, the wavelength λ is around 3.39 μm. This is because the intensity signal of is saturated above a certain value and the grayscale cannot be identified. Therefore, as shown in FIG. 4 and FIG. 5, the infrared irradiation control means C normally uses a filter R having a wide band.
When the infrared irradiating means E is operated with the S / N ratio set to 3 so that even slight gas leakage is not escaped, the filter F is switched by the filter switching means FC.
By switching to the filter R2 having a narrower band, the S / N ratio is increased in order to detect in detail how much gas is leaking.

【0012】以下に別実施例を説明する。上述の実施例
においては、照射装置Eにより照射されるレーザー光を
単一光とし、このレーザー光として可燃性ガスgにより
吸収される波長のものを選択したが、照射装置Eに、こ
ういった波長のレーザー光とともに、前記ガスgには吸
収されない波長のレーザー光を照射する手段を設けて、
この系の検出結果をグラウンドとし、吸収される波長の
結果をガス情報として、この二波長の検出系によりガス
を検出するものとしてもよい。この場合は、ガス濃度ま
で確定することが可能となる。さらに、ガス漏れ監視対
象領域Aの背景としては、前記球形ホルダー2の他、地
面、コンクリート壁、塗装済の鉄骨構造物等でもよく、
さらに特定域についてはスクリーンを備えてもよい。
又、背景は一般に静止しているのに対し、漏洩した被検
出ガスgは流動する。従って、異なった時間における本
願のガス漏れ監視装置1で可視化した映像情報を比較分
析することによりガスの漏洩の状態を把握できる構成を
採用することもできる。先の実施例では、赤外線照射手
段にレーザー発振器を用いているが、光源としてレーザ
ー発振器に限定するものではない。
Another embodiment will be described below. In the above-mentioned embodiment, the laser light emitted from the irradiation device E is a single light, and the laser light having a wavelength absorbed by the combustible gas g is selected. A means for irradiating a laser beam having a wavelength not absorbed by the gas g together with the laser beam having a wavelength is provided.
The detection result of this system may be used as the ground, and the result of the absorbed wavelength may be used as gas information, and the gas may be detected by this two-wavelength detection system. In this case, it is possible to determine the gas concentration. Further, as the background of the gas leakage monitoring target area A, in addition to the spherical holder 2, a ground, a concrete wall, a painted steel structure or the like may be used.
Further, a screen may be provided for the specific area.
Further, while the background is generally stationary, the leaked detected gas g flows. Therefore, it is also possible to adopt a configuration in which the state of gas leakage can be grasped by comparing and analyzing the image information visualized by the gas leakage monitoring device 1 of the present application at different times. In the above embodiment, a laser oscillator is used as the infrared irradiation means, but the light source is not limited to the laser oscillator.

【0013】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガス漏れ監視装置の説明図FIG. 1 is an explanatory diagram of a gas leak monitoring device.

【図2】ガス漏れ監視装置のブロック図FIG. 2 is a block diagram of a gas leak monitoring device.

【図3】表示装置における表示状態を示す図FIG. 3 is a diagram showing a display state on a display device.

【図4】ガス漏れがない場合のバンドパスフィルターに
よる透過帯域幅の変化による赤外線強度の特性図
FIG. 4 is a characteristic diagram of infrared intensity due to a change in transmission bandwidth by a bandpass filter when there is no gas leakage.

【図5】ガス漏れがある場合のバンドパスフィルターに
よる透過帯域幅の変化による赤外線強度の特性図
FIG. 5 is a characteristic diagram of infrared intensity due to a change in transmission bandwidth by a bandpass filter when gas leaks.

【符号の説明】 A ガス漏れ監視対象域 C 赤外線照射制御手段 E 赤外線照射手段 g 被検出ガス J ガス漏れ判別手段 R 赤外線検出手段[Explanation of Codes] A Gas Leakage Monitoring Area C Infrared Radiation Control Means E Infrared Radiation Means g Detected Gas J Gas Leakage Discrimination Means R Infrared Radiation Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 武司 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (56)参考文献 特開 昭57−122336(JP,A) 特開 昭56−147034(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takeshi Nishio Inventor Takeshi Nishio 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Within Osaka Gas Co., Ltd. (56) Reference JP-A-57-122336 (JP, A) Kai 56-147034 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス漏れ監視対象領域(A)に向けて被
検出ガス(g)に吸収される波長の検出用赤外線を照射
する赤外線照射手段(E)と、ガス漏れ監視対象領域
(A)の背景から放射、或いは反射された赤外線を検出
する赤外線検出手段(R)と、その赤外線検出手段
(R)により検出された赤外線の強度からガス漏れの有
無を判別するガス漏れ判別手段(J)とを備えて構成し
てあるガス漏れ監視装置であって、 前記ガス漏れ判別手段(J)によりガス漏れと判別され
た場合に、前記赤外線照射手段(E)を作動させる赤外
線照射制御手段(C)を設けてあるガス漏れ監視装置。
1. An infrared irradiating means (E) for irradiating a gas leakage monitoring target area (A) with a detection infrared ray having a wavelength absorbed by the gas to be detected (g), and a gas leak monitoring target area (A). Infrared detecting means (R) for detecting infrared rays radiated or reflected from the background, and gas leak judging means (J) for judging the presence or absence of gas leakage from the intensity of infrared rays detected by the infrared detecting means (R). An infrared irradiation control means (C) for operating the infrared irradiation means (E) when the gas leakage determination means (J) determines that the gas is leaked. ) Is provided for the gas leak monitoring device.
【請求項2】 前記赤外線検出手段(R)を、前記検出
用赤外線の波長を含む帯域の光線束を透過するフィルタ
(F)と、そのフィルタ(F)を透過した赤外線を受光
する受光素子(R1)で構成して、 前記赤外線照射制御手段(C)が、前記赤外線照射手段
(E)を作動させる場合に、前記フィルタ(F)の帯域
を狭くするフィルタ切替え手段(FC)を設けてある請
求項1記載のガス漏れ監視装置。
2. A filter (F) which transmits a bundle of rays in a band including the wavelength of the infrared ray for detection, and a light receiving element which receives the infrared ray which has passed through the filter (F). R1), and the infrared irradiation control means (C) is provided with a filter switching means (FC) for narrowing the band of the filter (F) when the infrared irradiation means (E) is actuated. The gas leakage monitoring device according to claim 1.
JP26011391A 1991-10-08 1991-10-08 Gas leak monitor Expired - Lifetime JPH0711464B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP26011391A JPH0711464B2 (en) 1991-10-08 1991-10-08 Gas leak monitor
DE69201709T DE69201709T2 (en) 1991-10-08 1992-09-23 Method and device for making gases visible.
EP92116217A EP0536586B1 (en) 1991-10-08 1992-09-23 Gas visualizing apparatus and gas visualizing method
KR1019920017502A KR930008363A (en) 1991-10-08 1992-09-25 Gas visualization device and gas visualization method
US08/228,146 US5430293A (en) 1991-10-08 1994-04-15 Gas visualizing apparatus and method for detecting gas leakage from tanks or piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26011391A JPH0711464B2 (en) 1991-10-08 1991-10-08 Gas leak monitor

Publications (2)

Publication Number Publication Date
JPH0599778A JPH0599778A (en) 1993-04-23
JPH0711464B2 true JPH0711464B2 (en) 1995-02-08

Family

ID=17343467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26011391A Expired - Lifetime JPH0711464B2 (en) 1991-10-08 1991-10-08 Gas leak monitor

Country Status (1)

Country Link
JP (1) JPH0711464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088733A1 (en) * 2014-12-01 2016-06-09 コニカミノルタ株式会社 Optical detection device
CN106558195A (en) * 2015-09-28 2017-04-05 哈尔滨东方报警设备开发有限公司 A kind of solar radiation detecting alarm

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239202A (en) * 1997-02-27 1998-09-11 Mitsubishi Electric Corp Method and device for leakage detection
KR100807441B1 (en) * 2000-02-24 2008-02-25 동경 엘렉트론 주식회사 Method and apparatus for leak detecting, and apparatus for semiconductor manufacture
EA009547B1 (en) 2003-06-11 2008-02-28 ФАРРИ БРАЗЕРС ЛЛСи Method for performing visual detections of chemical leaks emanating from a component
JP4712438B2 (en) * 2005-05-16 2011-06-29 三菱電機株式会社 Gas leak visualization device
JP5946993B2 (en) * 2011-01-27 2016-07-06 日本信号株式会社 Liquid oil leak detection device
JP2012220313A (en) * 2011-04-07 2012-11-12 Mitsubishi Electric Corp Gas detecting device
US10416143B2 (en) 2015-03-27 2019-09-17 Google Llc Devices and methods for determining and acting upon cumulative exposure of a building occupant to a hazardous substance
US20190066479A1 (en) * 2015-11-19 2019-02-28 Halliburton Energy Services, Inc. Method and system for monitoring and predicting gas leak

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088733A1 (en) * 2014-12-01 2016-06-09 コニカミノルタ株式会社 Optical detection device
JPWO2016088733A1 (en) * 2014-12-01 2017-09-14 コニカミノルタ株式会社 Optical detector
CN106558195A (en) * 2015-09-28 2017-04-05 哈尔滨东方报警设备开发有限公司 A kind of solar radiation detecting alarm

Also Published As

Publication number Publication date
JPH0599778A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
US5430293A (en) Gas visualizing apparatus and method for detecting gas leakage from tanks or piping
JPH06288858A (en) Gas visualizer
JP3783019B2 (en) Gas leakage monitoring method and system
US8738324B2 (en) Method and system for determination of detection probability of a target object based on a range
JPH0711464B2 (en) Gas leak monitor
JP4268043B2 (en) High sensitivity particle detector
US8004660B2 (en) Method and system for determination of detection probability of a target object based on vibration
JP5936529B2 (en) Gas leak detection system
US20100251148A1 (en) User Interface for Laser Targeting System
CN205424432U (en) On -vehicle overhead type multiple beam laser natural gas leakage telegauge
JP3830050B2 (en) Method and apparatus for monitoring hydrogen gas and hydrogen flame
GB2426578A (en) A flame detector having a pulsing optical test source that simulates the frequency of a flame
US20020109096A1 (en) Fire detection sensors
EP0536586B1 (en) Gas visualizing apparatus and gas visualizing method
CN106768330B (en) A kind of flame detecting device based on spectrum
JP6071519B2 (en) Gas leak detection system
CN206248213U (en) A kind of flame detecting device based on spectrum
JP3296526B2 (en) Scanning fire detector
CN206096497U (en) Danger source detection system
JPH03170821A (en) Flame detecting method
JPH0599779A (en) Gas leakage monitoring device
JPH05142088A (en) Gas leakage detector
JPH04295738A (en) Gas-leakage detecting apparatus
CN1232177A (en) Optic method and apparatus for detection of gas
JPS6046433A (en) Apparatus for detecting flame