JPH07114049A - Flush type optical waveguide - Google Patents

Flush type optical waveguide

Info

Publication number
JPH07114049A
JPH07114049A JP5259593A JP25959393A JPH07114049A JP H07114049 A JPH07114049 A JP H07114049A JP 5259593 A JP5259593 A JP 5259593A JP 25959393 A JP25959393 A JP 25959393A JP H07114049 A JPH07114049 A JP H07114049A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
waveguide
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5259593A
Other languages
Japanese (ja)
Inventor
Migaku Komoda
▲琢▼ 薦田
Akitomo Itou
顕知 伊藤
Kazutami Kawamoto
和民 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5259593A priority Critical patent/JPH07114049A/en
Publication of JPH07114049A publication Critical patent/JPH07114049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To enhance coupling efficiency by sticking the front surfaces of respective flush type optical waveguide elements to each other to eliminate the change in the refractive indices at the boundaries of the optical waveguides. CONSTITUTION:The front surface 13 and the front surface 14 are disposed to face each other and are aligned in such a manner that the optical waveguide 15 and the optical waveguide 16 overlap on each other. The front surface 13 and the front surface 14 are fixed to each other by optical glue, for example, resin cured by UV rays. As a result, the refractive index distribution of a vertical direction is nearly symmetrical in the front surfaces 13, 14 as a border, and the waveguide mode is symmetrical form in the optical waveguide 17. Then, the coupling efficiency is higher if light is coupled to the optical waveguide 17 of the optical waveguide element 100 than in the case of coupling of the light to the optical waveguide 15 of the optical waveguide element 18 or coupling of the light to the optical waveguide 16 of the optical waveguide element 19. Then, the performance of the optical waveguide type device is improved and the man-hours for operation at the time of element assembly are decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ディスク装置,レー
ザプリンタ、その他の光応用装置に係り、特に、その光
源等に用いる導波路型光集積素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical disk device, a laser printer, and other optical application devices, and more particularly to a waveguide type optical integrated device used as a light source thereof.

【0002】[0002]

【従来の技術】光応用装置の光源には、ガスレーザや半
導体レーザ、SHGレーザなどが用いられている。SH
Gレーザには大きく分けて3つの方式があり、そのうち
の導波路方式はレーザ光を光導波路に入射しSHGを得
るものである。また、導波路型SHGレーザに限らず、
光通信などの様々な分野で光導波路が用いられている。
2. Description of the Related Art Gas lasers, semiconductor lasers, SHG lasers and the like are used as light sources for optical application devices. SH
G lasers are roughly classified into three types, and the waveguide type among them is to obtain SHG by making laser light enter an optical waveguide. Further, not limited to the waveguide type SHG laser,
Optical waveguides are used in various fields such as optical communication.

【0003】光導波路作製には、いくつかの方法が提案
されている。西原浩らの著書、「光集積回路」(198
5年)に示されているように、三次元光導波路の基本的
な構造としては(1)埋込み型(図2(a)),(2)リ
ッジ型(図2(b)),(3)装荷型(図2(c))があ
り、望む光導波路構造やその材質によってイオン交換や
Ti拡散,プロトン交換等の方法を用いて三次元光導波
路を作製している。
Several methods have been proposed for producing an optical waveguide. Nishihara Hiro et al., "Optical Integrated Circuits" (198
5 years), the basic structure of the three-dimensional optical waveguide is (1) embedded type (FIG. 2 (a)), (2) ridge type (FIG. 2 (b)), (3) ) There is a loading type (FIG. 2C), and a three-dimensional optical waveguide is manufactured by a method such as ion exchange, Ti diffusion, and proton exchange depending on the desired optical waveguide structure and its material.

【0004】例えば、特開平3−287141 号公報には、図
3に示すように、タンタル酸リチウム(LiTaO3
基板上にプロトン交換(LiTaO3のLiイオンとプ
ロトンを一部置換する方法)により光導波路を形成した
例が記載されている。
For example, in Japanese Patent Laid-Open No. 3-287141, as shown in FIG. 3, lithium tantalate (LiTaO 3 ) is used.
An example is described in which an optical waveguide is formed on a substrate by proton exchange (a method in which Li ions of LiTaO 3 and protons are partially replaced).

【0005】[0005]

【発明が解決しようとする課題】しかし、従来技術に
は、以下に記すような問題があった。すなわち、光導波
路素子を用いる光学系では光導波路に入射する光の割合
(結合効率)を大きくすることが重要である。
However, the prior art has the following problems. That is, in an optical system using an optical waveguide element, it is important to increase the ratio of light incident on the optical waveguide (coupling efficiency).

【0006】図3に示すような方法では、光導波路の上
面36と基板の上面37とが一致するようにしか光導波
路を作製できない。したがって、図4(a)で示す切断
線で見た基板深さ方向の屈折率分布は、図4(b)で示
すように光導波路及び基板の上面で大きく変化する。こ
のため、光導波路中に閉じ込められた状態で伝搬する光
(導波モード)の強度分布を図4(a)で示す切断線で
みると非対称形となる(西原浩らの著書、「光集積回
路」(1985年)参照)。
According to the method shown in FIG. 3, the optical waveguide can be manufactured only so that the upper surface 36 of the optical waveguide and the upper surface 37 of the substrate are aligned with each other. Therefore, the refractive index distribution in the substrate depth direction, which is seen by the cutting line shown in FIG. 4A, greatly changes on the optical waveguide and the upper surface of the substrate as shown in FIG. 4B. Therefore, the intensity distribution of light (waveguide mode) propagating in a state of being confined in the optical waveguide has an asymmetrical shape when viewed along the cutting line shown in FIG. 4 (a) (see Nishihara Hiro et al. Circuit "(1985)).

【0007】光導波路への入射光源の発する光の強度分
布は多くの場合、光の進行方向に垂直な面で観測すると
二軸の対称形である。例えば、図5のような光学系を組
んだ場合、光導波路に入射する光の割合(結合効率)
は、入射光源の光と導波モードそれぞれのy方向強度分
布の重なり積分の値の大小に因るところが大きい。導波
モードの強度分布が非対称なこの場合には対称な場合に
比べて重なり積分値は小さく、結合効率も小さい。ま
た、埋込み型光導波路だけでなくリッジ型や装荷型の光
導波路にしても基本的には光導波路の上面は空気層であ
るので上記と同じ議論ができる。
In most cases, the intensity distribution of the light emitted from the light source that is incident on the optical waveguide is biaxially symmetric when observed in a plane perpendicular to the light traveling direction. For example, when an optical system as shown in FIG. 5 is assembled, the ratio of light incident on the optical waveguide (coupling efficiency)
Is largely due to the magnitude of the overlap integral value of the y-direction intensity distribution of the light of the incident light source and the guided mode. In this case where the intensity distribution of the guided mode is asymmetric, the overlap integral value is smaller and the coupling efficiency is smaller than in the case where the waveguide mode is symmetrical. Further, not only the buried type optical waveguide but also the ridge type or the loading type optical waveguide, since the upper surface of the optical waveguide is basically an air layer, the same discussion as above can be made.

【0008】さらに、例えばエレクトロニクス レター
ズ(Electronics Letters )第25巻の731頁から7
32頁で論じられているように、自発分極を持つ強誘電
体、例えば、LiTaO3 基板31の、前記自発分極の
向きを周期的に反転させた分極反転格子33を用い、基
本波と第二高調波の位相整合を取り、この基板上に、プ
ロトン交換法で、光導波路32を形成し、光導波路の一
端面に基本波34を入射し、第二高調波35を取り出す
方式がある。第二高調波の発生効率は上記光導波路内で
の基本波の導波モードと第二高調波の導波モードとの重
なりが大きいほど良くなる。前述したように基本波の導
波モードの形状は光導波路及びその周囲の屈折率分布に
より変形するが、光導波路上面が空気であると基本波の
導波モードと第二高調波の導波モードとの重なりが小さ
く、発生効率が小さい。
Further, for example, Electronics Letters Vol. 25, pp. 731 to 7
As discussed on page 32, a ferroelectric material having a spontaneous polarization, for example, a LiTaO 3 substrate 31 using a polarization inversion grating 33 in which the direction of the spontaneous polarization is periodically inverted is used. There is a method in which the harmonics are phase-matched, the optical waveguide 32 is formed on this substrate by the proton exchange method, the fundamental wave 34 is incident on one end face of the optical waveguide, and the second harmonic 35 is taken out. The generation efficiency of the second harmonic becomes better as the overlap between the guided mode of the fundamental wave and the guided mode of the second harmonic in the optical waveguide increases. As described above, the shape of the fundamental wave guided mode changes depending on the refractive index distribution of the optical waveguide and its surroundings. However, when the upper surface of the optical waveguide is air, the fundamental wave guided mode and the second harmonic guided mode are formed. The overlap with is small and the generation efficiency is small.

【0009】[0009]

【課題を解決するための手段】本発明によれば、二個の
埋込み型光導波路素子の上面同士をはりあわせる、すな
わち、図1において表面13と表面14をはりあわせる
ことで対称形の導波モードをもった一つの光導波路が提
供される。
According to the present invention, the upper surfaces of two embedded optical waveguide elements are bonded to each other, that is, the surfaces 13 and 14 in FIG. One optical waveguide is provided.

【0010】また、本発明によれば、二個の埋込み型光
導波路素子のうち少なくとも一方の光導波路素子におい
て、光導波路の光入射端と光出射端の少なくとも一方の
近傍の光導波路の断面形状が光導波路端部に向かって変
化する素子において、光導波路素子の上面同士をはりあ
わせることで対称形に近い導波モードをもった一つの光
導波路が提供される。
According to the present invention, in at least one of the two embedded optical waveguide elements, the cross-sectional shape of the optical waveguide near at least one of the light incident end and the light emitting end of the optical waveguide. In the element whose element changes toward the end portion of the optical waveguide, by laminating the upper surfaces of the optical waveguide elements together, one optical waveguide having a waveguide mode close to a symmetrical shape is provided.

【0011】更に本発明によれば、二個の埋込み型光導
波路素子のうち少なくとも一方の光導波路素子が周期的
な自発分極反転を有する非線形光学素子であり、上記光
導波路素子の上面同士をはりあわせることで高い第二高
調波発生効率をもつ一つの光導波路が提供される。
Further, according to the present invention, at least one of the two embedded optical waveguide elements is a nonlinear optical element having periodic spontaneous polarization reversal, and the upper surfaces of the optical waveguide elements are bonded to each other. This provides one optical waveguide having high second harmonic generation efficiency.

【0012】[0012]

【作用】本発明によれば、二個の埋込み型光導波路素子
の上面同士をはりあわせることで光導波路境界面におけ
る屈折率の大きな変化をなくし、入射光源からの光の強
度分布と光導波路の導波モードの強度分布との重なり積
分値を大きくすることで、結合効率を大きくすることが
できる。
According to the present invention, by bonding the upper surfaces of two embedded optical waveguide elements to each other, a large change in the refractive index at the boundary surface of the optical waveguide is eliminated, and the intensity distribution of the light from the incident light source and the guide of the optical waveguide are eliminated. The coupling efficiency can be increased by increasing the overlap integral value with the intensity distribution of the wave mode.

【0013】また、本発明によれば、二個の埋込み型光
導波路素子のうち少なくとも一方の光導波路素子が周期
的な自発分極反転を有する非線形光学素子であり、光導
波路素子の上面同士をはりあわせることで光導波路境界
面における屈折率の大きな変化をなくし、光導波路内で
の基本波の導波モードと第二高調波の導波モードとの重
なりを大きくすることで、第二高調波発生効率を大きく
することができる。
Further, according to the present invention, at least one of the two embedded optical waveguide elements is a non-linear optical element having periodic spontaneous polarization reversal, and the upper surfaces of the optical waveguide elements are bonded to each other. This eliminates a large change in the refractive index at the boundary surface of the optical waveguide and increases the overlap between the guided mode of the fundamental wave and the guided mode of the second harmonic in the optical waveguide, thereby increasing the efficiency of the second harmonic generation. Can be increased.

【0014】また、本発明によれば、二個の埋込み型光
導波路素子のうち少なくとも一方の光導波路素子が周期
的な自発分極反転を有する非線形光学素子を用いたSH
Gレーザを構成し、光情報記録再生装置などの光源とし
て用いることで、ディスク上のスポット径を0.5μm
程度に小さくできるので記録密度を従来の4倍に高める
ことができる。また、SHGレーザをレーザビームプリ
ンタの光源として用いることで印字の高精彩化ができ
る。
Further, according to the present invention, the SH using at least one of the two embedded optical waveguide elements is a nonlinear optical element having periodic spontaneous polarization reversal.
The spot diameter on the disc is 0.5 μm by using the G laser as a light source for an optical information recording / reproducing device.
Since the size can be made small, the recording density can be increased four times that of the conventional one. Further, by using the SHG laser as the light source of the laser beam printer, high definition printing can be achieved.

【0015】[0015]

【実施例】次に、光応用装置、例えば光情報記録再生装
置の光源として導波路型SHGレーザを採用し、前記導
波路型SHGレーザの導波路素子に本発明による埋込型
光導波路を用いる実施例を図面と共に説明する。
EXAMPLE Next, a waveguide type SHG laser is adopted as a light source of an optical application apparatus, for example, an optical information recording / reproducing apparatus, and the buried type optical waveguide according to the present invention is used as a waveguide element of the waveguide type SHG laser. An embodiment will be described with reference to the drawings.

【0016】(実施例1)図1(a)は本発明による埋
込型光導波路の一実施例を示す断面図であり、図1
(b)は図1(a)の光素子の斜視図である。図1にお
いて、11と12は、表面13と表面14が+c面であ
るゼットカット(Zcut)LiTaO3単結晶基板であ
る。+c面とは、LiTaO3 のような一軸性強誘電体
結晶がもつ自発分極の向きに垂直な面のうちの一面であ
る。15と16はプロトン交換により作製されたチャン
ネル型の光導波路であり、たとえば、巾4μm,厚さ3
μmの光導波路である。表面13と表面14を向かい合
わせ、光導波路15と光導波路16とが重なるように位
置合わせして、光学のり、例えば紫外線で硬化するレジ
ンで表面13と表面14を互いに固定する。
(Embodiment 1) FIG. 1A is a sectional view showing an embodiment of an embedded optical waveguide according to the present invention.
FIG. 1B is a perspective view of the optical element of FIG. In FIG. 1, 11 and 12 are Zcut LiTaO 3 single crystal substrates whose surfaces 13 and 14 are + c-planes. The + c plane is one of the planes perpendicular to the direction of spontaneous polarization of a uniaxial ferroelectric crystal such as LiTaO 3 . Reference numerals 15 and 16 are channel type optical waveguides produced by proton exchange, for example, width 4 μm, thickness 3
It is an optical waveguide of μm. The surface 13 and the surface 14 are opposed to each other, the optical waveguide 15 and the optical waveguide 16 are aligned so as to overlap each other, and the surface 13 and the surface 14 are fixed to each other with an optical glue, for example, a resin that is cured by ultraviolet rays.

【0017】これにより、表面13(14)を境にして
上下方向の屈折率分布は対称に近くなり、光導波路17
における導波モードは対称形となった。したがって、光
導波路素子100の光導波路17に光を結合すると、光
導波路素子18の光導波路15に光を結合する場合や光
導波路素子19の光導波路16に光を結合する場合に比
べて、結合効率は大きくなった。
As a result, the refractive index distribution in the up-down direction becomes nearly symmetrical with respect to the surface 13 (14), and the optical waveguide 17
The guided mode at is symmetric. Therefore, when the light is coupled to the optical waveguide 17 of the optical waveguide element 100, the coupling is greater than when the light is coupled to the optical waveguide 15 of the optical waveguide element 18 or the optical waveguide 16 of the optical waveguide element 19. Efficiency has increased.

【0018】(実施例2)図6(a)は本発明による埋
込型光導波路の一実施例を示す断面図であり、図6
(b)は図6(a)の光素子の斜視図である。図6にお
いて、61と62は、表面63と表面64が+c面であ
るZcutLiTaO3単結晶基板である。65と66はプ
ロトン交換により作製されたチャンネル型の光導波路で
ある。光導波路65は、長さが20mmあり、少なくとも
一方の導波路端部から他方の導波路端部に向かって約2
mmの長さにわたり、その断面形状が徐々に変化、たとえ
ば、巾4μmから巾2μmへと狭くなり、また、厚さが
3μmから2μmへと薄くなるようにして導波路端部6
01を構成してある。
(Embodiment 2) FIG. 6A is a sectional view showing an embodiment of the embedded optical waveguide according to the present invention.
FIG. 6B is a perspective view of the optical element of FIG. In FIG. 6, reference numerals 61 and 62 denote ZcutLiTaO 3 single crystal substrates whose surfaces 63 and 64 are + c planes. Reference numerals 65 and 66 are channel type optical waveguides produced by proton exchange. The optical waveguide 65 has a length of 20 mm and is approximately 2 mm from at least one waveguide end portion toward the other waveguide end portion.
The cross-sectional shape gradually changes over the length of mm, for example, the width is reduced from 4 μm to 2 μm, and the thickness is reduced from 3 μm to 2 μm.
01 is configured.

【0019】光導波路66は、光入射端の導波路端部か
ら光の伝搬方向へ約2mmの長さにわたり、その断面形状
が徐々に変化、たとえば、巾4μmから巾2μmへと狭
くなり、また、厚さが3μmから0μmへと薄くなるよ
うにして導波路を構成してある。表面63と表面64を
向かい合わせ、光導波路65と光導波路66とが重なる
ように位置合わせして、光学のり、例えば、紫外線で硬
化するレジンで表面63と表面64を互いに固定する。
The optical waveguide 66 gradually changes its cross-sectional shape, for example, from a width of 4 μm to a width of 2 μm, over a length of about 2 mm from the waveguide end portion of the light incident end in the light propagation direction. The waveguide is configured so that the thickness is reduced from 3 μm to 0 μm. The surface 63 and the surface 64 are opposed to each other, and the optical waveguide 65 and the optical waveguide 66 are aligned so as to overlap each other, and the surface 63 and the surface 64 are fixed to each other with an optical glue, for example, a resin that is cured by ultraviolet rays.

【0020】これにより、表面63(64)を境にして
上下方向の屈折率分布は対称に近くなり、光導波路67
の導波路端部602における導波モードは対称形に近く
なった。したがって、光導波路素子600の光導波路6
7に光を結合すると、光導波路素子68の光導波路65
に光を結合する場合や光導波路素子69の光導波路66
に光を結合する場合に比べて、結合効率は大きくなっ
た。さらに、光導波路66は実施例1の光導波路16に
比べて巾が広く長さが短いので、光導波路65と光導波
路66を重ねる際の位置合わせの精度がゆるくなった。
As a result, the refractive index distribution in the up-down direction becomes nearly symmetrical with respect to the surface 63 (64), and the optical waveguide 67
The waveguide mode at the waveguide end portion 602 of 1 is close to a symmetric shape. Therefore, the optical waveguide 6 of the optical waveguide element 600 is
When light is coupled to 7, the optical waveguide 65 of the optical waveguide element 68 is
When coupling light to the optical waveguide 66 of the optical waveguide element 69
The coupling efficiency was higher than that in the case of coupling light to. Further, since the optical waveguide 66 has a wider width and a shorter length than the optical waveguide 16 of the first embodiment, the precision of alignment when the optical waveguide 65 and the optical waveguide 66 are overlapped is reduced.

【0021】(実施例3)図7(a)は本発明による埋
込型光導波路の一実施例を示す断面図であり、図7
(b)は図7(a)の光素子の斜視図である。図7にお
いて、71と72は、表面73と表面74が+c面であ
るZcutLiTaO3単結晶基板である。75と76はプ
ロトン交換により作製されたチャンネル型の光導波路で
ある。光導波路75は、長さが20mmあり、一方の導波
路端部から他方の導波路端部に向かって約5mmの長さに
わたり、その断面形状が徐々に変化、たとえば、巾4μ
mから巾2μmへと狭くなり、また、厚さが3μmから
2μmへと薄くなるようにして導波路端部701を構成
してある。光導波路76は、長さが20mmあり、一方の
導波路端部から他方の導波路端部に向かって20mmの長
さにわたり、その断面形状が徐々に変化、たとえば、巾
4μmから巾2μmへと狭くなり、また、厚さが3μm
から2μmへと薄くなるようにして導波路を構成してあ
る。
(Embodiment 3) FIG. 7A is a sectional view showing an embodiment of the embedded optical waveguide according to the present invention.
7B is a perspective view of the optical device of FIG. 7A. In FIG. 7, 71 and 72 are ZcutLiTaO 3 single crystal substrates whose surfaces 73 and 74 are + c planes. 75 and 76 are channel type optical waveguides produced by proton exchange. The optical waveguide 75 has a length of 20 mm, and its cross-sectional shape gradually changes from the one end of the waveguide to the other end of the waveguide by about 5 mm, for example, a width of 4 μm.
The waveguide end portion 701 is configured so that the width becomes narrower from m to 2 μm and the thickness becomes thinner from 3 μm to 2 μm. The optical waveguide 76 has a length of 20 mm, and its cross-sectional shape gradually changes from the one waveguide end portion to the other waveguide end portion over a length of 20 mm, for example, from a width of 4 μm to a width of 2 μm. Narrower and 3 μm thick
To 2 μm, the waveguide is formed.

【0022】表面73と表面74を向かい合わせ、光導
波路75と光導波路76とが重なるように位置合わせし
て、光学のり、例えば、紫外線で硬化するレジンで表面
73と表面74を互いに固定する。
The surface 73 and the surface 74 are opposed to each other, and the optical waveguide 75 and the optical waveguide 76 are aligned so as to overlap each other, and the surface 73 and the surface 74 are fixed to each other with an optical glue, for example, a resin which is cured by ultraviolet rays.

【0023】これにより、表面73(74)を境にして
上下方向の屈折率分布は対称に近くなり、光導波路77
の導波路端部702における導波モードは対称形に近く
なった。したがって、光導波路素子700の光導波路7
7に光を結合すると、光導波路素子78の光導波路75
に光を結合する場合や光導波路素子79の光導波路76
に光を結合する場合に比べて、結合効率は大きくなっ
た。さらに、光導波路76は実施例1の光導波路16に
比べて巾が広く緩やかに変化するので、光導波路75と
光導波路76を重ねる際の位置合わせの精度がゆるくな
った。
As a result, the refractive index distribution in the up-down direction becomes nearly symmetrical with respect to the surface 73 (74), and the optical waveguide 77
The waveguide mode at the waveguide end portion 702 of is close to symmetric. Therefore, the optical waveguide 7 of the optical waveguide element 700 is
When light is coupled to 7, the optical waveguide 75 of the optical waveguide element 78
When the light is coupled to the optical waveguide 76 of the optical waveguide element 79
The coupling efficiency was higher than that in the case of coupling light to. Furthermore, since the optical waveguide 76 has a wider width and changes more gently than the optical waveguide 16 of the first embodiment, the alignment accuracy when the optical waveguide 75 and the optical waveguide 76 are overlapped is reduced.

【0024】(実施例4)図8(a)は本発明による埋込
型光導波路の一実施例を示す断面図であり、図8(b)
は図8(a)の光素子の斜視図である。図8において、
81と82は、表面83が+c面、表面84がーc面で
あるZcutLiTaO3単結晶基板である。85はLiT
aO3 単結晶薄膜で、通常自発分極は上向きである。8
6は分極が反転された部分で、この部分では分極は下向
きである。またその周期はΛである。ジャーナル オブ
アプライド フィジックス(Journal of Applied Phys
ics)Vol.40,No.2,720頁から734頁によ
ると、非線形光学係数の符号は、LiTaO3 等の空間
群R3cの強誘電体結晶の場合自発分極の向きと一致す
る。
(Embodiment 4) FIG. 8A is a sectional view showing an embodiment of the embedded optical waveguide according to the present invention, and FIG.
FIG. 9 is a perspective view of the optical element of FIG. In FIG.
81 and 82 are ZcutLiTaO 3 single crystal substrates whose surface 83 is + c plane and whose surface 84 is −c plane. 85 is LiT
For aO 3 single crystal thin film, spontaneous polarization is usually upward. 8
Reference numeral 6 denotes a portion where the polarization is inverted, and the polarization is downward in this portion. The period is Λ. Journal of Applied Physics
ics) Vol. 40, No. 2, pages 720 to 734, the sign of the nonlinear optical coefficient coincides with the direction of spontaneous polarization in the case of a ferroelectric crystal of space group R3c such as LiTaO 3 .

【0025】したがって、本実施例の基板ならびに光導
波路の非線形光学系数も周期的に反転されている。87
はプロトン交換により作製されたチャンネル型の光導波
路であり、基本波,第二高調波ともこの部分に閉じ込め
られて伝搬する。表面83と表面84を向かい合わせ、
光学のり、例えば、紫外線で硬化するレジンで表面83
と表面84を互いに固定する。
Therefore, the nonlinear optical coefficients of the substrate and the optical waveguide of this embodiment are also periodically inverted. 87
Is a channel-type optical waveguide manufactured by proton exchange, and both the fundamental wave and the second harmonic wave are confined in this portion and propagate. Face the surface 83 and the surface 84,
Optical glue, for example, a surface 83 made of a resin that is cured by ultraviolet rays.
And surface 84 are secured to each other.

【0026】これにより、表面83(84)を境にして
上下方向の屈折率分布は対称に近くなり、光導波路88
における基本波の導波モードは対称形に近くなった。し
たがって、光導波路素子800の光導波路88に基本波
を結合すると、光導波路素子89の光導波路87に基本
波を結合する場合に比べて、基本波の導波モードと第二
高調波の導波モードとの導波路内での重なりが大きくな
り、第二高調波の発生効率は大きくなった。
As a result, the refractive index distribution in the up-down direction becomes nearly symmetrical with respect to the surface 83 (84), and the optical waveguide 88
The guided mode of the fundamental wave at is close to symmetric. Therefore, when the fundamental wave is coupled to the optical waveguide 88 of the optical waveguide element 800, compared to the case where the fundamental wave is coupled to the optical waveguide 87 of the optical waveguide element 89, the guided mode of the fundamental wave and the second harmonic wave are guided. The overlap with the mode in the waveguide became large, and the generation efficiency of the second harmonic became large.

【0027】(実施例5)図9は本発明による埋込型光
導波路の作製において、導波路を重ねる過程での位置合
わせの精度を確保する方法を説明する図である。図9に
おいて、91と92は、表面93と表面94が+c面で
あるZcutLiTaO3単結晶基板である。95と96は
プロトン交換により作製されたチャンネル型の光導波路
である。97と98は、それぞれ導波路95の中心線に
対し、一定の距離、たとえば、それぞれ2mm離れて配置
された球状の凸部であり、これらは複合円錐面開口マス
クを用いて、たとえばNb25をスパッタリングして集
積し作製したものである。
(Embodiment 5) FIG. 9 is a diagram for explaining a method of ensuring the alignment accuracy in the process of stacking the waveguides in the fabrication of the embedded optical waveguide according to the present invention. In FIG. 9, 91 and 92 are ZcutLiTaO 3 single crystal substrates whose surfaces 93 and 94 are + c-planes. 95 and 96 are channel type optical waveguides produced by proton exchange. Reference numerals 97 and 98 denote spherical convex portions arranged at a constant distance, for example, 2 mm from the center line of the waveguide 95, and these are made of, for example, Nb 2 O using a complex conical surface opening mask. It was made by sputtering and integrating 5 .

【0028】99と90は、それぞれ導波路96の中心
線に対し、一定の距離、たとえば、それぞれ2mm離れて
配置され、しかも表面93と表面94をはりあわせると
きに、97と99,98と90がそれぞれはまり合うよ
うに配置された球状の凹部である。球状の凹部99と9
0は、ジオデシックレンズを作製する方法と同様に、ダ
イヤモンドバイトで切削し、99及び90の半径がそれ
ぞれ97,98の半径にほぼ等しくなるよう作製した。
したがって、表面93と表面94を向かい合わせ、光導
波路95と光導波路96とが重なるように位置合わせし
て、光学のり、例えば、紫外線で硬化するレジンで表面
93と表面94を互いに固定するときに、97と99,
98と90がそれぞれはまりあうように表面93と表面
94をあわせることで光導波路95と光導波路96を精
度良く重ね合わせることができた。さらに、97と98
の間隔、及び99と90の間隔が長ければ長いほど導波
路を重ねる過程での位置合わせの精度は良くなる。
99 and 90 are arranged at a fixed distance from the center line of the waveguide 96, for example, 2 mm each, and when the surfaces 93 and 94 are bonded together, 97 and 99, 98 and 90 are formed. Each is a spherical concave portion that is arranged so as to fit together. Spherical recesses 99 and 9
0 was cut with a diamond cutting tool in the same manner as in the method of manufacturing a geodesic lens, and the radius of 99 and 90 was made substantially equal to the radius of 97 and 98, respectively.
Therefore, when the surface 93 and the surface 94 are opposed to each other and the optical waveguide 95 and the optical waveguide 96 are aligned so as to overlap with each other, when the surface 93 and the surface 94 are fixed to each other with an optical glue, for example, a resin that is cured by ultraviolet rays. , 97 and 99,
By aligning the surface 93 and the surface 94 so that 98 and 90 fit into each other, the optical waveguide 95 and the optical waveguide 96 could be accurately overlapped. In addition, 97 and 98
The longer the distance between and, and the longer the distance between 99 and 90, the better the accuracy of alignment in the process of overlapping the waveguides.

【0029】[0029]

【発明の効果】本発明によれば、埋込型光導波路の側断
面方向屈折率分布がほぼ対称になるよう光導波路が作製
されているので、極めて簡易に、かつ、高効率に光デバ
イス間の光結合を行うことができ、光導波路型デバイス
の性能の向上や素子組立時の作業工数の削減に寄与す
る。さらに、本発明による埋込型光導波路を導波路型波
長変換素子に用いれば、高効率波長変換が可能となる。
According to the present invention, the optical waveguide is manufactured so that the refractive index distribution in the cross-sectional direction of the embedded optical waveguide is substantially symmetrical, so that it is extremely simple and highly efficient between optical devices. The optical coupling can be performed, which contributes to the improvement of the performance of the optical waveguide type device and the reduction of the man-hours for assembling the element. Furthermore, if the embedded optical waveguide according to the present invention is used for a waveguide type wavelength conversion element, highly efficient wavelength conversion becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】基本的な三次元光導波路構造の従来例を示す説
明図。
FIG. 2 is an explanatory diagram showing a conventional example of a basic three-dimensional optical waveguide structure.

【図3】プロトン交換によって光導波路を形成した波長
変換素子の一従来例を示す説明図。
FIG. 3 is an explanatory diagram showing a conventional example of a wavelength conversion element in which an optical waveguide is formed by proton exchange.

【図4】基本的な光導波路の一従来例とその屈折率分布
を示す説明図。
FIG. 4 is an explanatory view showing a conventional example of a basic optical waveguide and its refractive index distribution.

【図5】光導波路素子に入射光源からの光を結合させる
光学系の概略を示す説明図。
FIG. 5 is an explanatory diagram showing an outline of an optical system that couples light from an incident light source to an optical waveguide device.

【図6】本発明の第二の実施例を示す説明図。FIG. 6 is an explanatory diagram showing a second embodiment of the present invention.

【図7】本発明の第三の実施例を示す説明図。FIG. 7 is an explanatory diagram showing a third embodiment of the present invention.

【図8】本発明の第四の実施例を示す説明図。FIG. 8 is an explanatory diagram showing a fourth embodiment of the present invention.

【図9】本発明の第五の実施例を示す説明図。FIG. 9 is an explanatory diagram showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、15…光導波路、16…光導波路。 11 ... Substrate, 15 ... Optical waveguide, 16 ... Optical waveguide.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光学基板と、前記光学基板上または前記光
学基板内に形成された前記基板より高い屈折率を有する
光導波部からなる光導波路において、前記光導波路が、
前記光学基板の主面上または主面内の少なくとも一部に
前記基板より高いチャンネル型の光導波部が形成された
複数の光学基板からなり、前記複数の基板の主面同士が
貼り合わされて成ることを特徴とする埋込型光導波路。
1. An optical waveguide comprising an optical substrate and an optical waveguide portion formed on or in the optical substrate and having a higher refractive index than the substrate, wherein the optical waveguide comprises:
The optical substrate comprises a plurality of optical substrates on which a channel type optical waveguide portion higher than the substrate is formed on at least a part of the main surface of the optical substrate, and the main surfaces of the plurality of substrates are bonded to each other. An embedded optical waveguide characterized by the above.
【請求項2】請求項1において、前記複数の光学基板上
または光学基板内に形成されたチャンネル型光導波部の
少なくとも一方の領域の大きさが、光の伝搬方向で変化
している埋込型光導波路。
2. The embedded structure according to claim 1, wherein the size of at least one region of the channel type optical waveguide formed on or in the plurality of optical substrates changes in the light propagation direction. Type optical waveguide.
【請求項3】請求項1において、前記複数の光学基板の
少なくとも一方が、自発分極を有する非線形光学結晶基
板である埋込型光導波路。
3. The embedded optical waveguide according to claim 1, wherein at least one of the plurality of optical substrates is a nonlinear optical crystal substrate having spontaneous polarization.
【請求項4】請求項3において、前記非線形光学基板の
一主面上または内部に形成された光導波部、または前記
非線形光学基板の一部および前記光導波部の自発分極が
周期的に反転されている非線形光学素子。
4. The optical waveguide section according to claim 3, wherein the optical waveguide portion formed on or inside one main surface of the nonlinear optical substrate, or a part of the nonlinear optical substrate and the spontaneous polarization of the optical waveguide portion are periodically inverted. Non-linear optical element.
【請求項5】請求項1,2,3または4において、第一
の光学基板上に前記光導波部に平行に配置された雄型の
球形の凸部を形成し、第二の光学基板上に前記光導波部
に平行に配置された球形の凹部を形成し、両基板の凹部
と凸部を合わせることにより両基板上または内部に形成
された二つの光導波部の位置を合わせる埋込型光導波路
の製造方法。
5. A male-type spherical convex portion arranged in parallel with the optical waveguide portion is formed on the first optical substrate according to claim 1, 2, 3 or 4. Embedded type in which a spherical concave portion arranged parallel to the optical waveguide portion is formed, and the concave and convex portions of both substrates are aligned to align the positions of two optical waveguide portions formed on or inside both substrates. Manufacturing method of optical waveguide.
JP5259593A 1993-10-18 1993-10-18 Flush type optical waveguide Pending JPH07114049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5259593A JPH07114049A (en) 1993-10-18 1993-10-18 Flush type optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5259593A JPH07114049A (en) 1993-10-18 1993-10-18 Flush type optical waveguide

Publications (1)

Publication Number Publication Date
JPH07114049A true JPH07114049A (en) 1995-05-02

Family

ID=17336269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5259593A Pending JPH07114049A (en) 1993-10-18 1993-10-18 Flush type optical waveguide

Country Status (1)

Country Link
JP (1) JPH07114049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006002747T5 (en) 2005-10-18 2008-10-02 Advantest Corp. Optical transmission means comprising hermetic sealing element, optoelectronic device and optical transmission method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006002747T5 (en) 2005-10-18 2008-10-02 Advantest Corp. Optical transmission means comprising hermetic sealing element, optoelectronic device and optical transmission method
US7699538B2 (en) 2005-10-18 2010-04-20 Advantest Corp. Hermetically sealing member having optical transmission means, optoelectronic apparatus, and optical transmission method

Similar Documents

Publication Publication Date Title
US4951293A (en) Frequency doubled laser apparatus
EP0753767A2 (en) Diffracting optical apparatus
JP2679570B2 (en) Polarization separation element
JP2009048021A (en) Light deflection element and light deflection module
JP2021162634A (en) Optical waveguide element
JP3848093B2 (en) Optical waveguide device, optical wavelength conversion device, and optical waveguide device manufacturing method
US6785457B2 (en) Optical waveguide device and coherent light source and optical apparatus using the same
US6999668B2 (en) Method for manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
US6501868B1 (en) Optical waveguide device, coherent light source, integrated unit, and optical pickup
JP7043999B2 (en) Groove fabrication method for hybrid optical devices and hybrid optical devices
JPH07114049A (en) Flush type optical waveguide
JP2000284135A (en) Optical waveguide device having planar optical waveguide, integrated optical module consisted by using the same and method to mount the same
US5343484A (en) SHG (second-harmonic generation) device
JPH10239544A (en) Optical waveguide element and manufacture thereof
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
JP3735685B2 (en) Integrated optical waveguide device
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH01293589A (en) Integrated-type light-emitting element
JP2687923B2 (en) Optical nonreciprocal circuit and manufacturing method thereof
JPH02219032A (en) Optical wavelength converting element
CN116830024A (en) Optical waveguide element, optical modulation device using the same, and optical transmission device
JPS6353504A (en) Waveguide type optical element and its manufacture
JP2001330744A (en) Optical waveguide device, method for manufacturing the same, light source using the same and optical system using the same
JPH05249520A (en) Optical second higher harmonic generator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees