JPH0711405A - Production of ni-base alloy having intergranular fracture resistance - Google Patents

Production of ni-base alloy having intergranular fracture resistance

Info

Publication number
JPH0711405A
JPH0711405A JP15897793A JP15897793A JPH0711405A JP H0711405 A JPH0711405 A JP H0711405A JP 15897793 A JP15897793 A JP 15897793A JP 15897793 A JP15897793 A JP 15897793A JP H0711405 A JPH0711405 A JP H0711405A
Authority
JP
Japan
Prior art keywords
alloy
hours
cooling
temperature range
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15897793A
Other languages
Japanese (ja)
Inventor
Masaaki Igarashi
正晃 五十嵐
Masakatsu Ueda
昌克 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15897793A priority Critical patent/JPH0711405A/en
Publication of JPH0711405A publication Critical patent/JPH0711405A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Ni-base alloy excellent in intergranular fracture resis tance under a sour gas environment by subjecting an alloy, having a specific composition consisting of Cr, W, Nb, Fe, and Ni, to specified heat treatment and plastic working, respectively, and precipitating a WC type carbide. CONSTITUTION:An alloy, having a composition consisting of, by weight, 14.0-20.0% Cr, 10.0-25.0% W, 4.0-7.0% Nb, 2.0-10.0% Fe, and 50.0-60.0% Ni, is heated and held at 1000-1300 deg.C for 1-200hr. This alloy is subjected to plastic working at 900-1300 deg.C at =10% reduction of area once or more and then held at 900-1250 deg.C for 1min-100hr. Subsequently, the alloy is cooled down to successive aging temp. (600-800 deg.C) at a cooling velocity between furnace cooling and air cooling velocities and held at 600-800 deg.C for 1-200hr to undergo aging treatment for alloy. By this method, a WC type carbide of <=40mum can be precipitated in the grain boundary of the alloy, and the highly corrosion resistant Ni-base alloy for oil well member, having high strength and excellent in stress corrosion cracking resistance and hydrogen cracking resistance in a sour gas environment containing S as simple substance, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サワーガス(H2S−CO2
−Cl- ) 環境、特に硫黄(S) が単体として混入した環境
において、良好な耐応力腐食割れ性および耐水素割れ性
を有する、油井用部材 (特に、抗口、抗底部材) に用い
られる高耐食性Ni基合金の製造方法に関する。
The present invention relates to sour gas (H 2 S-CO 2
-Cl -) environment, used in particular sulfur (S) in an environment where is mixed as a single, good stress corrosion cracking resistance and having a hydrogen cracking resistance, oil well member (in particular, wellhead, anti bottom member) The present invention relates to a method for producing a Ni-based alloy having high corrosion resistance.

【0002】[0002]

【従来の技術】近年、油井の深井戸化およびサワーガス
環境下での掘井が要求されてきており、高強度、高耐食
性を有するNi基合金等がそのような用途に適用されてい
る。これらNi基合金の耐食性能は、特にCr、Mo、W等の
含有量によって一般的に向上するため、それらを考慮し
ながら、対象となる腐食環境に適した合金成分系が選択
されている。
2. Description of the Related Art In recent years, there has been a demand for deeper oil wells and wells under sour gas environments, and Ni-based alloys having high strength and high corrosion resistance have been applied to such applications. Since the corrosion resistance performance of these Ni-based alloys is generally improved especially by the contents of Cr, Mo, W, etc., the alloy component system suitable for the target corrosive environment is selected in consideration of them.

【0003】さらに強度については、0.2 %耐力 (室
温) にて77kgf/mm2 以上、あるいは91kgf/mm2 以上の高
強度が要求される場合が多い。したがって、これら合金
成分系に対してチュービング、ケーシング、ライナ等の
管状部材については冷間加工にて高強度化を図り、一
方、冷間加工の困難な特殊形状あるいは厚肉の抗口、抗
底部材等にはγ' あるいはγ" 等の金属間化合物の析出
硬化を利用して高強度化を図っている。
[0003] For further strength, 0.2% proof stress (RT) at 77kgf / mm 2 or more, or often 91kgf / mm 2 or more high strength is required. Therefore, tubular members such as tubing, casing, and liner are strengthened by cold working against these alloy component systems, while at the same time, they have a special shape or thick mouth hole, bottom part that is difficult to cold work. For materials, etc., high strength is achieved by utilizing precipitation hardening of intermetallic compounds such as γ'or γ ".

【0004】ところで、最近の油井開発では、従来のサ
ワーガス(H2S−CO2 −Cl- ) にとどまらず、さらに硫黄
(S) が単体として混入する環境に対しても良好な耐応力
腐食割れ性および耐水素割れ性を有する材料の開発が強
く望まれており、新たな耐食性材料がいくつか提案され
ている (例えば特開昭63−137133号公報) 。
[0004] In the recent oil well development, traditional sour gas (H 2 S-CO 2 -Cl -) not only to further sulfur
It is strongly desired to develop a material having good stress corrosion cracking resistance and hydrogen cracking resistance even in an environment in which (S) is mixed as a simple substance, and several new corrosion resistant materials have been proposed (for example, JP-A-63-137133).

【0005】しかしながら、深井戸化の要求はさらに進
み、0.2 %耐力 (室温) にて91kgf/mm2 以上の高強度が
安定して得られる材料へのニーズが高まってきた。加え
てこれまでの長時間浸漬による耐食性試験だけでなく、
腐食性溶液中において一定歪み速度で引張試験をする腐
食試験が導入されるに至り、静的な耐食性能ばかりか動
的性能まで同時に満足する材料への要求が新たに出てき
た。
However, the demand for deeper wells has further advanced, and there has been an increasing need for a material capable of stably obtaining a high strength of 91 kgf / mm 2 or more at a 0.2% proof stress (room temperature). In addition to the conventional corrosion resistance test by long-term immersion,
With the introduction of a corrosion test in which a tensile test is performed at a constant strain rate in a corrosive solution, a new demand has emerged for a material that satisfies not only static corrosion resistance but also dynamic performance at the same time.

【0006】ところがこれまでの合金では必ずしもこの
両者を満足する性能が安定して得られず、その典型的な
特徴として、特に高強度材では粒界破壊を伴って、環境
脆化する。
However, the conventional alloys cannot always stably obtain the performances satisfying both of them, and as a typical characteristic thereof, particularly in the case of a high-strength material, intergranular fracture occurs and environmental embrittlement occurs.

【0007】[0007]

【発明が解決しようとする課題】本発明は、腐食環境
下、特にサワーガス(H2S−CO2 −Cl- ) 環境の中でも硫
黄(S) が単体として混入した環境においても、高強度
(0.2%耐力 (室温) >91kgf/mm2)で、且つ良好な耐応力
腐食割れ性および耐水素割れ性を有する、油井用部材
(特に抗口、抗底部材) に用いられる高耐食性Ni基合金
を製造する方法を提供することを目的とする。
[SUMMARY OF THE INVENTION The present invention, a corrosive environment, in particular sour gas (H 2 S-CO 2 -Cl -) even in an environment where any sulfur (S) is mixed as a single in the environment, high strength
(0.2% proof stress (room temperature)> 91 kgf / mm 2 ), and good resistance to stress corrosion cracking and hydrogen cracking
An object of the present invention is to provide a method for producing a highly corrosion-resistant Ni-based alloy used for (particularly, anti-mouth and anti-bottom members).

【0008】[0008]

【課題を解決するための手段】本発明者らは、このよう
な腐食環境における耐食性能と合金成分系、さらにミク
ロ組織との対応を詳細に検討した結果、高強度材におい
ては当該環境中における腐食が粒界破壊型であること、
この粒界破壊にはM6C(M: Mo を主体とするが一部Cr、Fe
を含む) 型の炭化物の粒界析出が関与していることを明
らかにした。
DISCLOSURE OF THE INVENTION As a result of a detailed study of the correspondence between the corrosion resistance performance in such a corrosive environment, the alloy component system, and the microstructure, the inventors of the present invention have found that in the case of a high strength material, Corrosion is intergranular destruction type,
This grain boundary fracture is mainly composed of M 6 C (M: Mo, but some Cr, Fe
It was clarified that the intergranular precipitation of () type carbide was involved.

【0009】すなわち、M6C 型炭化物の粒界析出は次の
2点によって、当該環境下でのNi基合金の耐食性能を劣
化させる: (1) M6C 炭化物には合金マトリックス中よりも多量のMo
を含有するため、炭化物の周囲には拡散によってMo濃度
の減損領域が形成される。このMo濃度の低い部分は他よ
りも当該環境中における耐食性が十分でなく、局部腐食
を助長する。
That is, the grain boundary precipitation of M 6 C type carbide deteriorates the corrosion resistance performance of the Ni-based alloy in the environment by the following two points: (1) M 6 C type carbide has a lower corrosion resistance than that in the alloy matrix. A lot of Mo
As a result, the Mo concentration depletion region is formed around the carbide due to diffusion. The portion having a low Mo concentration has less corrosion resistance in the environment than other portions, and promotes local corrosion.

【0010】(2) M6C 型炭化物は合金マトリックスと非
整合界面を有し、外部応力あるいは残留応力等の内部応
力が加わると、その部分で変形の不連続が生じ、応力が
集中する。これは非整合界面において粒界破壊を引き起
こし、応力腐食割れ (SCC)を助長する。特に、動的腐食
を著しく促進し、材料の腐食性能を劣化させる。
(2) M 6 C type carbide has a non-coherent interface with the alloy matrix, and when internal stress such as external stress or residual stress is applied, discontinuity of deformation occurs at that portion and stress concentrates. This causes intergranular fracture at the incoherent interface and promotes stress corrosion cracking (SCC). In particular, it significantly accelerates dynamic corrosion and degrades the corrosion performance of the material.

【0011】以上の知見を基に研究を進めた結果、所定
の合金成分系の選択とM6C 型炭化物に代わってWC型炭化
物を析出させることにより、当該環境中においても粒界
破壊を抑制して良好な耐食性能を示す材料の得られるこ
とを明らかにした。
As a result of conducting research based on the above findings, grain boundary fracture is suppressed even in the environment by selecting a predetermined alloy component system and precipitating WC type carbide instead of M 6 C type carbide. It was clarified that a material showing good corrosion resistance could be obtained.

【0012】すなわち、WC炭化物中にはMoを含まないた
め、その周囲にMo濃度の減損領域ができない。また当該
環境中においてはWの耐局部腐食性の向上作用が著し
く、仮にWC型炭化物の周囲にW濃度の破損領域が出来て
も、上記のような当該環境中における局部腐食の原因と
ならないことが判明した。
That is, since Mo is not contained in the WC carbide, a depletion region of Mo concentration cannot be formed around it. In addition, the local corrosion resistance of W is significantly improved in the environment, and even if a W-concentration damaged region is formed around the WC type carbide, it does not cause the local corrosion in the environment as described above. There was found.

【0013】更に、これまでWはMoと同様な作用を有
し、原子量の差からその効果はおよそ1/ 2とされてき
たが、適当な合金成分系の選択によって、当該環境にお
いてW添加が特異的に機能してきわめて良好な耐食性を
示すことが明らかとなった。また、析出硬化に寄与する
γ" 相( 主にNi3 Nb) の析出を促進する効果もあり、高
強度が容易に得られる利点もある。
Further, until now, W has the same action as Mo, and its effect has been considered to be about 1/2 due to the difference in atomic weight. However, W is added in this environment by selecting an appropriate alloy component system. It was revealed that it functions specifically and shows extremely good corrosion resistance. It also has the effect of promoting the precipitation of the γ "phase (mainly Ni 3 Nb) that contributes to precipitation hardening, and has the advantage that high strength can be easily obtained.

【0014】すなわち、本発明はそのような知見に基づ
いて完成されたもので、その要旨とするところは、重量
%で、 Cr: 14.0〜20.0%、W: 10.0〜25.0%、Nb: 4.0 〜7.0
%、Fe: 2.0 〜10.0%、Ni: 50.0〜60.0% あるいはさらに、次の少なくとも1群から選んだ少なく
とも1種 Ti: 0.5〜2.0 %、 Ca: 0.0010 〜0.010 %、および/ またはMg: 0.0010
〜0.010 %、 Zr: 0.010〜0.50%、Hf: 0.10〜1.0 %、Ta: 0.10〜
1.0 %から成る群から選んだ少なくとも1種、からなる
組成の合金を、1000〜1300℃の温度範囲で1〜200 時間
加熱保持して均質化処理を行った後、900 〜1300℃の温
度範囲で断面減少率10%以上の第一塑性加工を1回もし
くは2回以上施してから、第一溶体化熱処理として、90
0 〜1250℃の温度範囲で1分〜100 時間保持後、引き続
く時効温度(600℃〜800 ℃) まで炉冷〜空冷までの冷却
速度で冷却し600 〜800 ℃で1時間〜200 時間保持する
ことによって時効処理を行い、粒界部にWC型の炭化物を
析出させることを特徴とする、サワーガス環境下で優れ
た耐粒界破壊性を有する耐応力腐食割れ性並びに耐水素
割れ性に優れたNi基合金の製造方法である。
That is, the present invention has been completed on the basis of such knowledge, and the gist of the present invention is Cr: 14.0 to 20.0%, W: 10.0 to 25.0%, Nb: 4.0 to 7.0
%, Fe: 2.0 to 10.0%, Ni: 50.0 to 60.0%, or at least one selected from the following at least one group: Ti: 0.5 to 2.0%, Ca: 0.0010 to 0.010%, and / or Mg: 0.0010.
~ 0.010%, Zr: 0.010 ~ 0.50%, Hf: 0.10 ~ 1.0%, Ta: 0.10 ~
At least one alloy selected from the group consisting of 1.0% is heated and held in the temperature range of 1000 to 1300 ° C for 1 to 200 hours to homogenize it, and then in the temperature range of 900 to 1300 ° C. After the first plastic working with a cross-section reduction rate of 10% or more once or twice or more,
Hold for 1 minute to 100 hours in the temperature range of 0 to 1250 ℃, then cool to the aging temperature (600 ℃ to 800 ℃) at the cooling rate from furnace cooling to air cooling and hold at 600 to 800 ℃ for 1 to 200 hours. It is characterized by precipitating WC-type carbides at the grain boundary parts by aging treatment, and has excellent intergranular fracture resistance in sour gas environments and excellent stress corrosion cracking resistance and hydrogen cracking resistance. This is a method for producing a Ni-based alloy.

【0015】別の態様によれば、第一溶体化熱処理を98
0 〜1050℃で1分〜20時間行い、次いで、第二熱間塑性
加工を900 〜1050℃で断面減少率20%以上で行い、さら
に第二溶体化熱処理として900 〜1050℃で1分〜100 時
間保持するようにしてもよい。その後に行う冷却、時効
処理は上述の場合に同じである。平均粒径40μm 以下の
微細組織が得られる。
According to another embodiment, the first solution heat treatment is applied to 98
0 to 1050 ° C for 1 minute to 20 hours, then second hot plastic working at 900 to 1050 ° C with a cross-section reduction rate of 20% or more, and further as second solution heat treatment at 900 to 1050 ° C for 1 minute to You may keep it for 100 hours. The subsequent cooling and aging treatment are the same as in the above case. A fine structure with an average grain size of 40 μm or less is obtained.

【0016】さらに別の態様によれば、第一溶体化熱処
理は、900 〜980 ℃で20〜100 時間行い、次いで第二熱
間塑性加工として900 〜1050℃で断面減少率20%以上の
塑性加工を行ってもよい。第二溶体化熱処理は、900 〜
1050℃で1分〜100 時間行う。以後の冷却、時効処理は
前述のそれに同じである。平均結晶粒径20μm以下の微
細組織が得られる。
According to still another embodiment, the first solution heat treatment is performed at 900 to 980 ° C. for 20 to 100 hours, and then the second hot plastic working is performed at 900 to 1050 ° C. and the cross-section reduction rate is 20% or more. Processing may be performed. The second solution heat treatment is 900 ~
Perform at 1050 ℃ for 1 minute to 100 hours. The subsequent cooling and aging treatments are the same as those described above. A fine structure having an average crystal grain size of 20 μm or less is obtained.

【0017】本発明にかかる方法によってNi基合金厚肉
管を製造する具体的態様にあっては、先ず、前述と同一
の組成の合金に均質化処理を行ってから、同様にして90
0 〜1300℃の温度範囲で熱間塑性加工によって丸棒状ビ
レットを作製し、中心部に穴開け後、1000〜1200℃の範
囲で断面減少率20%以上の塑性変形を加え、さらに900
〜1050℃の温度範囲で1分〜100 時間保持後、引き続く
時効温度(600℃〜800℃) まで炉冷〜空冷までの冷却速
度で冷却してから600 〜800 ℃で1時間〜200時間保持
することによって時効処理を行い、粒界部にWC型の炭化
物を析出させることを特徴とするサワーガス環境下で優
れた耐粒界破壊性を有する耐応力腐食割れ性並びに耐水
素割れ性に優れたNi基合金厚肉管の製造方法である。
In a specific embodiment for producing a thick tube of Ni-base alloy by the method according to the present invention, first, an alloy having the same composition as described above is subjected to a homogenizing treatment, and then 90
A round bar-shaped billet is produced by hot plastic working in the temperature range of 0 to 1300 ℃, and after punching in the center, plastic deformation with a cross-section reduction rate of 20% or more is added in the range of 1000 to 1200 ℃.
Hold for 1 minute to 100 hours in the temperature range of to 1050 ℃, and then cool to the aging temperature (600 ℃ to 800 ℃) at the cooling rate from furnace cooling to air cooling, then hold at 600 to 800 ℃ for 1 to 200 hours By aging treatment to precipitate WC-type carbides at the grain boundaries, which has excellent intergranular fracture resistance in sour gas environments and excellent stress corrosion cracking resistance and hydrogen cracking resistance. This is a method for manufacturing a thick tube of Ni-based alloy.

【0018】かくして、本発明によれば、腐食環境下、
特にサワーガス (H2S −CO2 −Cl-) 環境の中でも硫黄
(S)が単体として混入した環境においても、高強度(0.2
%耐力 (室温) >91kgf/mm2)で、かつ良好な耐応力腐食
割れ性および耐水素割れ性を有する、油井用部材 (特に
抗口、抗底部材) に用いられる高耐食性Ni基合金が得ら
れる。
Thus, according to the present invention, in a corrosive environment,
Especially sour gas (H 2 S -CO 2 -Cl - ) sulfur even in the environment
Even in an environment where (S) is mixed as a single substance, high strength (0.2
% Yield strength (room temperature)> 91kgf / mm 2 ) and good resistance to stress corrosion cracking and hydrogen cracking. can get.

【0019】[0019]

【作用】次に、本発明においてNi基合金成分組成を上述
のごとく限定する理由を説明する。
Next, the reason why the Ni-based alloy component composition is limited as described above in the present invention will be explained.

【0020】Cr:Crは、W、Ni、Fe等と共に、γ' 、γ"
相の析出硬化のためのオーステナイトマトリックスを
構成する。従来のサワーガス環境では特に高温での耐食
性に有効とされていたが、当該環境ではW、Ni等とのバ
ランスで耐食性皮膜形成に寄与する。このためにはCr≧
14.0%は必要であるが、組織安定性の観点からCr≦20.0
%とした。
Cr: Cr is, together with W, Ni, Fe, etc., γ ', γ "
It constitutes an austenite matrix for the precipitation hardening of phases. In the conventional sour gas environment, it was said to be particularly effective in corrosion resistance at high temperatures, but in such an environment, it contributes to the formation of a corrosion resistant film in balance with W, Ni and the like. For this, Cr ≧
14.0% is necessary, but Cr ≤ 20.0 from the viewpoint of structural stability
%.

【0021】W:WはMoと同様な働きをするものとこれ
まで一般的に考えられてきたが、WC型炭化物を析出させ
ることにより、当該環境において粒界破壊を抑制して良
好な耐食性能を示すことが明らかとなった。また、析出
硬化に寄与するγ" 相( 主にNi3Nb) の析出を促進する
効果もあり、高強度が容易に得られる利点もある。当該
環境下ではさらに耐局部腐食性を著しく向上させること
が判明した。その効果はW≧10.0%で顕著になってくる
が、多量添加は熱間加工性を低下させるのでW≦25.0%
とする。
It has been generally considered that W: W has the same function as that of Mo. However, by precipitating WC type carbides, grain boundary fracture is suppressed in the environment and good corrosion resistance performance is obtained. It was revealed that It also has the effect of promoting the precipitation of the γ "phase (mainly Ni 3 Nb) that contributes to precipitation hardening, and has the advantage that high strength can be easily obtained. In this environment, the local corrosion resistance is significantly improved. The effect becomes remarkable when W ≧ 10.0%, but W ≦ 25.0% because W addition deteriorates hot workability.
And

【0022】Nb:Nbは本合金系の強度を支配するγ" −N
i3Nb(DO22型規則構造) の析出に必要である。所定の強
度(0.2%耐力: 室温) ≧91kgf/mm2 を得るためにはNb≧
4.0 %必要だが、多量添加はLaves 相の生成等好ましく
ない第2相を析出するためNb≦7.0 %とする。
Nb: Nb is the γ ″ −N that controls the strength of the alloy system.
It is necessary for the precipitation of i 3 Nb (DO 22 type ordered structure). Nb ≥ to obtain the prescribed strength (0.2% proof stress: room temperature) ≥ 91 kgf / mm 2.
4.0% is required, but Nb ≤ 7.0% because a large amount of addition precipitates an undesirable second phase such as Laves phase formation.

【0023】Fe:Feはγ' 、γ" 相の析出硬化能の向上
には不可欠な元素である。そのためにはFe≧2.0 %必要
であるが、他成分の添加量とのバランスを考慮してFe≦
10.0%とする。
Fe: Fe is an essential element for improving the precipitation hardening ability of the γ ', γ "phases. For that purpose, Fe ≥ 2.0% is necessary, but in consideration of the balance with the addition amount of other components. Fe Fe ≦
10.0%.

【0024】Ni:Niはγ' 、γ" 相の析出硬化に不可欠
な元素であるが、当該環境における耐食性皮膜の強化に
も重要な役割を果たす。したがって、本発明にかかる合
金の残部は実質的にNiである。つまり、Ni≧50%であ
り、他成分とのバランスと耐水素割れ性との観点からNi
≦60%とする。本発明にあっては、所望により、その他
各種の合金元素を含有することができる。
Ni: Ni is an essential element for precipitation hardening of the γ ', γ "phases, but also plays an important role in strengthening the corrosion resistant coating in the environment. Therefore, the balance of the alloy according to the present invention is substantially the same. Is Ni, that is, Ni ≧ 50%, and Ni from the viewpoint of balance with other components and hydrogen cracking resistance.
≦ 60% In the present invention, if desired, various other alloying elements may be contained.

【0025】Ti:Tiは多量添加により腐食性能を劣化さ
せるγ' 相を析出させるため、従来合金では必要以上に
添加するのは避けるべきであった。しかし、γ' 相は
γ" 相の析出硬化を促進するため強度上昇には寄与す
る。さらに本合金系ではWCの粒界析出により耐食性能が
向上するため、積極的に添加してもよいことが明らかと
なった。このためにはTi≧0.5 %必要だが、多量添加は
不要でTi≦2.0 %とする。
Since Ti: Ti precipitates a γ'phase that deteriorates the corrosion performance when added in a large amount, it should be avoided to add more than necessary in the conventional alloy. However, the γ'phase promotes the precipitation hardening of the γ "phase and thus contributes to the increase in strength. Furthermore, in this alloy system, the grain boundary precipitation of WC improves the corrosion resistance, so it may be added positively. For this purpose, Ti ≥ 0.5% is required, but it is not necessary to add a large amount and Ti ≤ 2.0%.

【0026】Ca、Mg:Ca 、Mgは、熱間加工性を向上させ
るために必要に応じて添加すればよく、特に厚肉材の加
工が必要な場合にはその積極的な添加が望まれる。Ca:
0.0010 〜0.010 %およびMg:0.0010 〜0.0100%の1種
または2種を添加することによってその効果が発揮され
る。
Ca, Mg: Ca and Mg may be added as needed in order to improve hot workability, and particularly when thick material is required to be processed, its positive addition is desired. . Ca:
The effect is exhibited by adding one or two of 0.0010 to 0.010% and Mg: 0.0010 to 0.0100%.

【0027】Zr、Hf、Ta:Zr、Hf、Taは被切削性の向上
のため必要に応じて添加されるが、特に厚肉材の加工が
必要な場合にはその添加が望まれる。Zr:0.010〜0.50
%、Hf: 0.10〜1.0 %、およびTa:0.10 〜1.0 %の群か
ら選ばれた少なくとも1種の添加によってその効果が発
揮される。
Zr, Hf, Ta: Zr, Hf, Ta are added as needed to improve the machinability, and especially when it is necessary to process thick materials. Zr: 0.010 ~ 0.50
%, Hf: 0.10 to 1.0%, and Ta: 0.10 to 1.0%, the effect is exhibited by the addition of at least one selected from the group.

【0028】なお、本発明においては不可避不純物とし
て通常Ni基合金に含まれるC、Si、Mn、P、S、N、B
等については規定していないが、それぞれ0.07%、0.30
%、2.0 %、0.020 %、0.010 %、0.050 %、0.050 %
までは含有しても差し支えない。また、Alは脱酸剤とし
て0.30%程度まで含有しても差し支えない。次に、本発
明における製造工程についてその限定理由を説明する。
In the present invention, C, Si, Mn, P, S, N and B, which are usually contained in Ni-based alloys as unavoidable impurities, are used.
Although not specified, 0.07% and 0.30 respectively
%, 2.0%, 0.020%, 0.010%, 0.050%, 0.050%
Up to may be included. Also, Al may be contained up to about 0.30% as a deoxidizing agent. Next, the reason for limiting the manufacturing process in the present invention will be described.

【0029】[溶製工程]本発明にあっては溶製工程は可
及的に清浄であってマクロ偏析が可及的に少ない合金が
得られれば特に制限はないが、一般には、例えば真空誘
導溶解によって一次溶製後、そのまま、もしくはESR(El
ectro-Slag Remelting) またはVAR(Vacuum Arc Remelti
ng) にて二次溶解後、インゴットとするのである。
[Melting Step] In the present invention, the melting step is not particularly limited as long as an alloy that is as clean as possible and has macrosegregation as small as possible is obtained, but generally, for example, vacuum After primary melting by induction melting, either as it is or ESR (El
ectro-Slag Remelting) or VAR (Vacuum Arc Remelti)
(ng) and then secondly melted to make an ingot.

【0030】本発明において真空誘導溶解を基本として
いる点は、合金の清浄度を高める目的であり、酸素含有
量が数百ppm(≦0.020 %) 以下に抑制可能ならば大気炉
にて溶解した一次インゴットを用いても性能の劣化は顕
著でない。またVAR およびESR の二次溶解はインゴット
のマクロ偏析を低減するのが目的であり、一次インゴッ
トにて十分に冷却が早く、偏析が顕著でない場合はこれ
らの二次溶解を必要としない場合もある。
In the present invention, the basic point of vacuum induction melting is to improve the cleanliness of the alloy, and if the oxygen content can be suppressed to several hundreds ppm (≦ 0.020%) or less, it is melted in an atmospheric furnace. Even if the primary ingot is used, the performance is not significantly deteriorated. In addition, the secondary dissolution of VAR and ESR is aimed at reducing macrosegregation of the ingot, and if the primary ingot cools sufficiently quickly and segregation is not significant, these secondary dissolutions may not be necessary. .

【0031】[均質化処理]得られたインゴットの熱間塑
性加工に先立ち、ミクロ偏析を低減して組織を均一化す
ることによって加工時の割れを防止するために、均質化
処理を行う。本発明合金にあってはNb、W、Cr等の濃厚
偏析に伴ってCr2 Nb型を基本とするLaves 相なる金属間
化合物が凝固時のミクロ偏析に伴って生成する。この相
は極めて脆く、熱間塑性変形時に割れの起点となるた
め、熱処理によって拡散・消失させる必要がある。
[Homogenization Treatment] Prior to hot plastic working of the obtained ingot, homogenization treatment is carried out in order to prevent micro-segregation and homogenize the structure to prevent cracks during working. In the alloy of the present invention, an intermetallic compound of Laves phase based on Cr 2 Nb type is formed along with the concentrated segregation of Nb, W, Cr, etc. along with the microsegregation during solidification. Since this phase is extremely brittle and becomes a starting point of cracks during hot plastic deformation, it is necessary to diffuse and disappear by heat treatment.

【0032】そのためにはNbやW等の合金元素の拡散速
度が大きい融点直下のできるだけ高温で長時間熱処理を
行うことが望ましいが、一方、そのような高温での熱処
理はミクロ偏析の無い部分での結晶粒の粗大化を招くた
め、これではかえって加工性を低下させる悪影響をもた
らす場合があることと、高温長時間の熱処理は製造コス
トを大幅に上昇させることから経済性をも考慮して、温
度は1000〜1300℃で、時間は1時間〜200 時間とした。
For that purpose, it is desirable to perform heat treatment for a long time at a temperature as high as possible just below the melting point at which the diffusion rate of alloying elements such as Nb and W is large, but on the other hand, heat treatment at such a high temperature is a portion free from microsegregation. In order to cause the coarsening of the crystal grains of, it may rather adversely affect the workability, and heat treatment at a high temperature for a long time significantly increases the manufacturing cost, so considering the economic efficiency, The temperature was 1000 to 1300 ° C. and the time was 1 to 200 hours.

【0033】[第一熱間塑性加工]熱間塑性加工の条件
は、加工法が決まれば、加熱温度、加工温度範囲、
加工速度 (歪み速度) 、加工量 (歪み量) によって
決定される。本発明では中実製品の加工法として通常の
鍛造 (プレスおよびハンマー型) 、高速鍛造 (4面ハン
マー) および押出しプレスの3種類を基本として選定し
た。
[First Hot Plastic Working] The hot plastic working conditions are heating temperature, working temperature range,
It is determined by the processing speed (strain rate) and the processing amount (strain amount). In the present invention, as the processing method of the solid product, three types, that is, normal forging (press and hammer type), high speed forging (four-sided hammer) and extrusion press, are selected as the basics.

【0034】先ず、通常の鍛造では、凝固組織の不均一
を解消し、結晶粒の等軸化を促進する作用を有する。そ
のためには断面減少率で10%以上の変形が必要である。
加熱温度は先の熱処理と同程度でよいが、溶融割れ防止
のため加工温度は融点を越えることなく( ≦1300℃) 、
かつ高温変形能が良好な900 ℃以上とする必要がある。
加工 (歪み) 速度はいわゆるプレス・ハンマーによる変
形速度で1〜10-3(1/sec) 程度で行う。これよりも遅い
速度では材料の温度低下が著しく、またこれより速い速
度では材料の延性が十分でなくなる。
First, in normal forging, it has the effect of eliminating the nonuniformity of the solidification structure and promoting the equiaxing of the crystal grains. For that purpose, it is necessary to deform by 10% or more in terms of cross-section reduction rate.
The heating temperature may be the same as the previous heat treatment, but the processing temperature does not exceed the melting point (≤1300 ° C) to prevent melt cracking,
In addition, it is necessary to set the temperature to 900 ° C or higher, which has good high-temperature deformability.
The processing (strain) speed is a deformation speed by a so-called press hammer and is about 1 to 10 -3 (1 / sec). At lower speeds, the temperature of the material drops significantly, and at higher speeds, the ductility of the material becomes insufficient.

【0035】押出しプレスでは通常の鍛造に比べて加工
(歪み) 速度が大きいが、材料が圧縮応力を受けるた
め、溶融割れを除けば鍛造時のような加工割れは発生し
ない。加熱温度・加工温度範囲は鍛造と同様でよいが、
加工 (歪み) 量をきわめて大きく取れる利点がある。
Extrusion presses work more than normal forgings
(Strain) Although the speed is high, the material is subjected to compressive stress, so there is no work cracking that occurs during forging except for melt cracking. The heating temperature and processing temperature range may be the same as forging,
It has the advantage that the amount of processing (strain) can be extremely large.

【0036】高速鍛造では通常の鍛造に比べて加工 (歪
み) 速度が大きく、かつ4方向から変形を受けるため、
押出し加工と同様に材料の加工割れが発生しにくい利点
がある。さらに最大の特徴は加工発熱によって材料の温
度が低下しないため、いわゆる恒温鍛造と同様な作用も
有する。
Since high-speed forging has a higher processing (strain) speed than ordinary forging and is deformed from four directions,
Similar to the extrusion process, it has the advantage that work cracking of the material is less likely to occur. Furthermore, the greatest feature is that the temperature of the material does not drop due to heat generation during processing, so it also has the same effect as so-called constant temperature forging.

【0037】[第一溶体化熱処理]熱間加工後に冷却に先
立って900 ℃以上1050℃以下に1分〜100 時間保持す
る。これは、その後の時効処理によってNi3Nb を主体と
する強化相γ" を有効に析出させるために、いったんNb
を固溶させる目的と、第二熱間塑性加工時に結晶粒径を
微細化させる前処理として一時的にγ" 相の安定相であ
るδ相を析出させるために行うのであって、次に第二熱
間塑性加工を行う場合には次の二つに分けられる。 (i) 980 〜1050℃×1分〜20時間 (Nb固溶化処理) (ii)900 〜980 ℃×20〜100 時間 (δ相析出処理) 。
[First Solution Heat Treatment] After hot working, the temperature is kept at 900 ° C. or higher and 1050 ° C. or lower for 1 minute to 100 hours prior to cooling. In order to effectively precipitate the strengthening phase γ "mainly composed of Ni 3 Nb by the subsequent aging treatment, the
The purpose is to form a solid solution and to precipitate the δ phase, which is a stable phase of the γ "phase, as a pretreatment for refining the crystal grain size during the second hot plastic working. When performing hot plastic working, it can be divided into the following two types: (i) 980 to 1050 ℃ × 1 minute to 20 hours (Nb solution treatment) (ii) 900 to 980 ℃ × 20 to 100 hours ( δ phase precipitation treatment).

【0038】[第二熱間塑性加工]本発明にあっては、上
記の第一熱間塑性加工を行ってから、さらに必要に応じ
て、上述の第一溶体化熱処理を行ってから、断面減少率
20%以上の塑性加工を施す。第一熱間塑性加工と同様の
操作で行ってもよい。
[Second Hot-Plastic Working] In the present invention, after the above-mentioned first hot-plastic working, and further, if necessary, the above-mentioned first solution heat treatment, Reduction rate
20% or more plastic working is performed. You may perform by the operation similar to 1st hot plastic working.

【0039】特に、加熱温度を980 ℃以上1050℃以上以
下、保持時間1分〜20時間とすることによって、結晶粒
の粗大化しない範囲で動的再結晶を促進し、微細な結晶
粒 (平均結晶粒径≦40μm) が得られる。
In particular, by setting the heating temperature to 980 ° C. or higher and 1050 ° C. or higher and holding time of 1 minute to 20 hours, dynamic recrystallization is promoted within the range where the crystal grains are not coarsened, and fine crystal grains (average A crystal grain size ≦ 40 μm) is obtained.

【0040】一方、高速鍛造前に900 〜980 ℃の温度範
囲で20〜100 時間加熱保持することによって、Ni3Nb を
主体とするδ相が粒界・双晶界面等へ微細に多量析出
し、その後高速鍛造することによって超塑性的変形が実
現して結晶粒の超微細化 (平均結晶粒径≦20μm) が得
られる。
On the other hand, before the high speed forging, by heating and holding in the temperature range of 900 to 980 ° C. for 20 to 100 hours, a large amount of δ phase mainly composed of Ni 3 Nb was finely precipitated on the grain boundary / twin crystal interface. Then, high-speed forging allows superplastic deformation to be realized and ultra-fine grains (average grain size ≤ 20 μm) can be obtained.

【0041】この場合の熱間加工も先の熱間加工と同様
にして行えばよいが、断面減少率としては20%以上とす
る。後述する第二溶体化熱処理と組み合わせることによ
ってさらに組織の微細化が可能となる。
The hot working in this case may be performed in the same manner as the above hot working, but the cross-section reduction rate is set to 20% or more. By combining it with the second solution heat treatment described later, it is possible to further refine the structure.

【0042】[第二溶体化熱処理]第二熱間塑性加工を行
ってから、900 〜1050℃で1分〜100 時間加熱する溶体
化熱処理を行う。これは前述の第一溶体化熱処理と同様
の目的で行うものであり、この場合には加熱温度の上限
は結晶粒の粗大化しない1050℃である。
[Second Solution Heat Treatment] After the second hot plastic working, the solution heat treatment of heating at 900 to 1050 ° C. for 1 minute to 100 hours is performed. This is performed for the same purpose as the above-mentioned first solution heat treatment, and in this case, the upper limit of the heating temperature is 1050 ° C. at which the crystal grains are not coarsened.

【0043】[冷却処理]溶体化熱処理を行ってからは、
引き続き行う時効温度(600〜800 ℃) まで炉冷〜空冷ま
での冷却速度で冷却する。これはWC型炭化物の析出を促
進するためであって、その限りにおいて冷却速度は制限
されない。
[Cooling Treatment] After the solution heat treatment,
Continue cooling to the aging temperature (600 to 800 ° C) at the cooling rate from furnace cooling to air cooling. This is to promote the precipitation of WC type carbides, and the cooling rate is not limited to that extent.

【0044】[時効処理]本発明における最大の特徴は、
上記の溶体化処理後、一旦室温にまで冷却することなく
WC炭化物を粒界に析出させることである。その有効析出
のためには上記の加工法に加えて溶体化処理後、直ちに
γ" −Ni3 Nb(DO22 型規則構造) の析出に必要な時効温
度600 〜800 ℃まで炉冷から空冷までの冷却速度で冷却
し、その温度範囲内にて1時間から200 時間保持する。
[Aging treatment] The greatest feature of the present invention is
After the above solution treatment, without cooling to room temperature once
It is to precipitate WC carbides at grain boundaries. For effective precipitation, in addition to the above processing method, immediately after solution treatment, the aging temperature required for precipitation of γ "-Ni 3 Nb (DO 22 type ordered structure) from 600 to 800 ℃ from furnace cooling to air cooling Cool at the cooling rate of, and hold in that temperature range for 1 to 200 hours.

【0045】この時効処理は1回もしくは異なる温度で
2回以上行ってもよい。但し、溶体化処理後時効に至る
までの間に、材料が時効温度より低温に急冷されること
は避けなければならない。
This aging treatment may be performed once or twice or more at different temperatures. However, it is necessary to avoid that the material is rapidly cooled to a temperature lower than the aging temperature before the aging after the solution treatment.

【0046】かくして、本発明によれば、従来見られな
かったほどの優れた耐粒界破壊性を発揮するNi基合金が
得られる。次に、本発明の作用効果を実施例に関連させ
てさらに具体的に説明する。
Thus, according to the present invention, it is possible to obtain a Ni-base alloy exhibiting an excellent intergranular fracture resistance that has not been seen in the past. Next, the function and effect of the present invention will be described more specifically with reference to Examples.

【0047】[0047]

【実施例】表1に示す化学組成を有する各合金を150 kg
あるいは3ton の真空誘導溶解炉にて溶製し、前者では
VAR にて直径150mm の丸インゴットに、後者ではESR お
よびVAR にてそれぞれ直径360mm 、500mm の丸インゴッ
トに再溶製した。
EXAMPLES 150 kg of each alloy having the chemical composition shown in Table 1
Alternatively, in the 3 ton vacuum induction melting furnace,
The VAR was re-melted into a round ingot with a diameter of 150 mm, and the latter was re-melted into a round ingot with a diameter of 360 mm and 500 mm by ESR and VAR, respectively.

【0048】試験材の製作方法の代表例を下記に示す。
なお、試験条件についても下記に併せて示す。さらに試
験結果を表2に示す。なお、略号VIM はVacuum Inducti
on Melting、VAR はVacuum Arc Remeltingである。
A representative example of the method for producing the test material is shown below.
The test conditions are also shown below. The test results are shown in Table 2. The abbreviation VIM stands for Vacuum Inducti
on Melting, VAR is Vacuum Arc Remelting.

【0049】製造法1 VIM(150kg)→ VAR(150φ) →均質化処理(1200 ℃×24h)
→(AC)→熱間鍛造(1120 ℃×4h加熱、1120〜900 ℃で75
φまで) →溶体化熱処理 (1040℃×2h) →(FC)→時効(7
00℃×8h→FC→620 ℃×8h,AC)。
Manufacturing method 1 VIM (150kg) → VAR (150φ) → homogenization treatment (1200 ° C × 24h)
→ (AC) → Hot forging (1120 ℃ × 4h heating, 1120 ~ 900 ℃ 75
(up to φ) → solution heat treatment (1040 ℃ × 2h) → (FC) → aging (7
00 ℃ × 8h → FC → 620 ℃ × 8h, AC).

【0050】製造法2 (均質化処理と塑性加工を2回繰
り返す例) VIM(3ton)→ VAR(500φ) →均質化熱処理(1200 ℃×24
h)→(AC)→熱間鍛造(1160 ℃×8h加熱、1160〜900 ℃で
450 φまで) →均質化熱処理 (1200℃×48h)→(AC)→熱
間鍛造(1160 ℃×4h加熱、1160〜900 ℃で200 φまで)
→溶体化熱処理(1080℃×4h) →(FC)→時効(700℃×8h
→FC→620 ℃×8h,AC)。
Manufacturing method 2 (Example of repeating homogenizing treatment and plastic working twice) VIM (3 ton) → VAR (500φ) → homogenizing heat treatment (1200 ℃ × 24
h) → (AC) → hot forging (1160 ℃ × 8h heating, 1160 ~ 900 ℃
(Up to 450φ) → homogenization heat treatment (1200 ° C x 48h) → (AC) → hot forging (1160 ° C x 4h heating, 1160 to 900 ° C up to 200φ)
→ Solution heat treatment (1080 ℃ × 4h) → (FC) → Aging (700 ℃ × 8h)
→ FC → 620 ℃ × 8h, AC).

【0051】製造法3 (均質化処理と塑性加工を3回繰
り返す例) VIM(3ton)→ VAR(500φ) →均質化熱処理(1200 ℃×24
h)→(AC)→熱間鍛造(1160 ℃×8h加熱、1160〜900 ℃で
450 φまで) →均質化熱処理 (1200℃×48h)→(AC)→熱
間鍛造(1160 ℃×4h加熱、1160〜900 ℃で300 φまで)
→均質化熱処理(1200℃×24h)→(AC)→据込鍛造 (1160
℃×4h加熱、1160〜900 ℃で450 φまで) →熱間鍛造
(1160℃×4h加熱、1160〜900 ℃で200 φまで) →(AC)
→溶体化熱処理 (1080℃×4h) →(FC)→時効(700℃×8h
→FC→620 ℃×8h,AC)。
Manufacturing method 3 (Example of repeating homogenizing treatment and plastic working 3 times) VIM (3 ton) → VAR (500φ) → homogenizing heat treatment (1200 ℃ × 24
h) → (AC) → hot forging (1160 ℃ × 8h heating, 1160 ~ 900 ℃
(Up to 450φ) → homogenization heat treatment (1200 ° C x 48h) → (AC) → hot forging (1160 ° C x 4h heating, 1160 to 900 ° C up to 300φ)
→ Homogenization heat treatment (1200 ℃ × 24h) → (AC) → Upset forging (1160
℃ × 4h heating, 1160 ~ 900 ℃ to 450φ) → hot forging
(Heating at 1160 ℃ x 4h, up to 200φ at 1160 to 900 ℃) → (AC)
→ Solution heat treatment (1080 ℃ × 4h) → (FC) → Aging (700 ℃ × 8h)
→ FC → 620 ℃ × 8h, AC).

【0052】製造法4 (塑性加工として、孔開け後に、
孔広げ、押出し加工を行う例) VIM(3ton)→ ESR(360φ) →均質化熱処理(1200 ℃×24
h)→(AC)→熱間鍛造(1120 ℃×4h加熱、1120〜900 ℃で
300 φまで) →孔開け機械加工 (外径300 φ、内径60
φ) →熱間孔広げ加工 (1120℃加熱、外径300 φ、内径
154 φまで) →熱間押出 (1120℃加熱、外径200 φ、内
径150 φまで) →溶体化熱処理 (1040℃×2h)(FC) →時
効(700℃×8h→FC→620 ℃×8h,AC)。
Manufacturing method 4 (as plastic working, after drilling,
Example of expanding and extruding holes) VIM (3 ton) → ESR (360φ) → homogenizing heat treatment (1200 ℃ × 24
h) → (AC) → hot forging (1120 ℃ × 4h heating, 1120 ~ 900 ℃
Up to 300φ → Machining of holes (outer diameter 300φ, inner diameter 60
φ) → Hot hole expansion processing (1120 ℃ heating, outer diameter 300 φ, inner diameter
154φ) → Hot extrusion (1120 ° C heating, outer diameter 200φ, inner diameter 150φ) → solution heat treatment (1040 ° C × 2h) (FC) → aging (700 ° C × 8h → FC → 620 ° C × 8h , AC).

【0053】製造法5 (塑性加工と溶体化処理とを繰り
返す例) VIM(3ton)→ VAR(500φ) →均質化熱処理(1120 ℃×24
h)→(AC)→熱間鍛造(1160 ℃×8h加熱、1160〜900 ℃で
450 φまで) →均質化熱処理 (1200℃×48h)→(AC)→熱
間鍛造 (1160℃×4h加熱、1160〜900 ℃で300 φまで)
→溶体化熱処理(1000 ℃×8h) →(AC)→高速鍛造(1000
〜900 ℃で200 φまで) →溶体化熱処理(1000 ℃×1h)
→(AC)→時効(700℃×8h→FC→620 ℃×8h,AC)。
Manufacturing method 5 (example of repeating plastic working and solution heat treatment) VIM (3 ton) → VAR (500φ) → homogenizing heat treatment (1120 ℃ × 24
h) → (AC) → hot forging (1160 ℃ × 8h heating, 1160 ~ 900 ℃
(Up to 450φ) → Homogenization heat treatment (1200 ℃ × 48h) → (AC) → Hot forging (1160 ℃ × 4h heating, 1160〜900 ℃ up to 300φ)
→ Solution heat treatment (1000 ℃ × 8h) → (AC) → High speed forging (1000
Up to 200φ at 900 ℃) → Solution heat treatment (1000 ℃ × 1h)
→ (AC) → Aging (700 ℃ × 8h → FC → 620 ℃ × 8h, AC).

【0054】製造法6 (塑性加工と溶体化処理とを繰り
返して、最初の溶体化処理を低温長時間行う例) VIM(3ton)→ VAR(500φ) →均質化熱処理(1120 ℃×24
h)→(AC)→熱間鍛造(1160 ℃×8h加熱、1160〜900 ℃で
450 φまで) →均質化熱処理 (1200℃×48h)→(AC)→熱
間鍛造 (1160℃×4h加熱、1160〜900 ℃で300 φまで)
→溶体化熱処理(950℃×20h)→(AC)→高速鍛造(1000 〜
900 ℃で200 φまで) →溶体化熱処理(1000 ℃×1h)(A
C) →時効(700℃×8h→FC→620 ℃×8h,AC)。
Manufacturing method 6 (example in which plastic working and solution treatment are repeated to perform the first solution treatment at a low temperature for a long time) VIM (3 ton) → VAR (500φ) → homogenization heat treatment (1120 ° C × 24
h) → (AC) → hot forging (1160 ℃ × 8h heating, 1160 ~ 900 ℃
(Up to 450φ) → Homogenization heat treatment (1200 ℃ × 48h) → (AC) → Hot forging (1160 ℃ × 4h heating, 1160〜900 ℃ up to 300φ)
→ Solution heat treatment (950 ℃ × 20h) → (AC) → High speed forging (1000〜
(Up to 200φ at 900 ℃) → solution heat treatment (1000 ℃ × 1h) (A
C) → Aging (700 ° C × 8h → FC → 620 ° C × 8h, AC).

【0055】[各試験条件] 1. 引張試験 温度 : 室温 試験片 : 6.0 mmφ×GL=30mm 歪速度 : 1.0 ×10-3s-1 試験項目 : 0.2 %耐力、伸び、絞り。[Each test condition] 1. Tensile test Temperature: Room temperature Test piece: 6.0 mm φ × GL = 30 mm Strain rate: 1.0 × 10 −3 s −1 Test item: 0.2% yield strength, elongation, drawing.

【0056】2. 動的応力腐食割れ試験 溶液 : 大気 25%NaCl−1.5g/lS 7atmH2S −20atmCO2 温度 : 250 ℃ 試験片 : 4.0 mmφ×GL=20mm 歪速度 : 1.0 ×10-6s-1 試験項目 : 破断時間、絞り (大気中での値との比で評
価) 。
2. Dynamic stress corrosion cracking test Solution: Atmospheric 25% NaCl-1.5g / lS 7atmH 2 S -20atmCO 2 Temperature: 250 ° C Specimen: 4.0 mmφ × GL = 20mm Strain rate: 1.0 × 10 -6 s -1 Test item: Breaking time, diaphragm (evaluated by the ratio with the value in the atmosphere).

【0057】3. 水素割れ試験 NACE条件 : 5%NaCl−0.5 %CH3COOH 1atmH2S、25℃ 試験片 : 2t×10w ×75 l(mm)−R0.25Uノッチ付 炭素鋼カップリング 付加応力 : 1.0 σy 浸漬時間 : 1000h 表2に示すように本発明では所定の強度、すなわち0.2
%耐力 (室温) にて91kgf/mm2 以上と、優れた耐応力腐
食割れ性と耐水素割れ性が得られた。
3. Hydrogen cracking test NACE condition: 5% NaCl-0.5% CH 3 COOH 1 atmH 2 S, 25 ° C Specimen: 2t × 10w × 75 l (mm) −R0.25U Notched carbon steel coupling Additional stress : 1.0 σy Immersion time: 1000h As shown in Table 2, in the present invention, the predetermined strength, that is, 0.2
Excellent stress corrosion cracking resistance and hydrogen cracking resistance of 91 kgf / mm 2 or more at% proof stress (room temperature) were obtained.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】次に、表1の合金No. 1の組成の合金を製
造法1にて製造した合金について熱処理温度と耐動的応
力腐食割れ性との関係を図1にグラフで示す。図中、○
は耐食性良好、●は不良を示す。同様にして、鍛造時,
断面減少率と耐動的応力腐食割れ性との関係を図2にグ
ラフで示す。図中、○は耐食性良好、●は不良を示す。
Next, FIG. 1 is a graph showing the relationship between the heat treatment temperature and the dynamic stress corrosion cracking resistance of the alloy produced from the alloy No. 1 in Table 1 by the production method 1. In the figure
Indicates good corrosion resistance, and ● indicates poor. Similarly, during forging,
The relationship between the cross-section reduction rate and the dynamic stress corrosion cracking resistance is shown in a graph in FIG. In the figure, ○ indicates good corrosion resistance and ● indicates poor corrosion resistance.

【0061】さらに、合金No.1の高温延性についての試
験結果を図3にグラフで示す。この場合、1200℃×24h
r、空冷後、各試験温度まで昇温し5分間保持後、歪み
速度1(1/sec) にて引っ張り変形を加え、そのときの絞
り値を求めて高温延性を評価した。合金No.1について製
造法1で得られた析出物をまとめて示すと下掲の表3の
通りである。
Further, the test results of the hot ductility of Alloy No. 1 are shown in the graph of FIG. In this case, 1200 ℃ × 24h
After air-cooling, the temperature was raised to each test temperature and held for 5 minutes, and then tensile deformation was applied at a strain rate of 1 (1 / sec), and the drawing value at that time was obtained to evaluate the high temperature ductility. Precipitates obtained by the manufacturing method 1 for alloy No. 1 are collectively shown in Table 3 below.

【0062】[0062]

【表3】 [Table 3]

【0063】次いで、図4は、No.5合金の製造法5によ
る高速鍛造時の断面減少率、加熱温度と、得られる平均
結晶粒径との関係を示すグラフである。図5は、No.6合
金の製造法6による高速鍛造前の熱処理条件と鍛造後に
得られる平均結晶粒との関係を示すグラフである。
Next, FIG. 4 is a graph showing the relationship between the cross-sectional reduction rate, the heating temperature, and the average grain size obtained when high speed forging is performed by the No. 5 alloy manufacturing method 5. FIG. 5 is a graph showing the relationship between the heat treatment conditions before high-speed forging and the average crystal grain obtained after forging according to the manufacturing method 6 of No. 6 alloy.

【0064】[0064]

【発明の効果】以上のように、本発明によれば、サワー
ガス(H2S−CO2 −Cl- ) 環境、特に硫黄(S) が単体とし
て混入した環境において良好な耐応力腐食割れ性および
耐水素割れ性を有する、油井用部材 (特に抗口、抗底部
材) に用いられる高耐食性Ni基合金が得られる。
As is evident from the foregoing description, according to the present invention, the sour gas (H 2 S-CO 2 -Cl -) environment, especially sulfur (S) and good stress corrosion cracking resistance in an environment in which is mixed as a single A highly corrosion-resistant Ni-based alloy having hydrogen cracking resistance and used for oil well members (particularly, anti-throat and anti-bottom members) can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱処理条件と耐動的応力腐食割れ性との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between heat treatment conditions and dynamic stress corrosion cracking resistance.

【図2】鍛造時断面減少率と耐動的応力腐食割れ性との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the rate of reduction in cross section during forging and dynamic stress corrosion cracking resistance.

【図3】高温延性についての試験結果を示すグラフであ
る。
FIG. 3 is a graph showing the test results for hot ductility.

【図4】加工熱処理条件と平均結晶粒径との関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between thermomechanical treatment conditions and average crystal grain size.

【図5】加工熱処理条件と平均結晶粒径との関係を示す
グラフである。
FIG. 5 is a graph showing the relationship between thermomechanical processing conditions and average crystal grain size.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Cr: 14.0〜20.0%、W: 10.0〜25.0%、Nb: 4.0 〜7.0
%、 Fe: 2.0 〜10.0%、Ni: 50.0〜60.0%、 からなる組成の合金を、1000〜1300℃の温度範囲で1〜
200 時間加熱保持後、900 〜1300℃の温度範囲で断面減
少率10%以上の塑性加工を1回もしくは2回以上施して
から、900 〜1250℃の温度範囲で1分〜100 時間保持
後、引き続く時効温度( 600 〜800 ℃) まで炉冷〜空冷
までの冷却速度で冷却し600 ℃〜800 ℃で1〜200 時間
保持することによって時効処理を行い、粒界部にWC型の
炭化物を析出させることを特徴とする、サワーガス環境
下で優れた耐粒界破壊性を有するNi基合金の製造方法。
1. In weight%, Cr: 14.0 to 20.0%, W: 10.0 to 25.0%, Nb: 4.0 to 7.0.
%, Fe: 2.0 to 10.0%, Ni: 50.0 to 60.0%, an alloy with a composition of 1 to 1 at a temperature range of 1000 to 1300 ° C.
After heating and holding for 200 hours, plastic working with a cross-section reduction rate of 10% or more is performed once or twice or more in the temperature range of 900 to 1300 ° C, and after holding in the temperature range of 900 to 1250 ° C for 1 minute to 100 hours, Aging treatment is performed by cooling at a cooling rate from furnace cooling to air cooling up to the subsequent aging temperature (600 to 800 ° C) and holding at 600 ° C to 800 ° C for 1 to 200 hours to precipitate WC type carbides at grain boundaries. A method for producing a Ni-based alloy having excellent intergranular fracture resistance in a sour gas environment, characterized by:
【請求項2】 請求項1記載の組成の合金を、1000〜13
00℃の温度範囲で1〜200 時間加熱保持後、900 〜1300
℃の温度範囲で断面減少率10%以上の塑性加工を1回も
しくは2回以上施してから、980 〜1050℃で1分〜20時
間保持後、900 〜1050℃の範囲で断面減少率20%以上の
塑性加工を加え、さらに900 〜1050℃の温度範囲で1分
〜100 時間保持後、引き続く時効温度(600℃〜800 ℃)
まで炉冷〜空冷までの冷却速度で冷却し600 〜800 ℃で
1〜200 時間保持することによって時効処理を行い、粒
界部に平均結晶粒径40μm以下でかつWC型の炭化物を析
出させることを特徴とする、サワーガス環境下で優れた
耐粒界破壊性を有するNi基合金の製造方法。
2. The alloy of the composition according to claim 1,
After heating and holding in the temperature range of 00 ℃ for 1 to 200 hours, 900 to 1300
Cross-section reduction rate of 10% or more in the temperature range of ℃ 1 or 2 times or more, and then hold at 980-1050 ℃ for 1 minute-20 hours, then cross-section reduction rate of 20% in 900-1050 ℃ range After the above plastic working, it is held at a temperature range of 900 to 1050 ℃ for 1 minute to 100 hours, and then the aging temperature (600 ℃ to 800 ℃) continues.
Aging treatment by cooling at a cooling rate from furnace cooling to air cooling and holding at 600 to 800 ° C for 1 to 200 hours to precipitate WC type carbides with an average grain size of 40 μm or less at the grain boundary part. And a method for producing a Ni-based alloy having excellent intergranular fracture resistance in a sour gas environment.
【請求項3】 請求項1記載の組成の合金を、1000〜13
00℃の温度範囲で1〜200 時間加熱保持後、900 〜1300
℃の温度範囲で断面減少率10%以上の塑性加工を1回も
しくは2回以上施してから、900 〜980 ℃で20〜100 時
間加熱保持後、900 〜1050℃の範囲で断面減少率20%以
上の塑性加工を加え、さらに900 〜1050℃の温度範囲で
1分〜100 時間保持後、引き続く時効温度(600℃〜800
℃) まで炉冷〜空冷までの冷却速度で冷却し600 〜800
℃で1〜200 時間保持することによって時効処理を行
い、粒界部に平均結晶粒径20μm以下でかつWC型の炭化
物を析出させることを特徴とする、サワーガス環境下で
優れた耐粒界破壊性を有するNi基合金の製造方法。
3. The alloy of the composition according to claim 1,
After heating and holding in the temperature range of 00 ℃ for 1 to 200 hours, 900 to 1300
In the temperature range of ℃, plastic deformation with a cross-section reduction rate of 10% or more is performed once or twice or more, and after heating and holding at 900 to 980 ℃ for 20 to 100 hours, cross-section reduction rate of 20% in the range of 900 to 1050 ℃. After the plastic working described above is added and the temperature range of 900 to 1050 ℃ is maintained for 1 minute to 100 hours, the aging temperature (600 ℃ to 800 ℃)
℃) at a cooling rate from furnace cooling to air cooling 600-800
Excellent grain boundary fracture resistance in sour gas environments characterized by precipitating WC type carbides with an average grain size of 20 μm or less at grain boundaries by holding at 1 ℃ for 1 to 200 hours For producing a Ni-based alloy having heat resistance.
【請求項4】 前記組成の合金がさらに、Ti: 0.5 〜2.
0 %を含む請求項1ないし3のいずれかに記載の方法。
4. The alloy having the above composition further has Ti: 0.5 to 2.
A method according to any of claims 1 to 3, comprising 0%.
【請求項5】 前記組成の合金がさらに、Ca: 0.0010〜
0.010 %および/またはMg: 0.0010〜0.010 %を含む請
求項1ないし4のいずれかに記載の方法。
5. The alloy having the above composition further has Ca: 0.0010 to
The method according to any one of claims 1 to 4, comprising 0.010% and / or Mg: 0.0010 to 0.010%.
【請求項6】 前記組成の合金がさらに、Zr: 0.010 〜
0.50%、Hf: 0.10〜1.0 %、およびTa: 0.10〜1.0 %か
ら成る群から選んだ少なくとも1種を含む請求項1ない
し5のいずれかに記載の方法。
6. The alloy of the above composition further has Zr: 0.010 to
The method according to any one of claims 1 to 5, comprising at least one selected from the group consisting of 0.50%, Hf: 0.10 to 1.0%, and Ta: 0.10 to 1.0%.
JP15897793A 1993-06-29 1993-06-29 Production of ni-base alloy having intergranular fracture resistance Withdrawn JPH0711405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15897793A JPH0711405A (en) 1993-06-29 1993-06-29 Production of ni-base alloy having intergranular fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15897793A JPH0711405A (en) 1993-06-29 1993-06-29 Production of ni-base alloy having intergranular fracture resistance

Publications (1)

Publication Number Publication Date
JPH0711405A true JPH0711405A (en) 1995-01-13

Family

ID=15683518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15897793A Withdrawn JPH0711405A (en) 1993-06-29 1993-06-29 Production of ni-base alloy having intergranular fracture resistance

Country Status (1)

Country Link
JP (1) JPH0711405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083874B2 (en) 2004-04-27 2011-12-27 Mitsubishi Heavy Industries, Ltd. Method for producing low thermal expansion Ni-base superalloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083874B2 (en) 2004-04-27 2011-12-27 Mitsubishi Heavy Industries, Ltd. Method for producing low thermal expansion Ni-base superalloy

Similar Documents

Publication Publication Date Title
JP2760004B2 (en) High-strength heat-resistant steel with excellent workability
JP4430974B2 (en) Method for producing low thermal expansion Ni-base superalloy
JP2003268503A (en) Austenitic stainless steel tube having excellent water vapor oxidation resistance and production method thereof
WO2016129666A1 (en) Method for manufacturing austenitic heat-resistant alloy welded joint, and welded joint obtained using same
JP6492747B2 (en) Austenitic heat-resistant alloy tube manufacturing method and austenitic heat-resistant alloy tube manufactured by the manufacturing method
JP2011516735A (en) Ultra-supercritical boiler header alloy and manufacturing method
JP2017053006A (en) MANUFACTURING METHOD OF Ni-BASED HEAT RESISTANT ALLOY TUBE
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPH0711404A (en) Production of ni-base alloy having intergranular fracture resistance
CN105714152A (en) Nickel-based corrosion-resistant alloy and preparation method
JPH0711403A (en) Production of ni-base alloy having intergranular fracture resistance
JP6213683B2 (en) Steel and pipe for oil expansion
US3980468A (en) Method of producing a ductile rare-earth containing superalloy
JP3711959B2 (en) Heat resistant low alloy steel pipe and method for producing the same
JPH0450366B2 (en)
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH0711405A (en) Production of ni-base alloy having intergranular fracture resistance
JPS586927A (en) Production of high-strength oil well pipe of high stress corrosion cracking resistance
JP2688392B2 (en) Method for producing martensitic stainless steel with low cracking susceptibility
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH11117020A (en) Production of heat resistant parts
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JP2002173721A (en) Ni BASED ALLOY FOR MACHINE STRUCTURAL USE
JP2004332059A (en) Low alloy steel
JPH1096038A (en) High cr austenitic heat resistant alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905