JPH0711454A - Method for chromating metal by coating - Google Patents

Method for chromating metal by coating

Info

Publication number
JPH0711454A
JPH0711454A JP15390593A JP15390593A JPH0711454A JP H0711454 A JPH0711454 A JP H0711454A JP 15390593 A JP15390593 A JP 15390593A JP 15390593 A JP15390593 A JP 15390593A JP H0711454 A JPH0711454 A JP H0711454A
Authority
JP
Japan
Prior art keywords
parts
corrosion resistance
trivalent
weight
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15390593A
Other languages
Japanese (ja)
Inventor
Toshio Odajima
壽男 小田島
Yoshihiro Kaneda
善弘 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15390593A priority Critical patent/JPH0711454A/en
Publication of JPH0711454A publication Critical patent/JPH0711454A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce various metals excellent in corrosion resistance and coating adhesion by chromating the metals by coating. CONSTITUTION:A chromating bath obtained by incorporating 2-20 pts.wt. of a long-chain colloidal silca having 2-20nm thickness and 25-250nm length, 7-35 pts.wt. of phosphoric acid and 3-10 pts.wt. of MgO into a bath where Cr(III)/(Cr(III)+Cr(V1))=0.4 to 1.0 and contg. 5-30 pts.wt. of total chromic acid is applied on various metals or alloys to remarkably improve their corrosion resistance. These effects are produced by the synergistic effect of the five components, and an excellent characteristic is not obtained even when one component is absent. The chromate film thus obtained is highly adhesive to a coating material, and hence the film is optimum as the backing of a coated steel sheet or further as the backing of various org. composite plated steel sheets.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属の表面処理法に関
するものであり、特に金属の耐蝕性及び有機皮膜との密
着性の向上をはかることを目的とするものである。本処
理方法によって得られた表面処理鋼板は優れた耐蝕性及
び有機皮膜との密着性を有することから各種家電用,建
材用,自動車用の耐蝕性素材として使用することができ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a surface of a metal, and particularly to improve the corrosion resistance of a metal and the adhesion to an organic film. The surface-treated steel sheet obtained by this treatment method has excellent corrosion resistance and adhesion to an organic film, and thus can be used as a corrosion-resistant material for various home appliances, building materials, and automobiles.

【0002】[0002]

【従来の技術】周知の如く、電気亜鉛めっき鋼板や溶融
めっき鋼板あるいは各種合金めっき鋼板が自動車,家
電,建材などに広く使用されている。こうした中で、近
年、特に耐蝕性に優れた表面処理鋼板に対する要求がま
すます強くなり、このような鋼板の需要は今後ますます
増加する傾向にある。例えば、家電業界では省工程、省
コストの観点から塗装を省略できる裸使用の可能な優れ
た耐蝕性を有する鋼板に対する要求がある。また、自動
車業界でも近年の環境の変化、例えば、北米、北欧での
冬の道路の凍結防止のために散布する岩塩による腐食、
また、工業地帯でのSO2 ガスの発生による酸性雨によ
る腐食など、車体は激しい腐食環境にさらされ安全上の
観点から優れた耐蝕性を有する表面処理鋼板が強く要求
されている。これら問題点を解決するため種々の検討が
なされ、多くの製品が開発されてきた。
As is well known, electrogalvanized steel sheets, hot-dip galvanized steel sheets, and various alloy-plated steel sheets are widely used in automobiles, home appliances, building materials and the like. Under these circumstances, the demand for surface-treated steel sheets having particularly excellent corrosion resistance has become stronger in recent years, and the demand for such steel sheets tends to increase in the future. For example, in the home electric appliance industry, there is a demand for a steel sheet having excellent corrosion resistance that can be used without a coating, from the viewpoint of process saving and cost saving. Also in the automobile industry, environmental changes in recent years, such as corrosion by rock salt sprayed to prevent freezing of winter roads in North America and Northern Europe,
Further, there is a strong demand for a surface-treated steel sheet having excellent corrosion resistance from the viewpoint of safety because the vehicle body is exposed to a severe corrosive environment such as corrosion due to acid rain due to generation of SO 2 gas in an industrial area. Various studies have been made to solve these problems, and many products have been developed.

【0003】これまで、鋼板の耐蝕性を向上するために
亜鉛めっきが行われてきた。亜鉛めっき鋼板は、亜鉛の
犠牲防食作用によって鋼板の腐食を防止するものであ
り、耐蝕性を得ようとすれば亜鉛付着量を増加しなけれ
ばならない。このため必要亜鉛量のコストアップ、ある
いは加工性、溶接性、生産性の低下等いくつかの問題点
がある。また、一般に亜鉛めっき鋼板は塗料密着性が悪
い。
Up to now, galvanizing has been carried out in order to improve the corrosion resistance of steel sheets. The galvanized steel sheet prevents corrosion of the steel sheet by the sacrificial anticorrosive action of zinc, and the zinc adhesion amount must be increased to obtain corrosion resistance. Therefore, there are some problems such as an increase in the cost of the required zinc amount, a reduction in workability, weldability, and productivity. In addition, galvanized steel sheets generally have poor paint adhesion.

【0004】このような亜鉛めっき鋼板の特に耐蝕性を
改善する方法として、各種合金めっき鋼板が開発されて
きた。これら合金めっき鋼板として、例えばZn−Ni
系,Zn−Ni−Co系,Zn−Ni−Cr系,Zn−
Fe系,Zn−Co系,Zn−Cr系,Zn−Mn系等
をあげることができる。これら合金めっきにより、通常
の亜鉛めっき鋼板に比べ裸の耐蝕性は約3〜5倍向上す
ることが認められる。しかし、それでも長期間屋外に放
置したり、水や塩水を噴霧すると白錆や赤錆が発生しや
すいことが問題である。
Various alloy-plated steel sheets have been developed as a method for improving the corrosion resistance of such galvanized steel sheets. As these alloy-plated steel sheets, for example, Zn-Ni
System, Zn-Ni-Co system, Zn-Ni-Cr system, Zn-
Examples thereof include Fe-based, Zn-Co-based, Zn-Cr-based, Zn-Mn-based, and the like. It is recognized that these alloy platings improve the bare corrosion resistance by about 3 to 5 times as compared with normal galvanized steel sheets. However, even if it is left outdoors for a long time or sprayed with water or salt water, there is a problem that white rust or red rust easily occurs.

【0005】これに対し、耐蝕性を改善するためにクロ
メート処理を施す方法が考えられる。また、最近の傾向
として耐蝕性をさらに改善するために、亜鉛系めっき鋼
板にクロメート処理し、その上に各種樹脂を塗布した、
いわゆる簡易プレコート鋼板(以下有機めっき鋼板と呼
ぶ)が開発され一部市販されている。こうした有機複合
めっき鋼板の下地用として用いるクロメート皮膜は当然
のことながら有機樹脂との密着性が優れていなければな
らない。各種めっき鋼板に対するクロメート処理も、す
でに公知のものが多く、種々のクロメート処理法が開発
され、プロパー化されている。
On the other hand, a method of performing chromate treatment in order to improve the corrosion resistance can be considered. In addition, as a recent tendency, in order to further improve the corrosion resistance, a zinc-based plated steel sheet is chromated and various resins are applied thereon.
A so-called simple pre-coated steel sheet (hereinafter referred to as an organic plated steel sheet) has been developed and is partially commercially available. As a matter of course, the chromate film used as a base for such an organic composite plated steel sheet must have excellent adhesion to an organic resin. Many chromate treatments for various plated steel sheets are already known, and various chromate treatment methods have been developed and made proper.

【0006】クロメート処理には大別して電解型と塗布
型クロメートとがある。電解型クロメートとしては例え
ばクロム酸を主成分とし、他に硫酸を添加したもの(特
公昭39−7461号公報)、リン酸を添加したもの
(特公昭30−3514号公報,特公昭35−8917
号公報,特公昭36−9559号公報,特公昭36−9
560号公報)、ホウ酸を添加したもの(米国特許第2
733199号,同第2780592号)、ハロゲン
(Cl- ,F- )を添加したもの(特公昭39−143
63号公報)等、各種陰イオンを添加した浴を用いて、
鋼板を陰極電解処理することが行われてきた。
The chromate treatment is roughly classified into electrolytic type and coating type chromate. Examples of the electrolytic chromate include, for example, chromic acid as a main component and sulfuric acid added thereto (Japanese Patent Publication No. 39-7461) and phosphoric acid added (Japanese Patent Publication Nos. 30-3514 and 35-8917).
Japanese Patent Publication No. 36-9559, Japanese Patent Publication No. 36-9
560), to which boric acid is added (US Pat. No. 2)
No. 733199, No. 2780592), and halogen (Cl , F ) added (Japanese Patent Publication No. 39-143).
63) and the like, using a bath to which various anions are added,
Cathodic electrolytic treatment of steel sheets has been performed.

【0007】塗布型クロメートとしては3価クロムを主
成分とする水溶性クロム化合物、無機コロイド化合物及
び無機アニオンを含有する酸性水溶液を塗布するもの
(特開昭63−218279号公報)、Cr6+の一部を
3価に還元したクロム酸にコロイド状シリカを混合して
処理するもの(特開昭63−243279号公報)、特
定還元率のクロム酸と特定割合のコロイド化合物及び無
機アニオンを混合した液を処理するもの(特開昭63−
178873号公報)、Cr6+/(Cr3++Cr 6+)比
を特定化したクロム酸及び無機コロイド化合物及び無機
アニオンを含む液で処理するもの、SiO2 及びPO4
2- を含み3価/全Crのモル比を規定したクロム酸水
溶液を処理するもの(特開平1−65272号公報)、
特定量の3価クロムイオンを含有する6価と3価のクロ
ムイオンに対し特定量のケイフッ化物とフッ化物の各ナ
トリウム塩を含有する液を処理するもの(特開平1−5
6879号公報)、特定量の3価クロムイオンを含有す
る6価と3価のクロムイオンに対して特定量のSiO2
を含有させた水溶液を処理するもの(特開平1−568
77号公報)、特定量の3価クロムイオン含有する6価
と3価のクロムイオンに対して特定量のケイフッ化アン
モニウムとシランカップリング剤を含有した液を処理し
たもの(特開平1−56878号公報)、クロムとシリ
カゾルとを特定割合含有し、Cr6+量とシリカゾル粒径
を特定した液を処理するもの(特開平2−104672
号公報)、特定割合のクロムイオン、リン酸、珪酸ゾル
を含有し、かつ、全クロムイオン中の6価クロムイオン
を特定した液を処理するもの(特開平2−85372号
公報)、クロム酸、無水コロイド化合物、シランカップ
リング剤を特定比で配合した液を処理するもの(特開平
3−146676号公報)、3価Cr/6価Crを特定
し、シリカゲル、リン酸、Znを含有させた液を処理す
る(特開平3−68783号公報)などをあげることが
できる。これらはいずれもある程度の耐蝕性を確保する
ことができるが、特に塗料密着性はかならずしも充分で
はない。
Trivalent chromium is mainly used as the coating type chromate.
Water-soluble chromium compounds, inorganic colloid compounds and
And acidic aqueous solution containing inorganic anion
(JP-A-63-218279), Cr6+Part of
Mixing colloidal silica with trivalent reduced chromic acid
What is processed (Japanese Patent Laid-Open No. 63-243279),
Chromic acid with a constant reduction rate and a specific proportion of colloidal compound and no
For treating a liquid mixed with organic anions (JP-A-63-
188373), Cr6+/ (Cr3++ Cr 6+)ratio
Chromic Acid and Inorganic Colloidal Compounds and Inorganic
What is treated with a liquid containing anions, SiO2And POFour
2-Water containing chromic acid containing trivalent / total Cr molar ratio
One that processes a solution (Japanese Patent Laid-Open No. 1-65272),
Hexavalent and trivalent chromium containing a specific amount of trivalent chromium ions
Specific amount of silicofluoride and fluoride
Treating a liquid containing thorium salt (Japanese Patent Laid-Open No. 1-5
6879), containing a specific amount of trivalent chromium ions.
Specific amount of SiO2 for hexavalent and trivalent chromium ions2
Which treats an aqueous solution containing (JP-A-1-568)
77), hexavalent containing a specific amount of trivalent chromium ions
And a specific amount of trifluorochromium ion
Treat the liquid containing monium and silane coupling agent
(Japanese Patent Laid-Open No. 1-56878), chrome and siri
Contains a specific proportion of kasol, Cr6+Amount and particle size of silica sol
Which treats the liquid specified in Japanese Patent Application Laid-Open No. 2-104672
Gazette), specific ratio of chromium ion, phosphoric acid, silicic acid sol
Hexavalent chromium ion in total chromium ion containing
Which treats the liquid specified in Japanese Patent Application Laid-Open No. 2-85372
Gazette), chromic acid, anhydrous colloidal compound, silane cup
Treatment of a liquid containing a ring agent in a specific ratio
3 to 146676 gazette) Trivalent Cr / 6 Hexavalent Cr specified
And treat the solution containing silica gel, phosphoric acid, and Zn.
(Japanese Patent Laid-Open No. 3-67883) and the like.
it can. All of these ensure a certain degree of corrosion resistance
However, the paint adhesion is not always sufficient.
There is no.

【0008】[0008]

【発明が解決しようとする課題】一般にZn系合金めっ
き鋼板に塗布型クロメート処理をすると下地からのZn
イオンの溶出によりZnイオンがクロメート皮膜中の6
価のCrを3価に変え、3価リッチのクロメート皮膜が
形成される。クロメート皮膜が3価リッチになると耐蝕
性はやや低下するものの塗料密着性は向上する傾向にあ
る。ところが、耐蝕性の優れた合金や、各種金属に塗布
型クロメートを処理すると耐蝕性が良いために下地から
のZnイオンの溶出が少ないため、6価Crが3価にな
る割合が少なくなるため優れた塗料密着性が確保しにく
い傾向がある。本発明は、上記従来の技術の欠点を解決
し、金属の耐蝕性を著しく向上し、かつ、極めて優れた
有機皮膜あるいは塗料との密着性を確保できるクロメー
ト処理法を提供することを目的とするものである。
Generally, when a Zn-based alloy-plated steel sheet is subjected to coating chromate treatment, Zn
Zn ions in the chromate film 6 due to the elution of ions
The trivalent Cr is changed to trivalent and a trivalent rich chromate film is formed. When the chromate film becomes trivalent rich, the corrosion resistance is slightly lowered but the paint adhesion tends to be improved. However, when alloys with excellent corrosion resistance or various metals are treated with coating type chromate, the corrosion resistance is good and the elution of Zn ions from the base is small, so the ratio of hexavalent Cr becoming trivalent is small, which is excellent. It tends to be difficult to secure paint adhesion. An object of the present invention is to provide a chromate treatment method which can solve the above-mentioned drawbacks of the conventional techniques, remarkably improve the corrosion resistance of metals, and can secure extremely excellent adhesion to an organic film or a coating material. It is a thing.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、6
価Crを特定の割合3価に還元した特殊なクロム酸浴に
特殊なコロイダルシリカとリン酸とMgOを特定量添加
して金属に塗布して特殊なクロメート皮膜をつくり、耐
蝕性を向上するとともに特に有機皮膜との密着性を著し
く向上させることにより、商品価値を著しく高めるもの
である。この優れた特性は、6価Crを特定の割合3価
に還元した特殊なクロム酸浴にコロイダルシリカのみを
含有せしめた場合、あるいはリン酸のみを添加した場
合、あるいはMgOのみを含有せしめた場合には得られ
ず、6価Crを特定の割合3価に還元した特殊なクロム
酸浴に特殊コロイダルシリカ、リン酸及びMgOを同時
に添加した場合にのみ極めて優れた耐蝕性及び有機皮膜
との密着性が得られることを見出した。一般に低級の有
機樹脂あるいは低温焼付け型あるいは常温乾燥型の塗料
では公知のクロメート皮膜とは密着性が良くないが、こ
れら有機樹脂あるいは塗料においても極めて優れた密着
性を確保することができる。以下各成分について特性が
どのように変化するか示す。
That is, the present invention provides 6
Add special amounts of special colloidal silica, phosphoric acid and MgO to a special chromic acid bath where trivalent Cr is reduced to a specific ratio of trivalent and apply it to metal to form a special chromate film to improve corrosion resistance. In particular, the product value is remarkably enhanced by remarkably improving the adhesion to the organic film. This excellent property is obtained when only a colloidal silica is contained in a special chromic acid bath in which hexavalent Cr is reduced to a specific ratio of trivalent, or when only phosphoric acid is added, or when only MgO is contained. It is not possible to obtain, and it is extremely excellent in corrosion resistance and adhesion to organic film only when special colloidal silica, phosphoric acid and MgO are simultaneously added to a special chromic acid bath in which hexavalent Cr is reduced to a specific ratio of trivalent. It was found that the property can be obtained. Generally, a low-grade organic resin or a low temperature baking type or a room temperature drying type paint does not have good adhesion with a known chromate film, but even with these organic resins or paints, excellent adhesion can be secured. The characteristics of each component will be described below.

【0010】[0010]

【作用】図1はクロム酸の6価Crを3価に還元した場
合の鋼板の耐蝕性を、図2は塗膜との密着性を示したも
のである。すなわち、Zn−Ni系合金めっき鋼板(目
付量:20g/m2 ,Ni=13.1%)に太さが8〜
10nmで長さが100〜120nmの長鎖状コロイダ
ルシリカ10部(以下重量部で示す)、リン酸20部、
MgO3部の浴に全クロム酸20部で3価Cr/(全ク
ロム酸=3価Cr+6価Cr)を種々の割合で変えた場
合の耐蝕性を図1に示し、得られたクロメート皮膜上に
メラミン系塗料を焼付け後20μとなるようにスプレー
塗装した場合の塗料密着性を図2に示す。図3はクロム
酸の濃度を変えた場合の鋼板の耐蝕性を、図4は塗膜と
の密着性を示したものである。
FIG. 1 shows the corrosion resistance of a steel sheet when hexavalent Cr of chromic acid is reduced to trivalent, and FIG. 2 shows the adhesion with a coating film. That is, a Zn-Ni alloy plated steel sheet (basis weight: 20 g / m 2 , Ni = 13.1%) has a thickness of 8 to
10 parts of long-chain colloidal silica having a length of 10 nm and a length of 100 to 120 nm (hereinafter referred to as parts by weight), phosphoric acid 20 parts,
Corrosion resistance when changing the trivalent Cr / (total chromic acid = trivalent Cr + hexavalent Cr) with 20 parts of total chromic acid in a bath of 3 parts of MgO is shown in Fig. 1, and on the obtained chromate film FIG. 2 shows the paint adhesion when the melamine-based paint is spray-coated so as to have a thickness of 20 μ after baking. FIG. 3 shows the corrosion resistance of the steel sheet when the concentration of chromic acid was changed, and FIG. 4 shows the adhesion with the coating film.

【0011】すなわち、Zn−Ni系合金めっき鋼板
(目付量:20g/m2 ,Ni=13.1%)に太さが
8〜10nmで長さが100〜120nmの長鎖状コロ
イダルシリカ10部(以下重量部)リン酸20部、Mg
O3部の浴に3価Cr/(全クロム酸=3価Cr+6価
Cr)=0.5と固定し、全クロム酸を種々の割合で変
えた場合の耐蝕性を図3に示し、得られたクロメート皮
膜上にメラミン系塗料を焼付け後20μとなるようにス
プレー塗装した場合の塗料密着性を図4に示す。図5は
長鎖状コロイダルシリカの濃度を変えた場合の鋼板の耐
蝕性を、図6は塗膜との密着性を示したものである。
That is, 10 parts of long-chain colloidal silica having a thickness of 8 to 10 nm and a length of 100 to 120 nm on a Zn-Ni alloy plated steel sheet (basis weight: 20 g / m 2 , Ni = 13.1%). (Parts by weight hereinafter) phosphoric acid 20 parts, Mg
Corrosion resistance obtained by fixing trivalent Cr / (total chromic acid = trivalent Cr + hexavalent Cr) = 0.5 in a bath of O3 and changing total chromic acid at various ratios is shown in FIG. FIG. 4 shows the paint adhesion when the melamine-based paint was baked on the chromate film and spray-coated so as to have a thickness of 20 μm. FIG. 5 shows the corrosion resistance of the steel sheet when the concentration of the long-chain colloidal silica was changed, and FIG. 6 shows the adhesion with the coating film.

【0012】すなわち、Zn−Ni系合金めっき鋼板
(目付量:20g/m2 ,Ni=13.1%)に全クロ
ム酸20部、3価Cr/(全クロム酸=3価Cr+6価
Cr)=0.5、リン酸20部、MgO3部の浴に太さ
が8〜10nmで長さが100〜120nmの長鎖状の
コロイダルシリカを種々の割合で添加した浴をロールで
塗布した場合の耐蝕性を図5に示し、得られたクロメー
ト皮膜上にメラミン系塗料を焼付け後20μとなるよう
にスプレー塗装した場合の塗料密着性を図6に示す。図
7は長鎖状コロイダルシリカの長さを変えた場合の鋼板
の耐蝕性を、図8は塗膜との密着性を示したものであ
る。
That is, 20 parts of total chromic acid on Zn-Ni alloy plated steel sheet (weight per unit area: 20 g / m 2 , Ni = 13.1%), trivalent Cr / (total chromic acid = trivalent Cr + hexavalent Cr) = 0.5, phosphoric acid 20 parts, and MgO 3 parts in a case where a long-chain colloidal silica having a thickness of 8 to 10 nm and a length of 100 to 120 nm is added in various proportions by coating with a roll. FIG. 5 shows the corrosion resistance, and FIG. 6 shows the paint adhesion when the resulting chromate film is spray-coated so as to have a thickness of 20 μm after baking. FIG. 7 shows the corrosion resistance of the steel sheet when the length of the long-chain colloidal silica was changed, and FIG. 8 shows the adhesion with the coating film.

【0013】すなわち、Zn−Ni系合金めっき鋼板
(目付量:20g/m2 ,Ni=13.1%)に全クロ
ム酸20部、3価Cr/(全クロム酸=3価Cr+6価
Cr)=0.5、リン酸20部、MgO3部の浴に太さ
が8〜10nmで長さを種々変えた長鎖状コロイダルシ
リカを10部添加した浴をロールで塗布した場合の耐蝕
性を図7に示し、得られたクロメート皮膜上にメラミン
系塗料を焼付け後20μとなるようにスプレー塗装した
場合の塗料密着性を図8に示す。図9は長鎖状コロイダ
ルシリカの太さを変えた場合の鋼板の耐蝕性を、図10
は塗膜との密着性を示したものである。
That is, total chromic acid 20 parts, trivalent Cr / (total chromic acid = trivalent Cr + hexavalent Cr) on Zn-Ni alloy plated steel sheet (basis weight: 20 g / m 2 , Ni = 13.1%). = 0.5, phosphoric acid 20 parts, MgO 3 parts bath with 10 to 10 parts of long-chain colloidal silica having a thickness of 8 to 10 nm and various lengths is applied. 7 shows the adhesiveness of the paint when a melamine-based paint was baked on the obtained chromate film and then spray-coated so as to have a thickness of 20 μm. FIG. 9 shows the corrosion resistance of the steel plate when the thickness of the long-chain colloidal silica is changed, and FIG.
Indicates the adhesion to the coating film.

【0014】すなわち、Zn−Ni系合金めっき鋼板
(目付量:20g/m2 ,Ni=13.1%)に全クロ
ム酸20部、3価Cr/(全クロム酸=3価Cr+6価
Cr)=0.5、リン酸20部、MgO3部の浴に長さ
が100〜120nmで太さを種々変えた長鎖状コロイ
ダルシリカを10部添加した浴をロールで塗布した場合
の耐蝕性を図9に示し、得られたクロメート皮膜上にメ
ラミン系塗料を焼付け後20μとなるようにスプレー塗
装した場合の塗料密着性を図10に示す。図11は粒状
コロイダルシリカの粒径を変えた場合の鋼板の耐蝕性
を、図12は塗膜との密着性を示す。
That is, 20 parts of total chromic acid on Zn-Ni alloy plated steel sheet (weight per unit area: 20 g / m 2 , Ni = 13.1%), trivalent Cr / (total chromic acid = trivalent Cr + hexavalent Cr) = 0.5, phosphoric acid 20 parts, MgO 3 parts bath with a length of 100 to 120 nm and 10 parts of long-chain colloidal silica with various thicknesses added, and the corrosion resistance when applied by a roll. 9 shows the adhesion of the paint when a melamine-based paint was baked on the obtained chromate film and then spray-painted to a thickness of 20 μm. FIG. 11 shows the corrosion resistance of the steel sheet when the particle size of the granular colloidal silica was changed, and FIG. 12 shows the adhesion with the coating film.

【0015】すなわち、Zn−Ni系合金めっき鋼板
(目付量:20g/m2 ,Ni=13.1%)に全クロ
ム酸20部、3価Cr/(全クロム酸=3価Cr+6価
Cr)=0.5、リン酸20部、MgO3部の浴に粒径
の異なる粒状コロイダルシリカを10部添加した浴をロ
ールで塗布した場合の耐蝕性を図11に示し、得られた
クロメート皮膜上にメラミン系塗料を焼付け後20μと
なるようにスプレー塗装した場合の塗料密着性を図12
に示す。図13はリン酸の濃度を変えた場合の鋼板の耐
蝕性を、図14は塗膜との密着性を示したものである。
That is, 20 parts of total chromic acid on Zn-Ni alloy plated steel sheet (weight per unit area: 20 g / m 2 , Ni = 13.1%), trivalent Cr / (total chromic acid = trivalent Cr + hexavalent Cr) = 0.5, phosphoric acid 20 parts, and MgO 3 parts, the corrosion resistance of a bath in which 10 parts of granular colloidal silica having different particle diameters are added by a roll is shown in FIG. Fig. 12 shows the paint adhesion when spray coating the melamine-based paint to 20μ after baking.
Shown in. FIG. 13 shows the corrosion resistance of the steel sheet when the concentration of phosphoric acid was changed, and FIG. 14 shows the adhesion with the coating film.

【0016】すなわち、Zn−Ni系合金めっき鋼板
(目付量:20g/m2 ,Ni=13.1%)に全クロ
ム酸20部、3価Cr/(全クロム酸=3価Cr+6価
Cr)=0.5、太さが8〜10nmで長さが100〜
120nmの長鎖状コロイダルシリカ10部、MgO3
部に固定した浴にリン酸の濃度を種々の割合で添加した
浴をロールで塗布した場合の耐蝕性を図13に示し、得
られたクロメート皮膜上にメラミン系塗料を焼付け後2
0μとなるようにスプレー塗装した場合の塗料密着性を
図14に示す。図15はMgOの濃度を変えた場合の鋼
板の耐蝕性を、図16は塗膜との密着性を示したもので
ある。
That is, 20 parts of total chromic acid on Zn-Ni alloy plated steel sheet (basis weight: 20 g / m 2 , Ni = 13.1%), trivalent Cr / (total chromic acid = trivalent Cr + hexavalent Cr) = 0.5, the thickness is 8 to 10 nm, and the length is 100 to
10 parts of long-chain colloidal silica of 120 nm, MgO3
Fig. 13 shows the corrosion resistance of a bath fixed with various concentrations of phosphoric acid at various ratios applied by a roll, and after the melamine-based paint was baked on the obtained chromate film, 2
FIG. 14 shows the paint adhesion when spray coating is performed so as to obtain 0 μ. FIG. 15 shows the corrosion resistance of the steel sheet when the concentration of MgO was changed, and FIG. 16 shows the adhesion with the coating film.

【0017】すなわち、Zn−Ni系合金めっき鋼板
(目付量:20g/m2 ,Ni=13.1%)に全クロ
ム酸20部、3価Cr/(全クロム酸=3価Cr+6価
Cr)=0.5、太さが8〜10nmで長さが100〜
120nmの長鎖状コロイダルシリカ10部、リン酸2
0部に固定した浴にMgOの濃度を種々の割合で添加し
た浴をロールで塗布した場合の耐蝕性を図15に示し、
得られたクロメート皮膜上にメラミン系塗料を焼付け後
20μとなるようにスプレー塗装した場合の塗料密着性
を図16に示す。
That is, 20 parts of total chromic acid on Zn-Ni alloy-plated steel sheet (basis weight: 20 g / m 2 , Ni = 13.1%), trivalent Cr / (total chromic acid = trivalent Cr + hexavalent Cr) = 0.5, the thickness is 8 to 10 nm, and the length is 100 to
10 parts of 120 nm long-chain colloidal silica, phosphoric acid 2
FIG. 15 shows the corrosion resistance in the case where a bath having various concentrations of MgO added to a bath fixed at 0 part was coated with a roll,
FIG. 16 shows the paint adhesion when a melamine-based paint is baked on the obtained chromate film and then spray-painted to a thickness of 20 μm.

【0018】ここで、耐蝕性はJIS−Z−2371規
格に準拠した塩水噴霧試験により(食塩水濃度5%,槽
内温度35℃,噴霧圧力20psi)1000時間後の
発錆状況を示し、◎,○,△,×,××の5段階で評価
し、◎が最良である。 ◎:赤錆発生率 0% ○: 〃 0超〜1% △: 〃 1超〜10% ×: 〃 10超〜50% ××: 〃 50%超
Here, the corrosion resistance indicates a rusting condition after 1000 hours by a salt spray test according to JIS-Z-2371 standard (concentration of salt solution 5%, bath temperature 35 ° C., spray pressure 20 psi). , ○, △, ×, XX is evaluated in 5 stages, and ◎ is the best. ◎: Red rust occurrence rate 0% ○: 〃 more than 0 to 1% △: 〃 more than 1 to 10% ×: 〃 more than 10 to 50% XX: more than 50%

【0019】塗料との密着性は得られたクロメート皮膜
上に低温焼付け型(焼付け温度:110℃)のメラミン
系塗料を焼付け後20μとなるようにスプレー塗装し、
その後沸騰水に1h浸漬し2mmゴバン目に皮膜をカッ
トしテープ剥離し、剥離面積で評価した。 ◎:剥離面積 0% ○: 〃 0超〜1% △: 〃 1超〜10% ×: 〃 10超〜50% ××: 〃 50%超
Adhesion with the paint was spray-coated with a low-temperature baking type (baking temperature: 110 ° C.) melamine-based paint on the obtained chromate film so as to be 20 μm after baking,
Thereafter, the film was immersed in boiling water for 1 h, the film was cut on a 2 mm goggle, the tape was peeled off, and the peeled area was evaluated. ◎: Peeling area 0% ○: 〃 more than 0 to 1% △: 〃 more than 1 to 10% ×: 〃 more than 10 to 50% XX: more than 50%

【0020】図1から明らかなように3価Cr/(3価
Cr+6価Cr)の値は耐蝕性には直接影響を与えな
い。図2から明らかなように3価Cr/(3価Cr+6
価Cr)の値は塗料密着性に影響を与え、3価Cr/
(3価Cr+6価Cr)の値が0.4以上及び1.0以
下で優れた塗料密着性を示す。ここで、1.0は6価C
rが0(ゼロ)の場合を意味する。これに対し、0.4
未満では塗料密着性は低下する傾向にある。図3から明
らかなようにクロム酸の濃度は耐蝕性に影響を与え5部
以上〜30部以下では優れた耐蝕性が得られ、5部未満
及び30部超で耐蝕性は低下する。
As is apparent from FIG. 1, the value of trivalent Cr / (trivalent Cr + hexavalent Cr) does not directly affect the corrosion resistance. As is clear from FIG. 2, trivalent Cr / (trivalent Cr + 6
The value of (valent Cr) affects the adhesiveness of the paint, and the value of trivalent Cr /
When the value of (trivalent Cr + hexavalent Cr) is 0.4 or more and 1.0 or less, excellent paint adhesion is exhibited. Here, 1.0 is hexavalent C
This means that r is 0 (zero). On the other hand, 0.4
If it is less than 100%, the paint adhesion tends to decrease. As is clear from FIG. 3, the concentration of chromic acid affects the corrosion resistance, and excellent corrosion resistance is obtained at 5 parts or more and 30 parts or less, and the corrosion resistance decreases at less than 5 parts or more than 30 parts.

【0021】図4から明らかなようにクロム酸の濃度は
塗料密着性にも影響を与え、5部以上〜30部以下で優
れた塗料密着性を示し、5部未満及び30部超で低下す
る。図5から明らかなように長鎖状コロイダルシリカの
添加量は耐蝕性に影響を与え、2部以上〜20部以下で
優れた耐蝕性を示し、2部未満及び20部超で耐蝕性は
低下する傾向にある。図6から明らかなように長鎖状コ
ロイダルシリカの添加量は塗料密着性にも影響を与え2
部以上〜20部以下で優れた塗料密着性を示し、2部未
満及び20部超で低下する傾向にある。
As is clear from FIG. 4, the concentration of chromic acid also affects the coating adhesion and shows excellent coating adhesion at 5 parts or more and 30 parts or less, and decreases at less than 5 parts or more than 30 parts. . As is apparent from FIG. 5, the amount of long-chain colloidal silica added affects the corrosion resistance, and excellent corrosion resistance is exhibited at 2 parts or more and 20 parts or less, and the corrosion resistance decreases at less than 2 parts or more than 20 parts. Tend to do. As is clear from FIG. 6, the amount of long-chain colloidal silica added affects the paint adhesion.
When the amount is from 1 part to 20 parts, excellent paint adhesion is exhibited, and when it is less than 2 parts and more than 20 parts, it tends to decrease.

【0022】図7から明らかなように長鎖状コロイダル
シリカの長さは耐蝕性に影響を与え、25nm以上〜2
50nm以下では優れた耐蝕性を示し、25nm未満及
び250nm超では耐蝕性は低下する傾向にある。図8
から明らかなように長鎖状コロイダルシリカの長さは塗
料密着性に影響を与え、25nm以上〜250nm以下
で優れた塗料密着性を示し、25nm未満及び250n
m超では低下する傾向にある。図9から明らかなように
長鎖状コロイダルシリカの太さも耐蝕性に影響を与え、
2nm以上〜20nm以下では優れた耐蝕性を示し、2
nm未満及び20nm超では耐蝕性は次第に低下する。
As is clear from FIG. 7, the length of the long-chain colloidal silica affects the corrosion resistance, and is 25 nm or more to 2 or more.
When the thickness is 50 nm or less, excellent corrosion resistance is exhibited, and when it is less than 25 nm or more than 250 nm, the corrosion resistance tends to decrease. Figure 8
As is clear from the above, the length of the long-chain colloidal silica has an influence on the coating adhesion, and shows excellent coating adhesion at 25 nm or more and 250 nm or less, less than 25 nm and 250 n.
If it exceeds m, it tends to decrease. As is clear from FIG. 9, the thickness of the long-chain colloidal silica also affects the corrosion resistance,
Excellent corrosion resistance is exhibited at 2 nm or more and 20 nm or less.
When the thickness is less than 20 nm and exceeds 20 nm, the corrosion resistance gradually decreases.

【0023】図10から明らかなように長鎖状コロイダ
ルシリカの太さは塗料密着性に影響を与え、2nm以上
〜20nm以下で優れた塗料密着性を示し、2nm未満
及び20nm超で低下する。図11から明らかなように
球状コロイダルシリカの粒径は耐蝕性に影響を与え粒径
が小さいほど耐蝕性は向上する傾向にあるが、全体的に
長鎖状コロイダルシリカに対し耐蝕性は低い。図12か
ら明らかなように球状コロイダルシリカの粒径は塗料密
着性にも影響を与え、粒径が小さいほど塗料密着性は向
上するが、全体として長鎖状コロイダルシリカに比べ塗
料密着性は低い。
As is apparent from FIG. 10, the thickness of the long-chain colloidal silica has an influence on the coating adhesion and shows excellent coating adhesion at 2 nm to 20 nm, and decreases at less than 2 nm and more than 20 nm. As is clear from FIG. 11, the particle size of the spherical colloidal silica affects the corrosion resistance and the smaller the particle size, the more the corrosion resistance tends to improve, but the corrosion resistance is lower than that of the long chain colloidal silica as a whole. As is clear from FIG. 12, the particle size of the spherical colloidal silica also affects the paint adhesion, and the smaller the particle size, the better the paint adhesion, but the paint adhesion is generally lower than that of the long-chain colloidal silica. .

【0024】図13から明らかなようにリン酸の添加量
は耐蝕性に影響を与え、7部以上〜35部以下で優れた
耐蝕性を示し、7部未満及び35部超で耐蝕性は低下す
る。図14から明らかなようにリン酸の添加量は塗料密
着性にも影響を与え、7部以上〜35部以下で優れた塗
料密着性を示し、7部未満及び35部超で塗料密着性は
低下する。図15から明らかなようにMgOの添加量は
耐蝕性に影響を与え、2部以上で優れた耐蝕性を示す。
図16から明らかなようにMgOの添加量は塗料密着性
にも影響を与え、1部以上で優れた塗料密着性を示す。
以上の結果、MgOの最適添加量は下限は耐蝕性と有機
皮膜の密着性を同時に満足する2以上とし、上限は特に
制限はないが経済的な観点から10部以下とする。
As is clear from FIG. 13, the amount of phosphoric acid added affects the corrosion resistance, showing excellent corrosion resistance at 7 parts or more and 35 parts or less, and decreasing corrosion resistance at less than 7 parts or more than 35 parts. To do. As is clear from FIG. 14, the addition amount of phosphoric acid also influences the paint adhesion, showing excellent paint adhesion at 7 parts or more and 35 parts or less, and the paint adhesion at less than 7 parts or more than 35 parts. descend. As is clear from FIG. 15, the added amount of MgO affects the corrosion resistance, and excellent corrosion resistance is exhibited at 2 parts or more.
As is clear from FIG. 16, the addition amount of MgO also affects the paint adhesion, and shows excellent paint adhesion at 1 part or more.
As a result of the above, the optimum addition amount of MgO is at least 2 which satisfies the corrosion resistance and the adhesion of the organic film at the same time, and the upper limit is not particularly limited but is 10 parts or less from the economical viewpoint.

【0025】以上の結果から明らかなように最適成分と
しては次の通りである。 クロム酸 5〜30重量部 3価Cr/(3価Cr+6価Cr) 0.4〜1.0 長鎖状コロイダルシリカ(太さ:2〜20nm, 2〜20重量部 長さ:25〜250nm) リン酸 7〜35 〃 MgO 2〜10重量部
As is clear from the above results, the optimum components are as follows. Chromic acid 5 to 30 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.4 to 1.0 Long chain colloidal silica (thickness: 2 to 20 nm, 2 to 20 parts by weight Length: 25 to 250 nm) Phosphoric acid 7 to 35 〃 MgO 2 to 10 parts by weight

【0026】本浴組成の浴を適当に希釈し、各種金属に
塗布することにより極めて優れた耐蝕性を確保すること
ができるとともに、特に低級な有機樹脂あるいは低温乾
燥型及び常温乾燥型等の低級塗料に対しても著しく優れ
た塗料密着性を確保することができる。ここで、本処理
によって優れた耐蝕性を確保できるのはクロム酸により
形成される緻密な不働態皮膜とコロイダルシリカ及びM
gOによる腐食物を安定化し、バリアー層を形成する不
働態化作用と、長鎖状コロイダルシリカによる強固な造
膜性によって確保されるものと推察される。
By appropriately diluting the bath of the present bath composition and applying it to various metals, extremely excellent corrosion resistance can be secured, and particularly low-grade organic resin or low-grade dry type and normal temperature dry type It is possible to secure remarkably excellent paint adhesion to paints. Here, the excellent corrosion resistance can be ensured by this treatment because of the dense passivation film formed of chromic acid, colloidal silica and M.
It is presumed that it is ensured by the passivation effect of stabilizing the corrosive substance by gO and forming the barrier layer, and the strong film-forming property of the long-chain colloidal silica.

【0027】また、優れた塗料密着性を確保できるのは
3価Crと6価Crを特定の割合にすることにより3価
CrのOH基が最適割合になることと、長鎖状コロイダ
ルシリカの有するOH基とが相乗効果を示すこと、及び
PO4 2- 基との相互作用によるものと考えられる。ここ
で、合金めっき鋼板としては例えばZn−Ni系,Zn
−Ni−Co系,Zn−Ni−Cr系,Zn−Fe系,
Zn−Co系,Zn−Cr系,Zn−Mn系などをあげ
ることができ、また、Zn,Ni,Sn,Cu等の準金
属に直接使用することもできる。
Further, excellent paint adhesion can be ensured by adjusting the trivalent Cr and the hexavalent Cr to a specific ratio so that the OH group of the trivalent Cr becomes an optimum ratio and that the long chain colloidal silica has It is considered that this is due to the fact that it has a synergistic effect with the OH group and that it has an interaction with the PO 4 2− group. Here, as the alloy-plated steel sheet, for example, Zn-Ni system, Zn
-Ni-Co system, Zn-Ni-Cr system, Zn-Fe system,
Examples thereof include Zn-Co type, Zn-Cr type, Zn-Mn type and the like, and they can also be directly used for quasi metals such as Zn, Ni, Sn and Cu.

【0028】また、塗布方法についてもロール塗布ある
いはスプレー後ロールで絞るなどいずれの方法を用いて
も差し支えない。本結果では例としてメラミン系塗料の
結果について示したが、有機樹脂との密着性が極めて優
れていることから本クロメート処理後各種樹脂を塗布
し、有機複合鋼板の下地用として使用することも可能で
ある。
Further, as a coating method, any method such as roll coating or spraying and then squeezing with a roll may be used. In this result, the result of melamine-based paint was shown as an example, but it is also possible to apply various resins after this chromate treatment and use it as a base for organic composite steel sheet because of its excellent adhesion to organic resin. Is.

【0029】すなわち、本クロメート処理後ポリアクリ
ル酸エステル、オレフィン/アクリル酸共重合体樹脂、
ポリメタクリル酸及びその共重合体樹脂、ポリメタクリ
ル酸エステル及びその共重合体樹脂、ポリアクリル酸及
びその共重合体樹脂、ポリアクリル酸エステル及びその
共重合体樹脂、アクリル変性エポキシ樹脂、エステル変
性エポキシ樹脂、アクリル変性エポキシエステル樹脂、
エステル樹脂、エポキシ樹脂ウレタン変性エポキシ樹
脂、メラミン樹脂をはじめとする各種水系及び溶剤系樹
脂等いずれの有機樹脂とも優れた密着性が確保される。
したがって、有機樹脂との密着性が優れていることか
ら、本クロメート皮膜に上記有機皮膜を形成し、有機複
合めっき鋼板を形成することも出来るし、また、直接E
D塗装したり、あるいはスプレー塗装した場合の塗膜と
の密着性に優れていることから、塗装鋼板の下地用とし
ても最適である。
That is, after this chromate treatment, polyacrylic acid ester, olefin / acrylic acid copolymer resin,
Polymethacrylic acid and its copolymer resin, polymethacrylic acid ester and its copolymer resin, polyacrylic acid and its copolymer resin, polyacrylic acid ester and its copolymer resin, acrylic modified epoxy resin, ester modified epoxy Resin, acrylic modified epoxy ester resin,
Excellent adhesion is secured with any organic resin such as ester resin, epoxy resin, urethane-modified epoxy resin, and various water-based and solvent-based resins such as melamine resin.
Therefore, it is possible to form an organic composite plated steel sheet by forming the above organic film on the present chromate film because of its excellent adhesion to the organic resin, and it is also possible to directly form E
Since it has excellent adhesion to the coating film when it is D-painted or spray-painted, it is also most suitable as a base for coated steel sheets.

【0030】[0030]

【実施例】以下本発明の実施例を比較例と共に示す。 実施例1 Zn−Ni系合金めっき鋼板(目付量:20g/m2
Ni=13.5%)に次の浴成分でロール塗布しCr付
着量が43mg/m2 となるように処理した。 浴成分 クロム酸 10重量部 3価Cr/(3価Cr+6価Cr) 0.6 長鎖状コロイダルシリカ(太さ:8〜10nm, 5重量部 長さ:100〜120nm) リン酸 15重量部 MgO 3重量部
EXAMPLES Examples of the present invention will be shown below together with comparative examples. Example 1 Zn-Ni alloy plated steel sheet (Basis weight: 20 g / m 2 ,
Ni = 13.5%) was roll-coated with the following bath components and treated so that the Cr adhesion amount was 43 mg / m 2 . Bath component Chromic acid 10 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.6 Long chain colloidal silica (thickness: 8 to 10 nm, 5 parts by weight Length: 100 to 120 nm) Phosphoric acid 15 parts by weight MgO 3 parts by weight

【0031】実施例2 Zn−Fe系合金めっき鋼板(目付量:20g/m2
Fe=12.2%)に次の浴成分でロール塗布しCr付
着量が48mg/m2 となるように処理した。 浴成分 クロム酸 20重量部 3価Cr/(3価Cr+6価Cr) 0.9 長鎖状コロイダルシリカ(太さ:8〜10nm, 18重量部 長さ:150〜170nm) リン酸 30重量部 MgO 4重量部
Example 2 Zn-Fe alloy plated steel sheet (Basis weight: 20 g / m 2 ,
(Fe = 12.2%) was roll-coated with the following bath components and treated so that the Cr deposition amount was 48 mg / m 2 . Bath component Chromic acid 20 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.9 Long chain colloidal silica (thickness: 8 to 10 nm, 18 parts by weight Length: 150 to 170 nm) Phosphoric acid 30 parts by weight MgO 4 parts by weight

【0032】実施例3 Zn−Al系合金めっき鋼板(目付量:35g/m2
Al=4.9%)に次の浴成分でロール塗布し、Cr付
着量が55mg/m2 となるように処理した。 浴成分 クロム酸 25重量部 3価Cr/(3価Cr+6価Cr) 0.45 長鎖状コロイダルシリカ(太さ:14〜16nm, 10重量部 長さ:230〜250nm) リン酸 32重量部 MgO 3重量部
Example 3 Zn-Al alloy plated steel sheet (Basis weight: 35 g / m 2 ,
Al = 4.9%) was roll-coated with the following bath components, and treated so that the Cr adhesion amount was 55 mg / m 2 . Bath component Chromic acid 25 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.45 Long chain colloidal silica (thickness: 14 to 16 nm, 10 parts by weight Length: 230 to 250 nm) Phosphoric acid 32 parts by weight MgO 3 parts by weight

【0033】実施例4 Zn−Cr系合金めっき鋼板(目付量:20g/m2
Cr=11.5%)に次の浴成分でロール塗布しCr付
着量が51mg/m2 となるように処理した。 浴成分 クロム酸 10重量部 3価Cr/(3価Cr+6価Cr) 0.95 長鎖状コロイダルシリカ(太さ:4〜6nm, 15重量部 長さ:60〜80nm) リン酸 10重量部 MgO 3重量部
Example 4 Zn-Cr alloy-plated steel sheet (weight per unit area: 20 g / m 2 ,
(Cr = 11.5%) was roll-coated with the following bath components and treated so that the Cr adhesion amount was 51 mg / m 2 . Bath component Chromic acid 10 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.95 Long chain colloidal silica (thickness: 4 to 6 nm, 15 parts by weight Length: 60 to 80 nm) Phosphoric acid 10 parts by weight MgO 3 parts by weight

【0034】実施例5 Zn−Mn系合金めっき鋼板(目付量:20g/m2
Mn=40.8%)に次の浴成分でロール塗布しCr付
着量が58mg/m2 となるように処理した。 浴成分 クロム酸 15重量部 3価Cr/(3価Cr+6価Cr) 0.60 長鎖状コロイダルシリカ(太さ:16〜18nm, 18重量部 長さ:150〜170nm) リン酸 15重量部 MgO 5重量部
Example 5 Zn-Mn alloy plated steel sheet (Basis weight: 20 g / m 2 ,
(Mn = 40.8%) was roll-coated with the following bath components and treated so that the Cr deposition amount was 58 mg / m 2 . Bath component Chromic acid 15 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.60 Long chain colloidal silica (thickness: 16 to 18 nm, 18 parts by weight Length: 150 to 170 nm) Phosphoric acid 15 parts by weight MgO 5 parts by weight

【0035】実施例6 Zn−Ni−Co系合金めっき鋼板(目付量:20g/
2 ,Ni=12.5%,Co=0.9%)に次の浴成
分でロール塗布し、Cr付着量が52mg/m 2 となる
ように処理した。 浴成分 クロム酸 13重量部 3価Cr/(3価Cr+6価Cr) 0.75 長鎖状コロイダルシリカ(太さ:10〜12nm, 17重量部 長さ:130〜150nm) リン酸 30重量部 MgO 3重量部
Example 6 Zn-Ni-Co alloy-plated steel sheet (weight per unit area: 20 g /
m2 , Ni = 12.5%, Co = 0.9%)
Minute roll coating, Cr adhesion amount is 52mg / m 2 Becomes
Was treated as Bath component Chromic acid 13 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.75 Long chain colloidal silica (thickness: 10 to 12 nm, 17 parts by weight Length: 130 to 150 nm) Phosphoric acid 30 parts by weight MgO 3 parts by weight

【0036】実施例7 Zn−Ni−Cr系合金めっき鋼板(目付量:20g/
2 ,Ni=0.7%,Cr=12.3%)に次の浴成
分でロール塗布し、Cr付着量が57mg/m 2 となる
ように処理した。 浴成分 クロム酸 25重量部 3価Cr/(3価Cr+6価Cr) 0.50 長鎖状コロイダルシリカ(太さ:2〜4nm, 10重量部 長さ:30〜50nm) リン酸 23重量部 MgO 3重量部
Example 7 Zn-Ni-Cr alloy-plated steel sheet (Basis weight: 20 g /
m2 , Ni = 0.7%, Cr = 12.3%)
Minute roll coating, Cr adhesion amount is 57mg / m 2 Becomes
Was treated as Bath component Chromic acid 25 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.50 Long chain colloidal silica (thickness: 2 to 4 nm, 10 parts by weight Length: 30 to 50 nm) Phosphoric acid 23 parts by weight MgO 3 parts by weight

【0037】比較例1 Zn−Ni系合金めっき鋼板(Ni=11.8%)に次
の浴成分でロールで塗布し、Cr付着量が50mg/m
2 となるように処理した。 浴成分 クロム酸 15重量部 リン酸 20重量部
Comparative Example 1 A Zn-Ni alloy-plated steel sheet (Ni = 11.8%) was coated with the following bath components by a roll, and the Cr deposition amount was 50 mg / m.
Processed to be 2 . Bath components Chromic acid 15 parts by weight Phosphoric acid 20 parts by weight

【0038】比較例2 Zn−Ni系合金めっき鋼板(Ni=13.4%)に次
の浴成分でロールで塗布し、Cr付着量が46mg/m
2 となるように処理した。 浴成分 クロム酸 25重量部 粒状コロイダルシリカ(粒径:8〜10μ) 15重量部
Comparative Example 2 A Zn-Ni alloy-plated steel sheet (Ni = 13.4%) was coated with the following bath components by a roll, and the Cr deposition amount was 46 mg / m.
Processed to be 2 . Bath component Chromic acid 25 parts by weight Granular colloidal silica (particle size: 8 to 10 μ) 15 parts by weight

【0039】比較例3 Zn−Ni−Co系合金めっき鋼板(Ni=10.1
%,Co=1.5%)に次の浴成分でロールで塗布し、
Cr付着量が46mg/m2 となるように処理した。 浴成分 クロム酸 20重量部 MgO 5重量部
Comparative Example 3 Zn-Ni-Co alloy plated steel sheet (Ni = 10.1)
%, Co = 1.5%) with the following bath components on a roll,
The treatment was performed so that the amount of deposited Cr was 46 mg / m 2 . Bath components Chromic acid 20 parts by weight MgO 5 parts by weight

【0040】比較例4 Zn−Ni系合金めっき鋼板(Ni=13.8%)に次
の浴成分でロールで塗布し、Cr付着量が46mg/m
2 となるように処理した。 浴成分 クロム酸 20重量部 リン酸 15重量部 MgO 3重量部
Comparative Example 4 A Zn-Ni alloy plated steel sheet (Ni = 13.8%) was coated with the following bath components by a roll, and the Cr deposition amount was 46 mg / m.
Processed to be 2 . Bath components Chromic acid 20 parts by weight Phosphoric acid 15 parts by weight MgO 3 parts by weight

【0041】比較例5 Zn−Ni−Cr系合金めっき鋼板(Ni=2.1%,
Cr=10.8%)に次の浴成分でロールで塗布し、C
r付着量が46mg/m2 となるように処理した。 浴成分 クロム酸 20重量部 リン酸 10重量部 長鎖状コロイダルシリカ(太さ:10〜12nm, 10重量部 長さ:100〜120nm)
Comparative Example 5 Zn-Ni-Cr alloy plated steel sheet (Ni = 2.1%,
Cr = 10.8%) with the following bath components by a roll,
The treatment was performed so that the amount of r adhered was 46 mg / m 2 . Bath component Chromic acid 20 parts by weight Phosphoric acid 10 parts by weight Long-chain colloidal silica (thickness: 10 to 12 nm, 10 parts by weight: 100 to 120 nm)

【0042】比較例6 Zn−Ni−Co系合金めっき鋼板(Ni=12.9
%,Co=1.8%)に次の浴成分でロールで塗布し、
Cr付着量が46mg/m2 となるように処理した。 浴成分 クロム酸 25重量部 長鎖状コロイダルシリカ(太さ:4〜6nm, 10重量部 長さ:30〜40nm) MgO 3重量部
Comparative Example 6 Zn-Ni-Co alloy plated steel sheet (Ni = 12.9)
%, Co = 1.8%) with the following bath components on a roll,
The treatment was performed so that the amount of deposited Cr was 46 mg / m 2 . Bath component Chromic acid 25 parts by weight Long chain colloidal silica (thickness: 4 to 6 nm, 10 parts by weight Length: 30 to 40 nm) MgO 3 parts by weight

【0043】比較例7 Zn−Ni−Co系合金めっき鋼板(Ni=10.8
%,Co=1.7%)に次の浴成分でロールで塗布し、
Cr付着量が46mg/m2 となるように処理した。 浴成分 クロム酸 25重量部 リン酸 30重量部 粒状コロイダルシリカ(粒径:12〜15nm) 10重量部 MgO 5重量部
Comparative Example 7 Zn-Ni-Co alloy plated steel sheet (Ni = 10.8)
%, Co = 1.7%) with the following bath components on a roll,
The treatment was performed so that the amount of deposited Cr was 46 mg / m 2 . Bath component Chromic acid 25 parts by weight Phosphoric acid 30 parts by weight Granular colloidal silica (particle size: 12 to 15 nm) 10 parts by weight MgO 5 parts by weight

【0044】比較例8 Zn−Ni系合金めっき鋼板(Ni=13.2%)次の
浴成分でロールで塗布し、Cr付着量が57mg/m2
となるように処理した。 浴成分 クロム酸 25重量部 3価Cr/(3価Cr+6価Cr) 0.2 長鎖状コロイダルシリカ(太さ:4〜6nm) 15重量部 長さ:100〜120nm) リン酸 30重量部 MgO 2重量部
Comparative Example 8 Zn-Ni alloy-plated steel sheet (Ni = 13.2%) Coated with the following bath components by a roll, and the Cr deposition amount was 57 mg / m 2.
It was processed so that Bath component Chromic acid 25 parts by weight Trivalent Cr / (trivalent Cr + hexavalent Cr) 0.2 Long chain colloidal silica (thickness: 4 to 6 nm) 15 parts by weight Length: 100 to 120 nm) Phosphoric acid 30 parts by weight MgO 2 parts by weight

【0045】表1に実施例の塩水噴霧試験による耐蝕性
を、表2に比較例の塩水噴霧試験による耐蝕性を示す。
また、表3に実施例のメラミン系塗料を20μ塗布した
場合の塗膜の密着性を示す。また、表4に比較例の密着
性を示す。塩水噴霧試験法は図1,図3,図5,図7,
図9,図11,図13及び図15と同じである。また、
塗料密着性の評価は図2,図4,図6,図8,図10,
図12,図14,図16と同じである。表1から明らか
なように、各種合金めっき鋼板に本発明を実施した場
合、耐蝕性は1200時間で殆ど変化なく、1500h
で1部にわずかに赤錆が発生するものがある程度であ
る。
Table 1 shows the corrosion resistance by the salt spray test of Examples, and Table 2 shows the corrosion resistance by the salt spray test of Comparative Examples.
Further, Table 3 shows the adhesion of the coating film when 20 μm of the melamine-based coating material of the example is applied. Table 4 shows the adhesion of the comparative example. The salt spray test method is shown in Figure 1, Figure 3, Figure 5, Figure 7,
This is the same as FIG. 9, FIG. 11, FIG. 13 and FIG. Also,
Evaluation of paint adhesion is shown in Figure 2, Figure 4, Figure 6, Figure 8, Figure 10,
This is the same as FIG. 12, FIG. 14 and FIG. As is clear from Table 1, when the present invention is applied to various alloy-plated steel sheets, the corrosion resistance hardly changes after 1200 hours and 1500 h.
There is a slight amount of red rust on the 1st part.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】これに対し、表2から明らかなように公知
のクロメート浴で処理した場合(比較例1)ではSST
400h後ですでに白錆が70%前後発生し、600h
で赤錆がかなり認められた。また、最適浴成分からはず
れていたりあるいは不適切な成分が使用されている場合
には耐蝕性はかなり低下している。また、塗膜の密着性
も同様で、表3から明らかなように本発明を実施した場
合、塗料密着性の得にくいメラミン系塗料でも極めて優
れた密着性を示すが、表4から明らかなように公知の浴
で処理したり、あるいは最適成分からはずれたりあるい
は不適切な成分が使用されている場合には剥離の形跡が
認められる。
On the other hand, as is clear from Table 2, when treated with a known chromate bath (Comparative Example 1), SST
About 400% of white rust had already occurred after 400 hours, and 600 hours
There was considerable red rust. In addition, the corrosion resistance is considerably lowered when the composition is deviated from the optimum bath composition or an inappropriate composition is used. Further, the adhesiveness of the coating film is also the same, and as is clear from Table 3, when the present invention is carried out, even a melamine-based paint which is difficult to obtain paint adhesiveness shows extremely excellent adhesiveness, but as is clear from Table 4. There is evidence of delamination when treated in the baths known in US Pat.

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【発明の効果】以上述べたように、本発明によって得ら
れたクロメート皮膜は塗料との密着性が著しく優れてい
ることから塗装鋼板の下地用として最適であり、また、
各種有機複合めっき鋼板の下地用としても最適である。
As described above, the chromate film obtained according to the present invention is remarkably excellent in adhesiveness with a coating material, and thus is most suitable as a base for coated steel sheets.
It is also optimal as a base for various organic composite plated steel sheets.

【図面の簡単な説明】[Brief description of drawings]

【図1】クロメート浴中の3価Cr/(3価Cr+6価
Cr)と耐蝕性の関係を示した図、
FIG. 1 is a diagram showing the relationship between trivalent Cr / (trivalent Cr + hexavalent Cr) in a chromate bath and corrosion resistance,

【図2】クロメート浴中の3価Cr/(3価Cr+6価
Cr)と塗料密着性の関係を示した図、
FIG. 2 is a diagram showing a relationship between trivalent Cr / (trivalent Cr + hexavalent Cr) in a chromate bath and paint adhesion,

【図3】クロム酸の濃度と耐蝕性の関係を示した図、FIG. 3 is a diagram showing the relationship between chromic acid concentration and corrosion resistance,

【図4】クロム酸の濃度と塗料密着性の関係を示した
図、
FIG. 4 is a diagram showing the relationship between chromic acid concentration and paint adhesion,

【図5】長鎖状コロイダルシリカの添加量と耐蝕性の関
係を示した図、
FIG. 5 is a diagram showing the relationship between the amount of long-chain colloidal silica added and corrosion resistance;

【図6】長鎖状コロイダルシリカの添加量と塗料密着性
の関係を示した図、
FIG. 6 is a graph showing the relationship between the amount of long-chain colloidal silica added and paint adhesion,

【図7】長鎖状コロイダルシリカの長さと耐蝕性の関係
を示した図、
FIG. 7 is a diagram showing the relationship between the length of long-chain colloidal silica and corrosion resistance,

【図8】長鎖状コロイダルシリカの長さと塗料密着性の
関係を示した図、
FIG. 8 is a diagram showing the relationship between the length of long-chain colloidal silica and paint adhesion,

【図9】長鎖状コロイダルシリカの太さと耐蝕性の関係
を示した図、
FIG. 9 is a diagram showing the relationship between the thickness of long-chain colloidal silica and corrosion resistance,

【図10】長鎖状コロイダルシリカの太さと塗料密着性
の関係を示した図、
FIG. 10 is a diagram showing the relationship between the thickness of long-chain colloidal silica and paint adhesion,

【図11】粒状コロイダルシリカの粒径と耐蝕性の関係
を示した図、
FIG. 11 is a diagram showing the relationship between the particle size of granular colloidal silica and corrosion resistance;

【図12】粒状コロイダルシリカの粒径と塗料密着性の
関係を示した図、
FIG. 12 is a diagram showing the relationship between the particle size of the granular colloidal silica and the adhesiveness of the paint,

【図13】リン酸の添加量と耐蝕性の関係を示した図、FIG. 13 is a diagram showing the relationship between the amount of phosphoric acid added and corrosion resistance;

【図14】リン酸の添加量と塗料密着性の関係を示した
図、
FIG. 14 is a diagram showing the relationship between the amount of phosphoric acid added and paint adhesion,

【図15】MgOの添加量と耐蝕性の関係を示した図、FIG. 15 is a diagram showing the relationship between the amount of MgO added and corrosion resistance;

【図16】MgOの添加量と塗料密着性の関係を示した
図である。
FIG. 16 is a diagram showing the relationship between the amount of MgO added and coating adhesion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3価Cr/(3価Cr+6価Cr)=
0.4〜1.0で全クロム酸5〜30重量部の浴に太さ
が2〜20nm、長さが25〜250nmの長鎖状コロ
イダルシリカを1〜20重量部、リン酸10〜35重量
部及びMgOを3〜10重量部含有せしめた浴を各種金
属に塗布することを特徴とする金属の塗布型クロメート
処理法。
1. Trivalent Cr / (trivalent Cr + hexavalent Cr) =
In a bath of 0.4 to 1.0 and 5 to 30 parts by weight of total chromic acid, 1 to 20 parts by weight of long chain colloidal silica having a thickness of 2 to 20 nm and a length of 25 to 250 nm, and phosphoric acid of 10 to 35 parts by weight. A metal-applied chromate treatment method, characterized in that a bath containing 3 to 10 parts by weight of MgO is applied to various metals.
JP15390593A 1993-06-24 1993-06-24 Method for chromating metal by coating Withdrawn JPH0711454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15390593A JPH0711454A (en) 1993-06-24 1993-06-24 Method for chromating metal by coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15390593A JPH0711454A (en) 1993-06-24 1993-06-24 Method for chromating metal by coating

Publications (1)

Publication Number Publication Date
JPH0711454A true JPH0711454A (en) 1995-01-13

Family

ID=15572673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15390593A Withdrawn JPH0711454A (en) 1993-06-24 1993-06-24 Method for chromating metal by coating

Country Status (1)

Country Link
JP (1) JPH0711454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029953A1 (en) * 2006-09-07 2008-03-13 Nippon Steel Corporation AQUEOUS TREATMENT LIQUID FOR Sn-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND COATING ADHESION, AND METHOD FOR PRODUCING SURFACE-TREATED STEEL SHEET
EP3456865A1 (en) 2017-09-14 2019-03-20 Dipsol Chemicals Co., Ltd. Trivalent chromium chemical conversion treatment liquid for zinc or zinc alloy base and chemical conversion treatment method using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029953A1 (en) * 2006-09-07 2008-03-13 Nippon Steel Corporation AQUEOUS TREATMENT LIQUID FOR Sn-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND COATING ADHESION, AND METHOD FOR PRODUCING SURFACE-TREATED STEEL SHEET
US8097306B2 (en) 2006-09-07 2012-01-17 Nippon Steel Corporation Aqueous treating solution for Sn-based plated steel sheet excellent in corrosion resistance and paint adhesion, and production method of surface-treated steel sheet
JP5230428B2 (en) * 2006-09-07 2013-07-10 新日鐵住金株式会社 Water-based treatment liquid for Sn-based plated steel sheet having excellent corrosion resistance and paint adhesion and method for producing surface-treated steel sheet
EP3456865A1 (en) 2017-09-14 2019-03-20 Dipsol Chemicals Co., Ltd. Trivalent chromium chemical conversion treatment liquid for zinc or zinc alloy base and chemical conversion treatment method using the same
KR20190030593A (en) 2017-09-14 2019-03-22 딥솔 가부시키가이샤 Trivalent chromium chemical conversion treatment liquid for zinc or zinc alloy base and chemical conversion treatment method using the same

Similar Documents

Publication Publication Date Title
WO2006098359A1 (en) Surface-treated metallic material
JPH07216268A (en) Surface treatment agent for zinc-containing metal-coated steel sheet, excellent in corrosion resistance and coating adhesion
JPH10251509A (en) Metal surface treating solution and surface treated metal plate
JP2013087312A (en) Paint pretreatment agent for coating-type paint, and coating-type painting method
JP3911160B2 (en) Phosphate-treated galvanized steel sheet with excellent corrosion resistance and paintability
JPH0148870B2 (en)
JP2001214283A (en) Surface treated galvanized steel sheet
JP2002363764A (en) Coating surface preparation agent, surface preparation method, metallic material, machining method and metallic product
JP2000129460A (en) Organic coated galvanized steel sheet
JP4312635B2 (en) Painted aluminized steel sheet with excellent corrosion resistance
JPH11343582A (en) Chromate rust preventive processing agent
JPH0711454A (en) Method for chromating metal by coating
JP3543194B2 (en) Chrome-free surface treatment agent for metal materials and surface-treated metal materials
JP2003293156A (en) Phosphate treated steel sheet excellent in corrosion resistance, adhesion for coating material and corrosion resistance after coating, and production method therefor
JP7169409B1 (en) Hexavalent chromium-free aqueous surface treatment liquid, surface treated metal and surface treatment method
JPH0776783A (en) Coating chrominating bath and surface treated steel sheet
JPH01240671A (en) Zinc phosphate treatment for metallic surface for coating
JPH09228067A (en) Surface treated steel sheet excellent in resistance against environmental pollution and corrosion
JP2000248374A (en) Rust preventing treated steel
JPH11152588A (en) Composition for forming rust preventive protective coating for metal and its formation
JPH06346250A (en) Coating type chromating method
JPH08209038A (en) Composition for treating surface of metal
JPH07258895A (en) Double layer galvanized steel sheet excellent in press workability and corrosion resistance
JPH07300683A (en) Chromating method excellent in low-temperature baking property
JPS5898172A (en) Compound coated steel sheet excellent in corrosion resistance, paint adhesiveness of steel sheet and corrosion resistance of coating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905