JPH0711392A - Stainless steel for supporting nb3sn superconductor excellent in cryogenic characteristic and its production - Google Patents

Stainless steel for supporting nb3sn superconductor excellent in cryogenic characteristic and its production

Info

Publication number
JPH0711392A
JPH0711392A JP15976193A JP15976193A JPH0711392A JP H0711392 A JPH0711392 A JP H0711392A JP 15976193 A JP15976193 A JP 15976193A JP 15976193 A JP15976193 A JP 15976193A JP H0711392 A JPH0711392 A JP H0711392A
Authority
JP
Japan
Prior art keywords
less
steel
stainless steel
supporting
nbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15976193A
Other languages
Japanese (ja)
Inventor
Akio Yamamoto
章夫 山本
Yuichi Sato
雄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15976193A priority Critical patent/JPH0711392A/en
Publication of JPH0711392A publication Critical patent/JPH0711392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain stainless steel for supporting an Nb3Sn superconductor excellent in cryogenic characteristics by specifying the compsn. constituted of C, Si, Mn, Cr, Ni, Nb, Al, N and iron and precipitating NbC or NbN. CONSTITUTION:In steel contg., by weight, <=0.02% C, 0.01 to 2.O% Si, 1 to 8% Mn, 12 to 25% Cr, 5 to 20% Ni, 0.01 to 0.2% Nb, 0.001 to 0.l0% Al and 0.05 to 0.3% 'N, furthermore contg., at need, 0.5 to 3% Mo and moreover contg. 0.0005 to 0.01% Ca, and the balance iron with inevitable impurities, NbC and/or NbN are 1 precipitated. The precipitation of the NbC and NbN executed by subjecting a steel ingot or slab having the same componental compsn. to hot rolling by the conventional method, thereafter executing heating to 1000 to 1200 deg.C for <=0.5min, holding it between 950 to 800 deg. for 1 to 30min at the time of cooling and subsequently executing cooling. in this way, the stainless steel for supporting an Nb3Sn superconductor excellent in strength and toughness at an extremely low temp. can be obtd. at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導発電機などに使
用されるNb3 Sn超電導コイルのコンジット管用の極
低温での強度および靱性の優れたステンレス鋼およびそ
の製造方法に関するものである。Nb3 Sn超電導体は
非常に脆いため、これらの素材を金属の支持体を用いて
コイルの形状にし熱処理を行って製造する。この支持体
は、そのまま強度部材として超電導温度まで冷却され稼
動中も使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel having excellent strength and toughness at cryogenic temperature for a conduit tube of Nb 3 Sn superconducting coil used in a superconducting generator and the like and a method for producing the same. Since Nb 3 Sn superconductors are very brittle, they are manufactured by heat treating these materials into a coil shape using a metal support. This support is used as a strength member as it is while it is cooled to the superconducting temperature and is in operation.

【0002】[0002]

【従来の技術】Nb3 Sn超電導コイルのコンジット管
は、超電導体製造時に600〜750℃の長時間加熱を
受けた上、超電導温度の極低温域で高い強度と優れた靱
性が要求され、また超電導コイルと接するので非磁性で
あること、さらにコンジット管の造管の点から溶接割れ
のないことが不可欠である。
2. Description of the Related Art Conduit tubes of Nb 3 Sn superconducting coils are heated at 600 to 750 ° C. for a long time during the production of superconductors, and are required to have high strength and excellent toughness in an extremely low temperature range of superconducting temperature. Since it is in contact with the superconducting coil, it is indispensable that it is non-magnetic and that there is no weld cracking from the viewpoint of making a conduit tube.

【0003】従来この用途には、Cを極力低減しNを多
量添加して低温強度を確保しかつγ相を安定化したオー
ステナイト系ステンレス鋼が用いられてきた。しかし、
このような低Cのオーステナイト系ステンレス鋼でも、
600〜850℃の長時間加熱で粒界にCrの窒化物が
生成し、極低温での靱性が劣化することが認められてい
る。これに対して、特開昭58−193347号公報に
はVを添加する方法が開示されているが、高価な元素の
添加が必要となるだけでなく、強度向上を狙って高Nに
すると効果が必ずしも明確ではなくなる。また、特開昭
63−134627号公報には溶体化後Nb3 Sn生成
熱処理温度より高目の温度域に再加熱を行う方法が開示
されている。この方法は、工程が煩雑になることからコ
ストの上昇を防止できない。
Conventionally, for this application, austenitic stainless steel in which C is reduced as much as possible and N is added in a large amount to secure low temperature strength and stabilize the γ phase has been used. But,
Even with such low C austenitic stainless steel,
It has been recognized that Cr nitrides are formed at grain boundaries by long-term heating at 600 to 850 ° C., and the toughness at extremely low temperatures deteriorates. On the other hand, Japanese Patent Laid-Open No. 58-193347 discloses a method of adding V. However, not only the addition of expensive elements is required, but also high N is effective in order to improve strength. Is not always clear. Further, Japanese Patent Application Laid-Open No. 63-134627 discloses a method of reheating to a temperature range higher than the heat treatment temperature for Nb 3 Sn formation after solution heat treatment. This method cannot prevent an increase in cost because the process becomes complicated.

【0004】従来より極低温域での特性改善を狙って成
分の影響が検討されている。この結果、Niを多量に添
加することで極低温域での特性劣化が抑制されることが
認められていることから、インコロイなどの高Ni合金
の適用も試みられている。しかしこの方法は、高価なN
iを多量に添加する必要があり、コスト的に幅広い適用
は困難であった。
Conventionally, the influence of the components has been studied aiming at improving the characteristics in the extremely low temperature range. As a result, it has been recognized that the addition of a large amount of Ni suppresses the deterioration of the characteristics in the extremely low temperature range. Therefore, application of a high Ni alloy such as incoloy has been attempted. However, this method is expensive
It was necessary to add a large amount of i, and it was difficult to apply it widely in terms of cost.

【0005】以上の様に、Nb3 Sn超電導コイルのコ
ンジット管として極低温域で強度と靱性が確保できる低
コストの材料や対応方法がなかった。
As described above, there has been no low-cost material or a countermeasure for the conduit tube of the Nb 3 Sn superconducting coil which can secure the strength and toughness in the cryogenic temperature range.

【0006】[0006]

【発明が解決しようとする課題】本発明は、Nb3 Sn
超電導コイルのコンジット管において、Nb3 Sn製造
時の熱処理を行っても極低温で靱性の劣化が少なく、か
つ高い強度を確保できる低コストのオーステナイト系ス
テンレス鋼とその製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention is based on Nb 3 Sn
Disclosed is a low-cost austenitic stainless steel capable of ensuring high strength with little deterioration of toughness even at a low temperature even when heat treatment is carried out during manufacturing of Nb 3 Sn in a superconducting coil conduit tube, and a method for manufacturing the same. .

【0007】[0007]

【課題を解決するための手段】Nb3 Sn超電導体コン
ジット管に用いられるNを多量に添加した高強度のオー
ステナイト系ステンレス鋼において、Nb3 Sn製造時
の熱処理による極低温での靱性の劣化は、この熱処理時
に粒界に多量のCr炭窒化物が析出するためであると考
えられてきた。そのため、この熱処理による粒界Cr炭
窒化物の析出抑制を狙って、主として粒内に析出しやす
いCr以外の炭窒化物を析出させる方法や合金元素の適
正化による方法が検討されてきた。しかし、通常高強度
を狙ってNを多量に添加したオーステナイト系ステンレ
ス鋼であるために、Cr炭窒化物の析出を抑制すること
は極めて困難であり、多少の抑制は可能であっても不確
実であることがわかった。
[Means for Solving the Problems] In a high-strength austenitic stainless steel containing a large amount of N, which is used for Nb 3 Sn superconducting conduit tubes, deterioration of toughness at cryogenic temperatures due to heat treatment during Nb 3 Sn production does not occur. It has been considered that this is because a large amount of Cr carbonitride precipitates at the grain boundaries during this heat treatment. Therefore, aiming at the suppression of precipitation of grain boundary Cr carbonitrides by this heat treatment, a method of precipitating carbonitrides other than Cr, which easily precipitates in the grains, and a method of optimizing alloy elements have been investigated. However, since it is usually an austenitic stainless steel with a large amount of N added for the purpose of high strength, it is extremely difficult to suppress the precipitation of Cr carbonitrides, and even if some suppression is possible, it is uncertain. I found out.

【0008】そこで、本発明者らはCr炭窒化物の析出
を抑制するのではなく、析出しても極低温域での靱性に
無害であるような状態で析出するように制御することを
指向した。すなわち、析出炭窒化物が極低温で靱性を劣
化せしめるのは粒界に析出するからであり、粒内に析出
する限りはその悪影響は軽いものと考えられる。従っ
て、何等かの方法でCr炭窒化物の析出部位を粒内に導
くことを指向したのである。
Therefore, the present inventors have aimed not to suppress the precipitation of Cr carbonitride, but to control it so that it does not harm the toughness in the extremely low temperature region even if it is deposited. did. That is, the reason why the precipitated carbonitride deteriorates the toughness at an extremely low temperature is that it precipitates at the grain boundary, and it is considered that its adverse effect is small as long as it precipitates within the grain. Therefore, it was aimed to guide the precipitation site of Cr carbonitride into the grain by some method.

【0009】本発明者らは、種々の合金でCr炭窒化物
の析出起点を詳細に調査したところ、微細なNbの炭窒
化物を析出核とする傾向が認められた。本発明はこの知
見を基づいて、下記要旨の発明を構成した。 1)重量%で、C:0.02%以下、Si:0.01%
以上2.0%以下、Mn:1%以上8%以下、Cr:1
2%以上25%以下、Ni:5%以上20%以下、N
b:0.01%以上0.2%以下、Al:0.001%
以上0.10%以下、N:0.05%以上0.3%以下
を含有し、残部鉄および不可避不純物からなり、鋼中に
NbCおよび/ないしNbNを析出させたことを特徴と
する極低温特性の優れたNb3 Sn超電導体支持用ステ
ンレス鋼。
The present inventors have investigated the origin of precipitation of Cr carbonitrides in various alloys in detail, and found that the tendency of using fine Nb carbonitrides as precipitation nuclei was observed. The present invention has constituted the inventions of the following gist based on this finding. 1)% by weight, C: 0.02% or less, Si: 0.01%
Or more and 2.0% or less, Mn: 1% or more and 8% or less, Cr: 1
2% to 25%, Ni: 5% to 20%, N
b: 0.01% to 0.2%, Al: 0.001%
Cryogenically characterized by containing not less than 0.10% and not more than 0.10%, N: not less than 0.05% and not more than 0.3%, balance iron and unavoidable impurities, and precipitating NbC and / or NbN in steel. Nb 3 Sn superconductor supporting stainless steel with excellent characteristics.

【0010】さらに、極低温域での強度向上を狙ってM
oを添加した鋼の実施態様として、 2)重量%で、C:0.02%以下、Si:0.01%
以上2.0%以下、Mn:1%以上8%以下、Cr:1
2%以上25%以下、Ni:5%以上20%以下、M
o:0.5%以上3%以下、Nb:0.01%以上0.
2%以下、Al:0.001%以上0.10%以下、
N:0.05%以上0.3%以下を含有し、残部鉄およ
び不可避不純物からなり、鋼中にNbCおよび/ないし
NbNを析出させたことを特徴とする極低温特性の優れ
たNb3 Sn超電導体支持用ステンレス鋼。
Furthermore, in order to improve the strength in the extremely low temperature range, M
As an embodiment of steel to which o is added, 2)% by weight, C: 0.02% or less, Si: 0.01%
Or more and 2.0% or less, Mn: 1% or more and 8% or less, Cr: 1
2% to 25%, Ni: 5% to 20%, M
o: 0.5% to 3%, Nb: 0.01% to 0.
2% or less, Al: 0.001% or more and 0.10% or less,
And N: 0.05% or more and 0.3% or less, with the remainder being iron and inevitable impurities, excellent Nb 3 Sn cryogenic properties, characterized in that to NbC and / absence to precipitate NbN in steel Stainless steel for supporting superconductors.

【0011】また、熱間加工性の向上を狙ってCaを添
加した鋼の実施態様として 3)重量%で、C:0.02%以下、Si:0.01%
以上2.0%以下、Mn:1%以上8%以下、Cr:1
2%以上25%以下、Ni:5%以上20%以下、N
b:0.01%以上0.2%以下、Al:0.001%
以上0.10%以下、N:0.05%以上0.3%以
下、Ca:0.0005%以上0.01%以下を含有
し、残部鉄および不可避不純物からなり、鋼中にNbC
および/ないしNbNを析出させたことを特徴とする極
低温特性の優れたNb3 Sn超電導体支持用ステンレス
鋼。および 4)重量%で、C:0.02%以下、Si:0.01%
以上2.0%以下、Mn:1%以上8%以下、Cr:1
2%以上25%以下、Ni:5%以上20%以下、M
o:0.5%以上3%以下、Nb:0.01%以上0.
2%以下、Al:0.001%以上0.10%以下、
N:0.05%以上0.3%以下、Ca:0.0005
%以上0.01%以下を含有し残部鉄および不可避不純
物からなり、鋼中にNbCおよび/ないしNbNを析出
させたことを特徴とする極低温特性の優れたNb3 Sn
超電導体支持用ステンレス鋼。
Further, as an embodiment of steel in which Ca is added in order to improve hot workability, 3)% by weight, C: 0.02% or less, Si: 0.01%
Or more and 2.0% or less, Mn: 1% or more and 8% or less, Cr: 1
2% to 25%, Ni: 5% to 20%, N
b: 0.01% to 0.2%, Al: 0.001%
Or more and 0.10% or less, N: 0.05% or more and 0.3% or less, Ca: 0.0005% or more and 0.01% or less, and the balance iron and inevitable impurities, and NbC in the steel.
And / or NbN is precipitated, which is a stainless steel for supporting Nb 3 Sn superconductor having excellent cryogenic characteristics. And 4) wt%, C: 0.02% or less, Si: 0.01%
Or more and 2.0% or less, Mn: 1% or more and 8% or less, Cr: 1
2% to 25%, Ni: 5% to 20%, M
o: 0.5% to 3%, Nb: 0.01% to 0.
2% or less, Al: 0.001% or more and 0.10% or less,
N: 0.05% to 0.3%, Ca: 0.0005
% Or more to 0.01% or less and the balance of iron and inevitable impurities, excellent Nb 3 Sn cryogenic properties, characterized in that to NbC and / absence to precipitate NbN in steel
Stainless steel for supporting superconductors.

【0012】本発明において、Cr炭窒化物の析出核を
Nbの炭窒化物に限定するためには、析出するCr炭窒
化物の総量が少ないことが必要である。すなわち、多量
にCr炭窒化物が析出する場合には析出しやすいNbの
炭窒化物以外の部分すなわち粒界からの析出が増加し、
所期の目的を達成できなくなる。そこで、C添加量を極
めて低いレベルに限定する必要がある。
In the present invention, in order to limit the precipitation nuclei of Cr carbonitrides to Nb carbonitrides, it is necessary that the total amount of precipitated Cr carbonitrides is small. That is, when a large amount of Cr carbonitride is precipitated, the precipitation from the portion other than the carbonitride of Nb which is likely to be precipitated, that is, the grain boundary is increased,
The intended purpose cannot be achieved. Therefore, it is necessary to limit the amount of C added to an extremely low level.

【0013】本発明鋼は、合金成分さえ一致させれば達
成できるものではない。すなわちCr炭窒化物の析出核
となる微細なNbの炭窒化物が粒内に散在していること
が重要である。このために種々の製造の方法が考えられ
る。このための方法として、種々の炭窒化物を一旦溶体
化した後、Nb炭窒化物は析出するがCr炭窒化物は析
出しない温度域を徐冷するかあるいは同温度域に保定す
ることを創案した。そこで本発明では、溶体化処理の加
熱後冷却途中でNb炭窒化物は析出するがCr炭窒化物
は析出しない特定の温度域を徐冷することとしたもので
ある。
The steel of the present invention cannot be achieved by matching the alloy components. That is, it is important that fine Nb carbonitrides serving as precipitation nuclei of Cr carbonitrides are scattered in the grains. For this purpose, various manufacturing methods are possible. As a method for this purpose, it is proposed that after solutionizing various carbonitrides once, Nb carbonitrides are deposited but Cr carbonitrides are not deposited by gradually cooling or maintaining the same temperature range. did. Therefore, in the present invention, the Nb carbonitride precipitates but the Cr carbonitride does not precipitate during the cooling after heating in the solution heat treatment, and the specific temperature range is gradually cooled.

【0014】従来、溶体化処理は、その目的効果を確実
ならしめるために急冷することが常識である。しかし、
本発明では、たとえ本発明鋼と同じ成分の鋼を用いたと
しても、従来の常識通りに急冷すると完全にC、Nが溶
体化することになる。その場合、その後のNb3 Sn製
造時の熱処理でCr炭窒化物は粒内に析出核がないため
に粒界に析出し極低温の靱性が劣化して、本発明鋼を用
いた場合の効果は期待できない。溶体化処理ではNb炭
窒化物も析出するが、Cr炭窒化物とほぼ同時に析出す
るために、Cr炭窒化物の析出核として機能しない。
Conventionally, it is common knowledge that the solution treatment is rapidly cooled in order to ensure the intended effect. But,
In the present invention, even if a steel having the same composition as that of the steel of the present invention is used, C and N will be completely solutionized by rapid cooling according to the conventional wisdom. In that case, the Cr carbonitride precipitates at the grain boundaries due to the absence of precipitation nuclei in the grains during the subsequent heat treatment during the production of Nb 3 Sn, and the toughness at cryogenic temperatures deteriorates. Can't expect. Nb carbonitrides are also precipitated in the solution treatment, but they do not function as precipitation nuclei of Cr carbonitrides because they are precipitated almost simultaneously with Cr carbonitrides.

【0015】以上の知見に基づいて、下記要旨の発明を
構成した。 5)重量%で、C:0.02%以下、Si:0.01%
以上2.0%以下、Mn:1%以上8%以下、Cr:1
2%以上25%以下、Ni:5%以上20%以下、N
b:0.01%以上0.2%以下、Al:0.001%
以上0.10%以下、N:0.05%以上0.3%以下
を含有し、残部鉄および不可避不純物からなる鋼塊ある
いは鋼片を常法により熱間圧延し、次いで1000℃以
上1200℃以下に0.5分以上加熱し、その冷却時に
950〜800℃の間を1分以上30分以下保定し、し
かる後冷却することを特徴とする鋼中にNbCおよび/
ないしNbNを析出させた極低温特性の優れたNb3
n超電導体支持用ステンレス鋼の製造方法。
Based on the above findings, the invention of the following gist was constructed. 5)% by weight, C: 0.02% or less, Si: 0.01%
Or more and 2.0% or less, Mn: 1% or more and 8% or less, Cr: 1
2% to 25%, Ni: 5% to 20%, N
b: 0.01% to 0.2%, Al: 0.001%
Or more and 0.10% or less, N: 0.05% or more and 0.3% or less, and the steel ingot or slab containing the balance iron and unavoidable impurities is hot-rolled by a conventional method, and then 1000 ° C or more and 1200 ° C. The steel is characterized in that it is heated below for 0.5 minutes or more, and when cooled, the temperature between 950 and 800 ° C. is held for 1 minute or more and 30 minutes or less, followed by cooling NbC and / or
To Nb 3 S with excellent cryogenic properties
n A method for manufacturing stainless steel for supporting a superconductor.

【0016】6)重量%で、C:0.02%以下、S
i:0.01%以上2.0%以下、Mn:1%以上8%
以下、Cr:12%以上25%以下、Ni:5%以上2
0%以下、Mo:0.5%以上3%以下、Nb:0.0
1%以上0.2%以下、Al:0.001%以上0.1
0%以下、N:0.05%以上0.3%以下を含有し、
残部鉄および不可避不純物からなる鋼塊あるいは鋼片を
常法により熱間圧延し、次いで1000℃以上1200
℃以下に0.5分以上加熱し、その冷却時に950〜8
00℃の間を1分以上30分以下保定し、しかる後冷却
することを特徴とする鋼中にNbCおよび/ないしNb
Nを析出させた極低温特性の優れたNb3Sn超電導体
支持用ステンレス鋼の製造方法。
6)% by weight, C: 0.02% or less, S
i: 0.01% to 2.0%, Mn: 1% to 8%
Below, Cr: 12% or more and 25% or less, Ni: 5% or more 2
0% or less, Mo: 0.5% or more and 3% or less, Nb: 0.0
1% to 0.2%, Al: 0.001% to 0.1
0% or less, N: contains 0.05% or more and 0.3% or less,
A steel ingot or a steel slab containing the balance iron and unavoidable impurities is hot-rolled by a conventional method, and then 1000 ° C. or more 1200
It is heated to below ℃ for 0.5 minutes or more, and at the time of cooling, it is 950 to 8
NbC and / or Nb in steel characterized in that the temperature is held between 00 ° C for 1 minute or more and 30 minutes or less and then cooled.
A method for producing Nb 3 Sn superconductor-supporting stainless steel having excellent cryogenic properties, in which N is precipitated.

【0017】7)重量%で、C:0.02%以下、S
i:0.01%以上2.0%以下、Mn:1%以上8%
以下、Cr:12%以上25%以下、Ni:5%以上2
0%以下、Nb:0.01%以上0.2%以下、Al:
0.001%以上0.10%以下、N:0.05%以上
0.3%以下、Ca:0.0005%以上0.01%以
下を含有し、残部鉄および不可避不純物からなる鋼塊あ
るいは鋼片を常法により熱間圧延し、次いで1000℃
以上1200℃以下に0.5分以上加熱し、その冷却時
に950〜800℃の間を1分以上30分以下保定し、
しかる後冷却することを特徴とする鋼中にNbCおよび
/ないしNbNを析出させた極低温特性の優れたNb3
Sn超電導体支持用ステンレス鋼の製造方法。 8)重量%で、C:0.02%以下、Si:0.01%
以上2.0%以下、Mn:1%以上8%以下、Cr:1
2%以上25%以下、Ni:5%以上20%以下、M
o:0.5%以上3%以下、Nb:0.01%以上0.
2%以下、Al:0.001%以上0.10%以下、
N:0.05%以上0.3%以下、Ca:0.0005
%以上0.01%以下を含有し、残部鉄および不可避不
純物からなる鋼塊あるいは鋼片を常法により熱間圧延
し、次いで1000℃以上1200℃以下に0.5分以
上加熱し、その冷却時に950〜800℃の間を1分以
上30分以下保定し、しかる後冷却することを特徴とす
る鋼中にNbCおよび/ないしNbNを析出させた極低
温特性の優れたNb3 Sn超電導体支持用ステンレス鋼
の製造方法。
7)% by weight, C: 0.02% or less, S
i: 0.01% to 2.0%, Mn: 1% to 8%
Below, Cr: 12% or more and 25% or less, Ni: 5% or more 2
0% or less, Nb: 0.01% or more and 0.2% or less, Al:
Steel ingot containing 0.001% or more and 0.10% or less, N: 0.05% or more and 0.3% or less, Ca: 0.0005% or more and 0.01% or less, and the balance iron and unavoidable impurities Hot rolling a billet by a conventional method, then 1000 ° C
It is heated to 1200 ° C or lower for 0.5 minutes or longer, and the temperature is kept at 950 to 800 ° C for 1 minute to 30 minutes during cooling.
Nb 3 and / or NbN precipitated in steel, which is characterized by being cooled thereafter, and having excellent cryogenic properties, Nb 3
A manufacturing method of stainless steel for supporting an Sn superconductor. 8) C: 0.02% or less, Si: 0.01% by weight
Or more and 2.0% or less, Mn: 1% or more and 8% or less, Cr: 1
2% to 25%, Ni: 5% to 20%, M
o: 0.5% to 3%, Nb: 0.01% to 0.
2% or less, Al: 0.001% or more and 0.10% or less,
N: 0.05% to 0.3%, Ca: 0.0005
% Or more and 0.01% or less and the steel ingot or slab containing the balance iron and unavoidable impurities is hot-rolled by a conventional method, then heated to 1000 ° C. or more and 1200 ° C. or less for 0.5 minutes or more, and then cooled. sometimes 950-800 and retention less than 30 minutes 1 minute between ° C., excellent Nb 3 Sn superconductors supporting cryogenic properties to precipitate NbN to NbC and / absence in the steel, characterized by thereafter cooled For manufacturing stainless steel for automobiles.

【0018】次に、本発明の限定条件について説明す
る。Cは、多量に添加すると極低温での強度は向上する
が、本発明の狙いであるCr炭窒化物のNb炭窒化物を
析出核とした粒内析出以外に粒界にも多量に析出するこ
ととなり、極低温での靱性が劣化して所期の目的を果た
せないために、0.02%を上限とした。
Next, the limiting conditions of the present invention will be described. When C is added in a large amount, the strength at cryogenic temperature is improved, but in addition to the intragranular precipitation of Nb carbonitride of Cr carbonitride, which is the aim of the present invention, as precipitation nuclei, a large amount of C is also precipitated at grain boundaries. Therefore, the toughness at cryogenic temperature deteriorates and the intended purpose cannot be achieved, so 0.02% was made the upper limit.

【0019】Siは、0.01%未満では鋼の清浄度が
不良となり靱性が劣化するために0.01%を下限とし
た。しかし、2.0%を超えると冷間加工性が劣化し、
コンジット管製造が困難となるため2.0%を上限とし
た。Mnは、オーステナイト相の安定化を促進するだけ
でなくNの固溶限を拡大して強化を可能ならしめるため
積極的に添加する元素である。しかし1%未満ではこの
効果が小さいので1%を下限とし、8%を超えると逆に
極低温での母材靱性が劣化するので8%を上限とした。
If the Si content is less than 0.01%, the cleanliness of the steel becomes poor and the toughness deteriorates, so 0.01% was made the lower limit. However, if it exceeds 2.0%, the cold workability deteriorates,
Since it is difficult to manufacture a conduit pipe, 2.0% was made the upper limit. Mn is an element that is positively added in order not only to promote the stabilization of the austenite phase but also to expand the solid solution limit of N to enable strengthening. However, if it is less than 1%, this effect is small. Therefore, the lower limit is 1%, and if it exceeds 8%, the toughness of the base material deteriorates at extremely low temperatures. Therefore, the upper limit is 8%.

【0020】Crは、Nb3 Sn製造のための熱処理時
の高温強度と耐食性を確保するために12%以上が必要
であるが、25%を超えると脆いσ相を生成して靱性を
劣化させるため25%を上限とした。Niは、オーステ
ナイト相を安定化し、極低温での強度、靱性および延性
を向上させる元素であるが、5%未満ではオーステナイ
ト相の安定化効果が不十分であるので5%を下限とし
た。しかし、極めて高価な元素であるためコストの点か
らオーステナイト安定化効果が飽和する20%を上限と
した。
Cr is required to be 12% or more in order to secure high temperature strength and corrosion resistance during heat treatment for producing Nb 3 Sn, but if it exceeds 25%, a brittle σ phase is formed to deteriorate toughness. Therefore, 25% was made the upper limit. Ni is an element that stabilizes the austenite phase and improves the strength, toughness and ductility at cryogenic temperatures, but if it is less than 5%, the effect of stabilizing the austenite phase is insufficient, so the lower limit was made 5%. However, since it is an extremely expensive element, from the viewpoint of cost, the upper limit was 20% at which the austenite stabilizing effect was saturated.

【0021】Nbは、本発明のCr炭窒化物の析出起点
を造り込むために不可欠な元素である。0.01%未満
ではその効果が認められず、0.2%を超えるとNbの
炭窒化物が多量になり強化元素のNを消費して極低温で
の強度を低下させるだけでなく、Nb3 Sn製造のため
の熱処理時にFe2 Nbを形成して逆に極低温での靱性
を劣化させるためNb含有量を0.01〜0.2%と限
定した。
Nb is an indispensable element for forming the precipitation starting point of the Cr carbonitride of the present invention. If it is less than 0.01%, the effect is not recognized, and if it exceeds 0.2%, a large amount of Nb carbonitrides consumes the strengthening element N to reduce the strength at cryogenic temperature. The Nb content was limited to 0.01 to 0.2% in order to form Fe 2 Nb during the heat treatment for the production of 3 Sn and conversely deteriorate the toughness at extremely low temperatures.

【0022】Alは、脱酸材として鋼の清浄度を改善す
る元素である。しかし、0.001%未満ではこの効果
がなく、0.10%を超えると熱間加工性が劣化するた
めAl含有量を0.001〜0.10%と限定した。N
は、オーステナイト相を安定化し、極低温での強度を確
保するために極めて有効な元素である。しかし、0.0
5%未満ではその効果が小さく、0.3%を超えると溶
接性が著しく劣化して溶接割れやブローホールの発生が
多発するためN含有量を0.05〜0.3%と限定し
た。
Al is an element that improves the cleanliness of steel as a deoxidizer. However, if it is less than 0.001%, this effect does not exist, and if it exceeds 0.10%, the hot workability deteriorates, so the Al content is limited to 0.001 to 0.10%. N
Is an extremely effective element for stabilizing the austenite phase and ensuring strength at extremely low temperatures. But 0.0
If it is less than 5%, the effect is small, and if it exceeds 0.3%, the weldability is remarkably deteriorated and weld cracks and blowholes frequently occur, so the N content is limited to 0.05 to 0.3%.

【0023】以上が本発明鋼の基本成分であるが、本発
明においては前記基本成分に加えてさらに強度を確保す
るためにMoを、また熱間加工性向上を狙ってCaを、
それそれ単独でもしくは複合して添加することができ
る。Moの添加は0.5%未満では強度向上効果が小さ
く、3%を超えるとFe2Moを形成して極低温での靱
性を劣化させるためMo含有量を0.5〜3%と限定し
た。Caの添加は0.0005%未満では熱間加工性向
上効果がなく、0.01%を超えると清浄度を不良とす
るためにCa含有量を0.0005〜0.01%と限定
した。
The above are the basic components of the steel of the present invention. In the present invention, in addition to the above basic components, Mo is added to secure the strength, and Ca is added to improve the hot workability.
It can be added alone or in combination. If the addition of Mo is less than 0.5%, the strength improving effect is small, and if it exceeds 3%, Fe 2 Mo is formed and the toughness at cryogenic temperature is deteriorated, so the Mo content is limited to 0.5 to 3%. . If the addition of Ca is less than 0.0005%, there is no hot workability improving effect, and if it exceeds 0.01%, the Ca content is limited to 0.0005 to 0.01% in order to impair cleanliness.

【0024】請求項5から8に示した本発明鋼の製造方
法では、いずれも常法により熱間圧延した後、1000
℃以上1200℃以下に0.5分以上加熱し、次いでそ
の冷却時に950℃〜800℃の間を1分以上30分以
下保定し、しかる後冷却することを限定している。熱間
圧延後、一旦種々の炭窒化物を溶体化することが必要で
あるが、1000℃未満では溶体化が不十分であり、1
200℃を超えるとオーステナイト結晶粒が粗大化して
強度の低下を招くので、溶体化温度を1000〜120
0℃と限定した。
In each of the methods for producing the steel of the present invention as defined in claims 5 to 8, after hot rolling by a conventional method, 1000
The heating is limited to 0.5 to 1200 ° C. for 0.5 minutes or more, and then the temperature is kept at 950 to 800 ° C. for 1 to 30 minutes, and then cooled. After hot rolling, it is necessary to solution heat various carbonitrides once.
If the temperature exceeds 200 ° C., the austenite crystal grains are coarsened and the strength is lowered.
Limited to 0 ° C.

【0025】Cr炭窒化物は析出させずにNb炭窒化物
を析出させる温度域は、950〜800℃の温度域が適
切である。950℃を超える温度域は冷却速度にかかわ
らず溶体化状態であるために、本発明では冷却速度は限
定しない。950〜800℃は、Nb炭窒化物の粒内微
細析出の起こる温度域である。従って、本発明ではこの
温度域を徐冷ないし保定することを限定要件とする。N
b炭窒化物の粒内微細析出は、この温度域を1分以上3
0分以下保定し、しかる後冷却するか、あるいはこの温
度域を1分以上かけて徐冷する必要がある。しかし、3
0分を超える保定ないし徐冷は、Nb炭窒化物の析出が
ほぼ完了し、その後の保定ないし徐冷は無意味となるの
で本発明では除外した。
A suitable temperature range for precipitating Nb carbonitride without precipitating Cr carbonitride is 950 to 800 ° C. The cooling rate is not limited in the present invention because the temperature range exceeding 950 ° C. is a solution state regardless of the cooling rate. 950 to 800 [deg.] C. is a temperature range where intragranular fine precipitation of Nb carbonitride occurs. Therefore, in the present invention, it is a limiting requirement to gradually cool or retain this temperature range. N
b In-grain microprecipitation of carbonitrides should occur in this temperature range for more than 1 minute 3
It is necessary to hold it for 0 minutes or less and then cool it, or gradually cool this temperature range over 1 minute or more. But 3
The retention or gradual cooling for more than 0 minutes was excluded in the present invention because the precipitation of Nb carbonitride is almost completed and the subsequent retention or gradual cooling becomes meaningless.

【0026】[0026]

【作用】本発明鋼においては、微細に粒内析出したNb
炭窒化物がNb3 Sn製造のための熱処理時に析出する
Cr炭窒化物の析出核として機能するため、粒界へのC
r炭窒化物の析出が減少し、極低温で優れた靱性を確保
できることになる。また、溶体化した後直ちに急冷せず
に、Cr炭窒化物は析出しないがNb炭窒化物が析出す
る温度域を徐冷ないし保定することで、粒内にNb炭窒
化物を微細析出させることが可能となり本発明鋼を容易
に製造可能となる。
In the steel of the present invention, Nb finely precipitated in the grains
To serve as precipitation nuclei of Cr carbonitrides carbonitride precipitates during the heat treatment for Nb 3 Sn production, C of the grain boundaries
Precipitation of r-carbonitride is reduced, and excellent toughness can be secured at extremely low temperatures. Further, without quenching immediately after solution heat treatment, Cr carbonitrides do not precipitate, but Nb carbonitrides are finely precipitated in grains by gradually cooling or retaining the temperature range in which Nb carbonitrides precipitate. This makes it possible to easily manufacture the steel of the present invention.

【0027】[0027]

【実施例】表1に示した鋼を溶解鋳造し、熱間圧延を行
って厚さ3mmの熱延板を製造した。この熱延鋼板を1
050℃に加熱し、表2に示した冷却条件で冷却する溶
体化処理を実施した。その後、溶体化処理材の析出物の
析出状態の調査およびNb 3 Sn生成熱処理に相当する
700℃−200h空冷処理後の析出物の析出状態の調
査と4Kでの強度、靱性評価を行い、その結果を表2に
併せて示した。なお、強度は引張試験で靱性はシャルピ
ー衝撃値で評価した。
[Example] The steels shown in Table 1 were melt-cast and hot-rolled.
Thus, a hot rolled sheet having a thickness of 3 mm was manufactured. This hot rolled steel sheet 1
Heating to 050 ° C and cooling under the cooling conditions shown in Table 2
Body treatment was carried out. Then, the precipitate of the solution heat treated material
Investigation of precipitation state and Nb 3Corresponds to Sn formation heat treatment
Adjustment of the deposition state of the deposit after air-cooling treatment at 700 ° C-200h
And the strength and toughness at 4K were evaluated, and the results are shown in Table 2.
It is also shown. In addition, strength is a tensile test and toughness is charpy.
-Evaluated by impact value.

【0028】本発明方法による本発明鋼は、溶体化処理
材では微細なNb炭窒化物が粒内に析出し、Nb3 Sn
生成相当熱処理後はCr炭窒化物が粒内を中心に析出し
ており、4Kでの強度が高く靱性が優れていることが認
められた。一方、Nbを添加しない鋼では、本発明方法
で限定した熱処理を実施しても溶体化処理後析出物が認
められず、Nb3 Sn生成相当熱処理後Cr炭窒化物が
粒界に析出して靱性が劣った。逆にNbを多量に添加し
た鋼では、本発明方法で限定した熱処理を実施すると溶
体化処理後析出物が粒界を含め多量に認められ、Nb3
Sn生成相当熱処理後Cr炭窒化物が粒界に析出しやは
り靱性が劣った。また、Cを多量に添加した鋼では、本
発明方法で限定した熱処理を実施すると、溶体化処理材
では微細なNb炭窒化物が粒内に析出するが、Nb3
n生成相当熱処理後Cr炭窒化物が粒内だけでなく粒界
にも多量に析出しやはり靱性が劣った。
In the steel of the present invention produced by the method of the present invention, fine Nb carbonitrides are precipitated in the grains in the solution treated material, and Nb 3 Sn
After the heat treatment equivalent to formation, Cr carbonitride was precipitated mainly in the grains, and it was confirmed that the strength at 4K was high and the toughness was excellent. On the other hand, in the steel containing no Nb, no precipitate was observed after the solution treatment even after the heat treatment limited by the method of the present invention, and Cr carbonitride was precipitated at the grain boundary after the heat treatment corresponding to Nb 3 Sn formation. The toughness was poor. The large amount of the added steel with Nb Conversely, solution treatment after precipitates when implementing the heat treatment is limited in the present invention a method is a large amount was observed, including grain boundary, Nb 3
After heat treatment equivalent to Sn generation, Cr carbonitride was precipitated at the grain boundaries, and the toughness was also inferior. Further, in the case of steel containing a large amount of C, when the heat treatment limited by the method of the present invention is carried out, fine Nb carbonitrides precipitate in the grains in the solution treated material, but Nb 3 S
After the heat treatment corresponding to n generation, a large amount of Cr carbonitride was precipitated not only in the grains but also at the grain boundaries, and the toughness was also inferior.

【0029】Caを添加した本発明鋼は、熱間での疵が
大幅に減少し熱間加工性の向上が確認できた。もちろ
ん、析出物や強度靱性への影響は認められず、4Kでの
靱性も優れていた。
In the steel of the present invention to which Ca was added, it was confirmed that the flaws during hot working were significantly reduced and the hot workability was improved. Of course, no effect on precipitates and strength toughness was observed, and the toughness at 4K was also excellent.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上述べたとおり、本発明によりNb3
Sn超電導コイルのコンジット管に用いられる極低温で
の強度靱性に優れたオーステナイト系ステンレス鋼を低
コストで得ることが可能となる。従来、コンジット管の
靱性が劣化することからNb3 Snの生成反応を適切な
条件に設定できなかった。このため、超電導コイルとし
て大きな電流を流すには大きな超電導コイルを製造せざ
るを得なかったが、本発明によりNb3 Snの生成熱処
理条件を適切に設定することが可能となり、超電導を利
用した機器の普及を促進することができる。さらにはこ
の結果、エネルギーの大きな節約が可能となるなど、工
業的社会的効果は大きい。
As described above, according to the present invention, Nb 3
It is possible to obtain austenitic stainless steel excellent in strength and toughness at cryogenic temperatures, which is used for a conduit tube of an Sn superconducting coil, at low cost. Conventionally, since the toughness of the conduit pipe is deteriorated, the Nb 3 Sn formation reaction cannot be set to an appropriate condition. For this reason, a large superconducting coil had to be manufactured in order to pass a large current as the superconducting coil. However, the present invention makes it possible to appropriately set the heat treatment conditions for producing Nb 3 Sn, and a device using superconductivity. Can be promoted. Furthermore, as a result, a large amount of energy can be saved, and industrial and social effects are great.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.02%以下、Si:
0.01%以上2.0%以下、Mn:1%以上8%以
下、Cr:12%以上25%以下、Ni:5%以上20
%以下、Nb:0.01%以上0.2%以下、Al:
0.001%以上0.10%以下、N:0.05%以上
0.3%以下を含有し、残部鉄および不可避不純物から
なり、鋼中にNbCおよび/ないしNbNを析出させた
ことを特徴とする極低温特性の優れたNb3 Sn超電導
体支持用ステンレス鋼。
1. C: 0.02% or less by weight%, Si:
0.01% to 2.0%, Mn: 1% to 8%, Cr: 12% to 25%, Ni: 5% to 20
% Or less, Nb: 0.01% or more and 0.2% or less, Al:
Characterized by containing 0.001% or more and 0.10% or less, N: 0.05% or more and 0.3% or less, and consisting of balance iron and unavoidable impurities, and precipitating NbC and / or NbN in steel. A stainless steel for supporting Nb 3 Sn superconductor with excellent cryogenic properties.
【請求項2】 重量%で、C:0.02%以下、Si:
0.01%以上2.0%以下、Mn:1%以上8%以
下、Cr:12%以上25%以下、Ni:5%以上20
%以下、Mo:0.5%以上3%以下、Nb:0.01
%以上0.2%以下、Al:0.001%以上0.10
%以下、N:0.05%以上0.3%以下を含有し、残
部鉄および不可避不純物からなり、鋼中にNbCおよび
/ないしNbNを析出させたことを特徴とする極低温特
性の優れたNb3 Sn超電導体支持用ステンレス鋼。
2. C: 0.02% or less, Si:
0.01% to 2.0%, Mn: 1% to 8%, Cr: 12% to 25%, Ni: 5% to 20
% Or less, Mo: 0.5% or more and 3% or less, Nb: 0.01
% To 0.2%, Al: 0.001% to 0.10
% Or less, N: 0.05% or more and 0.3% or less, consisting of balance iron and unavoidable impurities, and characterized by precipitating NbC and / or NbN in the steel, excellent in cryogenic characteristics nb 3 Sn superconductors supporting stainless steel.
【請求項3】 重量%で、C:0.02%以下、Si:
0.01%以上2.0%以下、Mn:1%以上8%以
下、Cr:12%以上25%以下、Ni:5%以上20
%以下、Nb:0.01%以上0.2%以下、Al:
0.001%以上0.10%以下、N:0.05%以上
0.3%以下、Ca:0.0005%以上0.01%以
下を含有し、残部鉄および不可避不純物からなり、鋼中
にNbCおよび/ないしNbNを析出させたことを特徴
とする極低温特性の優れたNb3 Sn超電導体支持用ス
テンレス鋼。
3. By weight%, C: 0.02% or less, Si:
0.01% to 2.0%, Mn: 1% to 8%, Cr: 12% to 25%, Ni: 5% to 20
% Or less, Nb: 0.01% or more and 0.2% or less, Al:
0.001% or more and 0.10% or less, N: 0.05% or more and 0.3% or less, Ca: 0.0005% or more and 0.01% or less, and the balance iron and unavoidable impurities. Nb 3 Sn superconductor-supporting stainless steel having excellent cryogenic characteristics, characterized in that NbC and / or NbN is precipitated in the.
【請求項4】 重量%で、C:0.02%以下、Si:
0.01%以上2.0%以下、Mn:1%以上8%以
下、Cr:12%以上25%以下、Ni:5%以上20
%以下、Mo:0.5%以上3%以下、Nb:0.01
%以上0.2%以下、Al:0.001%以上0.10
%以下、N:0.05%以上0.3%以下、Ca:0.
0005%以上0.01%以下を含有し、残部鉄および
不可避不純物からなり、鋼中にNbCおよび/ないしN
bNを析出させたことを特徴とする極低温特性の優れた
Nb3 Sn超電導体支持用ステンレス鋼。
4. By weight%, C: 0.02% or less, Si:
0.01% to 2.0%, Mn: 1% to 8%, Cr: 12% to 25%, Ni: 5% to 20
% Or less, Mo: 0.5% or more and 3% or less, Nb: 0.01
% To 0.2%, Al: 0.001% to 0.10
% Or less, N: 0.05% or more and 0.3% or less, Ca: 0.
It contains 0005% or more and 0.01% or less, the balance is iron and unavoidable impurities, and NbC and / or N is contained in the steel.
Stainless steel for supporting Nb 3 Sn superconductors, which has excellent cryogenic characteristics and is characterized by depositing bN.
【請求項5】 重量%で、C:0.02%以下、Si:
0.01%以上2.0%以下、Mn:1%以上8%以
下、Cr:12%以上25%以下、Ni:5%以上20
%以下、Nb:0.01%以上0.2%以下、Al:
0.001%以上0.10%以下、N:0.05%以上
0.3%以下を含有し、残部鉄および不可避不純物から
なる鋼塊あるいは鋼片を常法により熱間圧延し、次いで
1000℃以上1200℃以下に0.5分以上加熱し、
その冷却時に950〜800℃の間を1分以上30分以
下保定し、しかる後冷却することを特徴とする鋼中にN
bCおよび/ないしNbNを析出させた極低温特性の優
れたNb3 Sn超電導体支持用ステンレス鋼の製造方
法。
5. By weight%, C: 0.02% or less, Si:
0.01% to 2.0%, Mn: 1% to 8%, Cr: 12% to 25%, Ni: 5% to 20
% Or less, Nb: 0.01% or more and 0.2% or less, Al:
A steel ingot or billet containing 0.001% or more and 0.10% or less and N: 0.05% or more and 0.3% or less, and the balance iron and unavoidable impurities is hot-rolled by a conventional method, and then 1000 Heat above ℃ to 1200 ℃ below 0.5 minutes,
During cooling, the temperature between 950 and 800 ° C. is held for 1 minute or more and 30 minutes or less, and then the steel is cooled.
A method for producing Nb 3 Sn superconductor-supporting stainless steel excellent in cryogenic properties, wherein bC and / or NbN is deposited.
【請求項6】 重量%で、C:0.02%以下、Si:
0.01%以上2.0%以下、Mn:1%以上8%以
下、Cr:12%以上25%以下、Ni:5%以上20
%以下、Mo:0.5%以上3%以下、Nb:0.01
%以上0.2%以下、Al:0.001%以上0.10
%以下、N:0.05%以上0.3%以下を含有し、残
部鉄および不可避不純物からなる鋼塊あるいは鋼片を常
法により熱間圧延し、次いで1000℃以上1200℃
以下に0.5分以上加熱し、その冷却時に950〜80
0℃の間を1分以上30分以下保定し、しかる後冷却す
ることを特徴とする鋼中にNbCおよび/ないしNbN
を析出させた極低温特性の優れたNb3 Sn超電導体支
持用ステンレス鋼の製造方法。
6. C: 0.02% or less, Si:
0.01% to 2.0%, Mn: 1% to 8%, Cr: 12% to 25%, Ni: 5% to 20
% Or less, Mo: 0.5% or more and 3% or less, Nb: 0.01
% To 0.2%, Al: 0.001% to 0.10
% Or less, N: 0.05% or more and 0.3% or less, and a steel ingot or a steel slab containing the balance iron and unavoidable impurities is hot-rolled by a conventional method, and then 1000 ° C. or more and 1200 ° C.
Heat to below for 0.5 minutes or more, and 950-80 at the time of cooling
NbC and / or NbN in steel characterized by holding at 0 ° C for 1 minute to 30 minutes and then cooling
A process for producing Nb 3 Sn superconductor-supporting stainless steel having excellent cryogenic properties, which is obtained by precipitating.
【請求項7】 重量%で、C:0.02%以下、Si:
0.01%以上2.0%以下、Mn:1%以上8%以
下、Cr:12%以上25%以下、Ni:5%以上20
%以下、Nb:0.01%以上0.2%以下、Al:
0.001%以上0.10%以下、N:0.05%以上
0.3%以下、Ca:0.0005%以上0.01%以
下を含有し、残部鉄および不可避不純物からなる鋼塊あ
るいは鋼片を常法により熱間圧延し、次いで1000℃
以上1200℃以下に0.5分以上加熱し、その冷却時
に950〜800℃の間を1分以上30分以下保定し、
しかる後冷却することを特徴とする鋼中にNbCおよび
/ないしNbNを析出させた極低温特性の優れたNb3
Sn超電導体支持用ステンレス鋼の製造方法。
7. In weight%, C: 0.02% or less, Si:
0.01% to 2.0%, Mn: 1% to 8%, Cr: 12% to 25%, Ni: 5% to 20
% Or less, Nb: 0.01% or more and 0.2% or less, Al:
Steel ingot containing 0.001% or more and 0.10% or less, N: 0.05% or more and 0.3% or less, Ca: 0.0005% or more and 0.01% or less, and the balance iron and unavoidable impurities Hot rolling a billet by a conventional method, then 1000 ° C
It is heated to 1200 ° C or lower for 0.5 minutes or longer, and the temperature is kept at 950 to 800 ° C for 1 minute to 30 minutes during cooling.
Nb 3 and / or NbN precipitated in steel, which is characterized by being cooled thereafter, and having excellent cryogenic properties, Nb 3
A manufacturing method of stainless steel for supporting an Sn superconductor.
【請求項8】 重量%で、C:0.02%以下、Si:
0.01%以上2.0%以下、Mn:1%以上8%以
下、Cr:12%以上25%以下、Ni:5%以上20
%以下、Mo:0.5%以上3%以下、Nb:0.01
%以上0.2%以下、Al:0.001%以上0.10
%以下、N:0.05%以上0.3%以下、Ca:0.
0005%以上0.01%以下を含有し、残部鉄および
不可避不純物からなる鋼塊あるいは鋼片を常法により熱
間圧延し、次いで1000℃以上1200℃以下に0.
5分以上加熱し、その冷却時に950〜800℃の間を
1分以上30分以下保定し、しかる後冷却することを特
徴とする鋼中にNbCおよび/ないしNbNを析出させ
た極低温特性の優れたNb3 Sn超電導体支持用ステン
レス鋼の製造方法。
8. In weight%, C: 0.02% or less, Si:
0.01% to 2.0%, Mn: 1% to 8%, Cr: 12% to 25%, Ni: 5% to 20
% Or less, Mo: 0.5% or more and 3% or less, Nb: 0.01
% To 0.2%, Al: 0.001% to 0.10
% Or less, N: 0.05% or more and 0.3% or less, Ca: 0.
A steel ingot or a slab containing 0005% or more and 0.01% or less and the balance of iron and unavoidable impurities is hot-rolled by a conventional method, and then heated to 1000 ° C or more and 1200 ° C or less.
A cryogenic property of NbC and / or NbN precipitated in steel characterized by heating for 5 minutes or more, holding at 950 to 800 ° C. for 1 minute to 30 minutes during cooling, and then cooling. An excellent method for producing stainless steel for supporting Nb 3 Sn superconductor.
JP15976193A 1993-06-29 1993-06-29 Stainless steel for supporting nb3sn superconductor excellent in cryogenic characteristic and its production Pending JPH0711392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15976193A JPH0711392A (en) 1993-06-29 1993-06-29 Stainless steel for supporting nb3sn superconductor excellent in cryogenic characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15976193A JPH0711392A (en) 1993-06-29 1993-06-29 Stainless steel for supporting nb3sn superconductor excellent in cryogenic characteristic and its production

Publications (1)

Publication Number Publication Date
JPH0711392A true JPH0711392A (en) 1995-01-13

Family

ID=15700694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15976193A Pending JPH0711392A (en) 1993-06-29 1993-06-29 Stainless steel for supporting nb3sn superconductor excellent in cryogenic characteristic and its production

Country Status (1)

Country Link
JP (1) JPH0711392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135170U (en) * 1974-09-06 1976-03-16
US6541121B2 (en) * 2000-02-01 2003-04-01 Zentrum Fuer Funktionswerkstoffe Gemeinnuetzige Gesellschaft Mbh Superconducting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135170U (en) * 1974-09-06 1976-03-16
US6541121B2 (en) * 2000-02-01 2003-04-01 Zentrum Fuer Funktionswerkstoffe Gemeinnuetzige Gesellschaft Mbh Superconducting element

Similar Documents

Publication Publication Date Title
KR102267129B1 (en) Nb-containing ferritic stainless hot-rolled steel sheet and manufacturing method thereof, Nb-containing ferritic stainless cold-rolled stainless steel sheet and manufacturing method thereof
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP4031607B2 (en) Machine structural steel with reduced grain coarsening
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP7533408B2 (en) Steel plate and its manufacturing method
JP2017020054A (en) Stainless steel and stainless steel tube
JPH0551633A (en) Production of high si-containing austenitic stainless steel
JPH0711392A (en) Stainless steel for supporting nb3sn superconductor excellent in cryogenic characteristic and its production
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JP2004250766A (en) METHOD OF PRODUCING Ni-CONTAINING STEEL HAVING EXCELLENT STRENGTH/LOW TEMPERATURE TOUGHNESS
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2020041208A (en) Precipitation-hardening martensitic stainless steel
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
KR910003883B1 (en) Making process for high tension steel
JP4562281B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
JPH1192860A (en) Steel having ultrafine ferritic structure
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPH07238320A (en) Production of stainless steel for supporting nb3sn superconductor, excellent in cryogenic characteristics
JPH0158249B2 (en)
JP2004263248A (en) Method for manufacturing high-tensile steel excellent in ctod characteristic of weld zone
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JP3589156B2 (en) High strength steel with excellent fracture toughness