JPH0158249B2 - - Google Patents

Info

Publication number
JPH0158249B2
JPH0158249B2 JP19680685A JP19680685A JPH0158249B2 JP H0158249 B2 JPH0158249 B2 JP H0158249B2 JP 19680685 A JP19680685 A JP 19680685A JP 19680685 A JP19680685 A JP 19680685A JP H0158249 B2 JPH0158249 B2 JP H0158249B2
Authority
JP
Japan
Prior art keywords
less
point
cooling
slab
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19680685A
Other languages
Japanese (ja)
Other versions
JPS6256517A (en
Inventor
Masayuki Abe
Masanori Ueda
Tetsuo Uchimura
Masaaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19680685A priority Critical patent/JPS6256517A/en
Publication of JPS6256517A publication Critical patent/JPS6256517A/en
Publication of JPH0158249B2 publication Critical patent/JPH0158249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高Cr系の高純フエライト系ステンレ
ス鋼の連続鋳造鋳片(以下CC鋳片と称す)ある
いは一旦分塊圧延された鋼片(以下“スラブ”と
称するときは該鋳片及び鋼片を含むものとする)
の冷却法に関するもので、該スラブの冷却中ある
いは冷却後に生ずる置き割れを防止する冷却法に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention applies to continuously cast slabs (hereinafter referred to as CC slabs) of high Cr high purity ferritic stainless steel or slabs that have been once bloomed and rolled ( (Hereinafter, when the term "slab" is referred to, it includes the slab and steel slab.)
The present invention relates to a cooling method for preventing cracks occurring during or after cooling of the slab.

(従来の技術) 高Cr系でかつC、Nを低減した高純フエライ
ト系ステンレス鋼は、18Cr−8Niに特有の塩化物
応力腐食割れをおこさず安価な耐食性材料として
重要性を増しかつ用途によつてはMo、Ni、Cu等
を選択添加したり、不純物のSやOを極端に低減
して、耐食性の向上、耐銹性の向上、耐酸化性の
向上をはかり多くの用途に使用されはじめてい
る。又25Cr系で2〜4%Moを含有すると耐海水
性にすぐれた特性を発揮することも知られ、今後
益々その重要性は高まると考えられる。
(Prior technology) High-purity ferritic stainless steel with a high Cr content and reduced C and N content is becoming increasingly important as an inexpensive corrosion-resistant material that does not cause the chloride stress corrosion cracking that is typical of 18Cr-8Ni. It is used in many applications to improve corrosion resistance, rust resistance, and oxidation resistance by selectively adding Mo, Ni, Cu, etc., or by extremely reducing impurities such as S and O. I'm starting. It is also known that 25Cr containing 2 to 4% Mo exhibits excellent seawater resistance, and its importance is expected to increase in the future.

ところが、これらのすぐれた特性を有する高
純・高Crフエライトステンレス鋼の欠点の一つ
に製造上の問題がある。すでに特開昭54−128464
号公報、特開昭58−39732号公報、特開昭60−
2628号公報、特開昭60−2622号公報等に開示され
ている通り、これらの鋼はCC鋳片の冷却中、あ
るいは冷却後の表面手入時、更には次工程の熱間
圧延工程の加熱炉への輸送中等にスラブが横割れ
や破損する現象(置き割れと呼ぶ)が知られ、こ
の割れが生じると製造不可能になる場合が多い。
特に高Cr鋼でNb、Mo、Al等を多量含有する場
合は必ず破損すると言つても過言ではない。
However, one of the drawbacks of high-purity, high-Cr ferrite stainless steel, which has these excellent properties, is manufacturing problems. Already published in 1978-128464
Publication No. 1987-39732, Japanese Patent Publication No. 1983-39732
As disclosed in Publication No. 2628, Japanese Patent Application Laid-open No. 60-2622, etc., these steels are used during cooling of CC slabs, during surface treatment after cooling, and even during the next hot rolling process. It is known that slabs undergo transverse cracking or breakage during transport to a heating furnace (referred to as "place cracking"), and when this cracking occurs, it often becomes impossible to manufacture the slab.
It is no exaggeration to say that especially high Cr steel containing large amounts of Nb, Mo, Al, etc. will always break.

これらの現象に対して上記の特許文献によると
対策が示されているがまず特開昭54−128464号公
報、特開昭58−39732号公報においては、鋳片を
150℃以下に冷却しないこと及び遷移温度以下
(実施例では300℃)に冷却しないことを開示して
いる。一方、特開昭60−2628号公報、特開昭60−
2622号公報では鋳片の冷却にあたつてきわめて徐
冷する方法すなわち800〜1300℃から300℃まで40
℃/hr以下の冷速で徐冷する方法(800゜〜300℃
まで12.5hr以上)や、700℃から400℃までを18
℃/hr以下で徐冷(16.7hr以上)しかつ200℃未
満に低下させない方法を開示している。こうして
従来の知見では150℃以上に保持するか、あるい
は700℃〜400℃近辺をきわめて徐冷する方法の二
つの考え方が知られている。
The above-mentioned patent documents suggest countermeasures against these phenomena.
It is disclosed that the temperature is not cooled below 150°C, and that it is not cooled below the transition temperature (300°C in the example). On the other hand, JP-A-60-2628, JP-A-60-
Publication No. 2622 describes a very slow cooling method for cooling slabs, that is, from 800 to 1300℃ to 300℃.
Method of slow cooling at a cooling rate of ℃/hr or less (800℃ to 300℃
(up to 12.5hr or more) or from 700℃ to 400℃
It discloses a method for slow cooling (at least 16.7 hr) at a temperature of ℃/hr or less and not lowering the temperature below 200 ℃. According to conventional knowledge, two methods are known: maintaining the temperature at 150°C or higher, or cooling extremely slowly to around 700°C to 400°C.

(発明が解決しようとする問題点) 高純フエライトステンレス鋼の利点が明らかに
なるにつれて、これらの生産量が増すと共に更に
すぐれた特性を有する25Cr−4Mo系にまで鋼種
の拡大が進んでいる。こうしてこれら鋼種の特性
が生かされるためには、製造上の制約となつてい
る冷片(表面温度で100℃以下)不可の条件や、
高温域の徐冷条件の制約はコスト、納期、生産性
の点で大きな障害となりつつあり、冷片取扱いが
可能なスラブの冷却方法が強く求められるように
なつた。
(Problems to be Solved by the Invention) As the advantages of high-purity ferrite stainless steel become clearer, the production volume of these stainless steels increases and the types of steels are expanded to include 25Cr-4Mo series, which have even better properties. In order to take advantage of the characteristics of these steel types, it is necessary to meet the manufacturing constraints of not allowing cold pieces (surface temperature below 100°C),
Restrictions on slow cooling conditions in the high temperature range are becoming a major obstacle in terms of cost, delivery time, and productivity, and there is a strong demand for a cooling method for slabs that can be handled as cold pieces.

(問題点を解決するための手段) 本発明者達は高純フエライトステンレス鋼のス
ラブの置き割れ現象を研究した結果、これら高純
フエライト系ステンレス鋼スラブの置き割れに2
つの重要な要因が作用することを見出した。
(Means for Solving the Problems) As a result of researching the cracking phenomenon of slabs of high-purity ferritic stainless steel, the present inventors found that two
We found that two important factors come into play.

(1)つは約700〜800℃の温度域を析出のピークと
する金属間化合物(Laves相)析出に原因する材
料自体の脆化現象である。(2)つはスラブの冷却
時、各部位での冷速の相違から生じる熱応力の不
均一さによるものである。これらの両作用が影響
し合つて冷却中に置き割れを発生することが判明
した。もちろん合金組成によつて、(1)に強く影響
するものや、あるいはCC鋳片の冷却のように(2)
に強く影響するものもあるので、(1)と(2)の原因は
互に影響し合つている。本発明者等は典型的な高
純フエライトステンレス鋼で最も割れに敏感な
25Cr−4Mo−4Ni−0.4Nb鋼のCC鋳片(25mm厚)
や、分塊圧延を加えた鋼片(180mm厚)を冷却実
験し、冷片にした場合の置き割れ発生に対する冷
却法の影響を検討した。CC鋳片や、CC鋳片を分
塊圧延した鋼片をそのまま冷却するもの、冷却途
中様々の温度からカバーのついた台車に乗せて冷
却速度を変えるテストを実施した。これらの結果
を800℃を切つた時間を基点として、その後の温
度・時間推移と、冷片(100℃以下に冷却した)
にした場合の置き割れ発生との関連で示した結果
が第1図である。なお脆化原因である金属間化合
物の析出は800℃が最も速いことは別途確認した。
スラブの冷却が早い、は冷片にして置き割れ
を発生した。これはスラブの部位毎の温度差が
200℃を超えており、熱応力の不均一さによるも
のである。は簡単なカバーをかけて徐冷したも
ので、温度差が大幅に小さくなり割れなかつた。
、はスラブを600℃で熱片台車に入れて、温
度を保持し、約100分、200分後取り出し、その後
放冷したもので割れを生じなかつた。は同様に
400℃で熱片台車に装入し、20日後放冷したもの
で割れを生じなかつた。ところがは700℃で熱
片台車に装入し200分後に放冷したが放冷中に表
面割れを生じ、冷片ではげしい置き割れを示し
た。又も600℃に保持し250分後放冷したが同様
に置き割れを示した。、の例では明らかに熱
片台車に保持した間に金属間化合物(Laves相)
が生じ、材料自体が脆化したためである。このよ
うにして、最も置き割れの生じやすい鋼種である
25Cr−5Ni−4Mo−0.4Nb鋼でこのような関係が
認められた。他の鋼種である18Cr−2Mo−0.6Nb
鋼についても置き割れの程度の差こそあれほぼ同
様の傾向が認められた。
(1) is the embrittlement phenomenon of the material itself caused by the precipitation of intermetallic compounds (Laves phase) whose precipitation peaks in the temperature range of approximately 700-800°C. (2) is due to the non-uniformity of thermal stress caused by the difference in cooling rate in each part when cooling the slab. It has been found that these two effects interact to cause cracking during cooling. Of course, depending on the alloy composition, there are things that strongly affect (1), or (2) such as cooling of CC slabs.
Since there are some factors that strongly influence , causes (1) and (2) influence each other. The present inventors have discovered that typical high-purity ferrite stainless steel is the most susceptible to cracking.
25Cr−4Mo−4Ni−0.4Nb steel CC slab (25mm thickness)
A cooling experiment was conducted on steel slabs (180 mm thick) that had been subjected to solidification and blooming rolling, and the effect of the cooling method on the occurrence of cracking in cold slabs was investigated. We conducted tests in which CC slabs and steel slabs made by blooming CC slabs were cooled as they were, and the cooling rate was varied by placing them on a covered trolley at various temperatures during cooling. Using these results as the base point for the time when the temperature dropped below 800°C, the subsequent temperature/time changes and the cold piece (cooled to below 100°C)
FIG. 1 shows the results in relation to the occurrence of cracking when It was separately confirmed that the precipitation of intermetallic compounds, which cause embrittlement, is fastest at 800°C.
The slab cooled quickly, and cracks occurred when the slab was cooled. This is due to the temperature difference between different parts of the slab.
The temperature exceeds 200℃, which is due to nonuniform thermal stress. When it was slowly cooled with a simple cover, the temperature difference was greatly reduced and it did not crack.
, the slab was placed in a heated slab at 600°C, maintained at that temperature, taken out after about 100 or 200 minutes, and then left to cool without causing any cracks. is similarly
No cracking occurred when it was charged into a heating cart at 400℃ and left to cool after 20 days. However, when it was charged into a heated slab truck at 700°C and allowed to cool after 200 minutes, surface cracking occurred during cooling, and severe cracking occurred in the cold slab. Again, it was kept at 600°C and left to cool after 250 minutes, but cracking occurred in the same way. In the example, intermetallic compounds (Laves phase) are clearly formed while kept in the hot plate.
This is because the material itself became brittle. In this way, it is the type of steel that is most prone to cracking.
Such a relationship was observed for 25Cr−5Ni−4Mo−0.4Nb steel. Other steel types 18Cr−2Mo−0.6Nb
Almost the same tendency was observed for steel, although there were differences in the degree of cracking.

このようにして従来より高純フエライトステン
レス鋼のCC鋳片や、鋼片の置き割れに対して、
冷片にしても置き割れの生じない冷却ゾーンの存
在をはじめて明らかにすることが出来た。すなわ
ち、第1図で示すA点(0分、250℃)、B点(60
分、250℃)、C点(60分、100℃)及びD点(150
分、800℃)、E点(230分、550℃)、F点(350
分、550℃)により構成される危険域直線ABCと
DEFを800℃を起点とする時間・温度曲線が通ら
ないように冷却することで、CC鋳片や鋼片を冷
片にしても置き割れを発生することがなくなる。
In this way, we have been able to prevent cracking of high-purity ferrite stainless steel CC slabs and steel slabs.
For the first time, we were able to clarify the existence of a cooling zone in which cracks do not occur even when cold pieces are made. That is, point A (0 min, 250°C) and point B (60°C) shown in Figure 1.
min, 250°C), point C (60 min, 100°C) and point D (150°C)
minutes, 800℃), point E (230 minutes, 550℃), point F (350℃), point E (230 minutes, 550℃),
minute, 550℃)
By cooling DEF so that it does not pass through the time-temperature curve starting at 800℃, cracks will not occur even if CC slabs or steel slabs are used as cold slabs.

危険域直線AB、あるいはABCを切るように冷
却すると部位毎の温度差が大きくて、熱応力によ
り置き割れが生じる。危険域の直線DE、EFを切
るように冷却すると、800℃を析出のピークとす
る金属間化合物(Laves相)の析出域を通ること
になり、材料内にLaves相の析出が生じ、材料自
体が脆化して置き割れを生じる。
If it is cooled so as to cut through the danger zone straight line AB or ABC, there will be a large temperature difference between parts, and thermal stress will cause cracks. When cooled so as to cut the straight lines DE and EF in the dangerous range, the material passes through the precipitation region of intermetallic compounds (Laves phase) whose precipitation peaks at 800℃, and the Laves phase precipitates within the material, causing the material itself to deteriorate. becomes brittle and cracks occur.

なお金属間化合物(Laves相)の析出しやすい
合金成分系についてはすでに一部理論的に解明さ
れているが(「鉄鋼における変態と析出」日本金
属学会、1968)Fe系のα相中では、Ti、Zr、
Nb、Mo、W、Ta等が合金添加された場合に出
やすく例えばFe2Ti、Fe2Nbの組成として析出す
る。したがつてFe−Cr系のフエライト系ステン
レス鋼においてもこれらのTi、Zr、Nb、Mo、
W等を含有する場合に出やすいことが考えられ、
事実25Cr−5Ni−4Mo−0.4Nbや、19Cr−2Mo−
0.3Nb−0.1Ti等ではきわめて出やすいことを確
認した。
Although some alloy composition systems in which intermetallic compounds (Laves phase) tend to precipitate have already been theoretically elucidated ("Transformation and Precipitation in Iron and Steel", Japan Institute of Metals, 1968), in the Fe-based alpha phase, Ti, Zr,
When Nb, Mo, W, Ta, etc. are added to an alloy, it tends to occur and precipitates as a composition of, for example, Fe 2 Ti or Fe 2 Nb. Therefore, these Ti, Zr, Nb, Mo,
It is thought that it is likely to occur when containing W etc.
Facts such as 25Cr−5Ni−4Mo−0.4Nb and 19Cr−2Mo−
It was confirmed that 0.3Nb−0.1Ti etc. are extremely easy to generate.

以上の現象について、成分系を拡げ検討した結
果、次の成分系において成立することが判つた。
As a result of examining the above phenomenon by expanding the component system, it was found that it holds true in the following component system.

重量%で C+N:0.08以下 Mn:3%以下 Si:3%以下 Cr:9〜35% P:0.050%以下 S:0.010%以下 O:0.010%以下 を含有し、更に Ni:8%以下 Mo:6%以下 Co:10%以下 Cu:2%以下 Al:6%以下 の1種又は2種以上、及び Nb:0.05〜0.8% Ti:0.01〜0.8% Zr:0.01〜0.5% W:0.03〜0.5% の1種又は2種以上を含有し、残部は実質的に
Feと不可避的な介在物よりなるフエライト系ス
テンレス鋼。
Contains C+N: 0.08 or less, Mn: 3% or less, Si: 3% or less, Cr: 9-35%, P: 0.050% or less, S: 0.010% or less, O: 0.010% or less, and further Ni: 8% or less Mo: 6% or less Co: 10% or less Cu: 2% or less Al: 6% or less of one or more types, and Nb: 0.05-0.8% Ti: 0.01-0.8% Zr: 0.01-0.5% W: 0.03-0.5 %, and the remainder is substantially
Ferritic stainless steel consisting of Fe and unavoidable inclusions.

以下に本発明の鋼成分範囲を限定した理由につ
いて説明する。
The reason for limiting the steel composition range of the present invention will be explained below.

C、N:C、N量は、靭性に大きく影響し、C
+N量が多いほど材料の靭性は低下する。また炭
窒化物を形成し、粒界腐食を起こしやすくするた
め耐食性の点からも有害な元素である。このた
め、C、Nは製造性、耐食性の点からも低い方が
望ましく、C+N量を0.08%以下とした。
C, N: The amount of C and N greatly affects toughness, and C
The greater the amount of +N, the lower the toughness of the material. It is also a harmful element in terms of corrosion resistance because it forms carbonitrides and tends to cause intergranular corrosion. Therefore, it is desirable that C and N be lower from the viewpoint of manufacturability and corrosion resistance, and the amount of C+N is set to 0.08% or less.

Mn:通常、脱酸、脱硫剤として添加するが、
靭性の点からもNiの代替として有効な元素であ
る。しかし3%を越えるとその効果は飽和するた
め3%以下とした。
Mn: Usually added as a deoxidizing and desulfurizing agent,
It is an effective element as a substitute for Ni in terms of toughness. However, if it exceeds 3%, the effect will be saturated, so it was set at 3% or less.

Si:脱酸剤として使用され、また耐食性改善に
も有効な元素である。しかし多量に含有すると靭
性が劣化するため上限を3%とした。
Si: An element used as a deoxidizing agent and also effective in improving corrosion resistance. However, if it is contained in a large amount, the toughness deteriorates, so the upper limit was set at 3%.

Cr:Crはステンレス鋼の耐食性を高める主要
な元素であり、含有量が多い程耐食性が改善され
る。9%未満では、耐食性の改善効果はないの
で、下限を9%とした。また、耐食性の観点から
は多い程有利であるが、高Cr鋼になると冷却中
にσ相等金属間化合物を生じやすく、靭性が劣化
するため、上限を35%とした。
Cr: Cr is a major element that increases the corrosion resistance of stainless steel, and the higher the content, the better the corrosion resistance. If it is less than 9%, there is no effect of improving corrosion resistance, so the lower limit was set at 9%. Further, from the viewpoint of corrosion resistance, the more the content is, the more advantageous it is, but in high Cr steel, intermetallic compounds such as σ phase are likely to occur during cooling, which deteriorates toughness, so the upper limit was set at 35%.

P:Pは一般に耐孔食性を劣化させるので含有
量は低い程よく、上限を0.050%とした。
P: Since P generally deteriorates pitting corrosion resistance, the lower the content, the better, and the upper limit was set at 0.050%.

S:Sは耐食性に有害な元素であり、その含有
量は低いほど望ましく、上限を0.010%とした。
S: S is an element harmful to corrosion resistance, and the lower its content is, the more desirable it is, and the upper limit was set at 0.010%.

O:残素は鋼中に酸化物として存在し、靭性を
劣化させるため含有量は低いのが望ましく、その
上限を0.010%とした。
O: Residual elements exist in the form of oxides in steel and degrade toughness, so the content is desirably low, and the upper limit is set at 0.010%.

Ni:Niはフエライト系ステンレス鋼の靭性を
改善するのに有効な元素であり、置き割れ防止の
点からは望ましい元素である。しかし多量に含有
すると応力腐食割れが生じやすくなり、8%以下
で添加するのが望ましい。
Ni: Ni is an effective element for improving the toughness of ferritic stainless steel, and is a desirable element from the standpoint of preventing cracking. However, if it is contained in a large amount, stress corrosion cracking tends to occur, so it is desirable to add it in an amount of 8% or less.

Mo:MoはCrとともに、耐孔食性改善の主要
元素であり、耐食性の点からは添加は望ましい。
しかし多量に含有すると、冷却中や熱処理中に
Laves相、σ相等の金属間化合物を生じ靭性を劣
化させ、置き割れを助長するため6%以下で添加
する。
Mo: Along with Cr, Mo is a major element for improving pitting corrosion resistance, and its addition is desirable from the viewpoint of corrosion resistance.
However, if it is contained in large amounts, during cooling or heat treatment
It is added in an amount of 6% or less because it produces intermetallic compounds such as Laves phase and σ phase, which deteriorates toughness and promotes cracking.

Co:CoはCr、Moと同様に耐食性の点からは
有効な元素であるがσ相の析出を促進し脆化の原
因となる。また多量に含有すると、熱間加工性を
劣化させるため10%以下で添加する。
Co: Like Cr and Mo, Co is an effective element in terms of corrosion resistance, but it promotes precipitation of the σ phase and causes embrittlement. Moreover, if it is contained in a large amount, hot workability will deteriorate, so it should be added in an amount of 10% or less.

Cu:Cuは耐食性、特に耐硫酸性を改善するの
に有効であり、選択元素として2%以下を添加す
る。2%を越えて添加しても効果は飽和する。
Cu: Cu is effective in improving corrosion resistance, especially sulfuric acid resistance, and is added as a selective element in an amount of 2% or less. Even if it is added in excess of 2%, the effect is saturated.

Al:通常、脱酸剤として添加されるが、耐酸
化性改善には有効な元素であり、選択元素として
添加する。しかし多量に含有すると材料の靭性を
劣化させるので6%以下で添加する。
Al: Usually added as a deoxidizing agent, but it is an effective element for improving oxidation resistance and is added as a selective element. However, if it is contained in a large amount, the toughness of the material will deteriorate, so it should be added in an amount of 6% or less.

Nb:Nbは添加することによりC、Nを固定
し、靭性改善及び粒界腐食防止に有効な元素であ
る。しかし、0.05%未満では効果はなく、一方過
剰に添加すると、固溶Nbが増加しLaves相等の
金属間化合物が析出し、靭性を大幅に劣化させる
ため0.05〜0.8%の範囲で添加する。
Nb: When added, Nb is an element that fixes C and N and is effective in improving toughness and preventing intergranular corrosion. However, if it is less than 0.05%, it has no effect, and if it is added in excess, solid solution Nb increases and intermetallic compounds such as Laves phase precipitate, which significantly deteriorates toughness, so it is added in a range of 0.05 to 0.8%.

Ti:TiはNbと同様に、C、Nを固定し靭性改
善及び粒界腐食防止に有効な元素である。0.01%
未満ではその効果はなく、一方過剰に添加する
と、Laves相等の金属間化合物が析出し靭性を大
幅に劣化させるため0.01〜0.8%の範囲で添加す
る。
Ti: Similar to Nb, Ti is an element that fixes C and N and is effective in improving toughness and preventing intergranular corrosion. 0.01%
If it is less than this, there will be no effect, whereas if it is added in excess, intermetallic compounds such as Laves phase will precipitate and the toughness will be significantly deteriorated, so it should be added in a range of 0.01 to 0.8%.

Zr:ZrはNb、Tiと同様にC、Nを固定する元
素であり、靭性改善及び粒界腐食防止に有効な元
素であり0.01〜0.5%の範囲で添加する。0.01%未
満では効果は薄く、0.5%を越えると金属間化合
物が析出しやすく靭性を劣化させる。
Zr: Zr is an element that fixes C and N like Nb and Ti, and is an effective element for improving toughness and preventing intergranular corrosion, and is added in a range of 0.01 to 0.5%. If it is less than 0.01%, the effect will be weak, and if it exceeds 0.5%, intermetallic compounds will tend to precipitate and the toughness will deteriorate.

W:WはCを固定するために添加し、耐食性改
善には有効な元素であるが、過剰に添加するとσ
相等の金属間化合物の析出を促進し靭性を劣化さ
せるため、添加範囲を0.03〜0.5%とした。
W: W is added to fix C and is an effective element for improving corrosion resistance, but if added in excess, σ
The addition range was set to 0.03 to 0.5% in order to promote the precipitation of intermetallic compounds such as phases and deteriorate toughness.

(実施例) 通常のLD−VOD法によりC+N:250ppm以
下とし、S10ppm、O:40ppm以下の高純フエ
ライト系ステンレス鋼で、25Cr−4Mo−2Ni−
0.3Nb鋼及び19Cr−2Mo−0.3Nb−0.1Ti及び
15Cr−4Al鋼を溶製した。その後CC鋳片として
250mmtとし、冷却途中で550〜400℃の間で熱片
台車に移し、輸送し2〜3hr以内に手入場で放冷
し、放冷途中で表面を部分手入した。一部は300
〜400℃でカバー徐冷し、保温ピツトに移し、1
週間後に300℃から手入れをして冷片とした。こ
れらはいずれも置き割れを生じることなく、その
後加熱炉で加熱し、熱間圧延し、熱延コイルとす
ることが出来た。
(Example) 25Cr-4Mo-2Ni-
0.3Nb steel and 19Cr−2Mo−0.3Nb−0.1Ti and
15Cr-4Al steel was produced. Later as CC slab
250 mmt, and during cooling, it was transferred to a heating cart at a temperature of 550 to 400°C, transported, and allowed to cool manually within 2 to 3 hours, and the surface was partially treated during cooling. Some are 300
Slowly cool with a cover at ~400℃, transfer to a heat insulating pit,
After a week, it was treated at 300°C and made into cold pieces. All of these were able to be heated in a heating furnace, hot-rolled, and made into hot-rolled coils without causing any cracks.

ところが、CC鋳片を600℃で熱片台車に積み込
んで6hr輸送したものでは高Crの25Cr系鋼は置き
割れを生じ、19Cr系鋼でも小さな割れを生じた。
15Cr−4Al系は熱延コイルに割れが散在すること
があつた。こうして、第1図に示した危険域に入
つた場合には冷片にすると置き割れが起こること
が確認され、一方危険域をさけて冷片とした場合
には置き割れを生じなかつた。
However, when CC slabs were loaded onto a heated slab truck at 600℃ and transported for 6 hours, the high Cr 25Cr steel developed cracks, and the 19Cr steel also developed small cracks.
In the 15Cr-4Al series, there were occasional cracks in the hot-rolled coil. In this way, it was confirmed that if the material entered the danger zone shown in FIG. 1, cracking would occur if it was made into a cold piece, whereas if it was made into a cold piece outside the dangerous region, no cracking would occur.

(発明の効果) 低C、Nとした高Cr系のフエライト系ステン
レス鋼は耐食性及び耐酸化性にすぐれ、多くの分
野で使用されているが、製造上の欠点である置き
割れに対しての有効な対策が望まれていた。従来
法は、冷却途中で極端に徐冷をする方法や150〜
350℃以上に温片処理する方法が知られていた。
(Effect of the invention) High Cr ferritic stainless steel with low C and N has excellent corrosion resistance and oxidation resistance and is used in many fields. Effective countermeasures were desired. Conventional methods include extremely slow cooling during cooling, and
A method of heat treatment at 350°C or higher was known.

これに対して本発明は冷却速度を制御すること
で置き割れを生ずることなく冷片にすることがで
きるからコストや生産性の点で本発明は著しい利
点がある。
On the other hand, the present invention has significant advantages in terms of cost and productivity, since it is possible to produce cold pieces without causing cracks by controlling the cooling rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋳片の表面温度及び経過時間と置き割
れ危険域との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the surface temperature and elapsed time of a slab and the risk area of cracking due to placement.

Claims (1)

【特許請求の範囲】 1 重量%でC+N:0.08%以下、Mn:3%以
下、 Si:3%以下、Cr:9〜35%、P:0.050%以
下 S:0.010%以下、O:0.010%以下 を含有し、更に Ni:8%以下、Mo:6%以下、Co:10%以下 Cu:2%以下、Al:6%以下 の1種又は2種以上、及び Nb:0.05〜0.8%、Ti:0.01〜0.8% Zr:0.01〜0.5%、W:0.03〜0.5% の1種又は2種以上を含有し、残部は実質的に
Feと不可避的な介在物よりなるフエライト系ス
テンレス鋼の連続鋳造鋳片或いは該鋳片を分塊圧
延した鋼片を、該鋳片又は鋼片の表面温度と経過
時間の関係を示す第1図のA点(0分、250℃)、
B点(60分、250℃)、C点(60分、100℃)を結
ぶ直線ABC及びD点(150分、800℃)、E点
(230分、550℃)、F点(350分、550℃)を結ぶ直
線DEFの各危険域を通過しないように冷却する
ことを特徴とする置き割れの生じないフエライト
系ステンレス鋼スラブの冷却方法。
[Claims] 1. C+N: 0.08% or less, Mn: 3% or less, Si: 3% or less, Cr: 9 to 35%, P: 0.050% or less, S: 0.010% or less, O: 0.010%. Contains the following, and further contains one or more of the following: Ni: 8% or less, Mo: 6% or less, Co: 10% or less Cu: 2% or less, Al: 6% or less, and Nb: 0.05 to 0.8%. Contains one or more of Ti: 0.01-0.8%, Zr: 0.01-0.5%, W: 0.03-0.5%, and the remainder is substantially
Figure 1 shows the relationship between the surface temperature and elapsed time of a continuously cast slab of ferritic stainless steel consisting of Fe and unavoidable inclusions, or a slab obtained by blooming rolling the slab. A point (0 min, 250℃),
Straight line ABC connecting point B (60 minutes, 250℃), point C (60 minutes, 100℃), point D (150 minutes, 800℃), point E (230 minutes, 550℃), point F (350 minutes, A cooling method for ferritic stainless steel slabs that does not cause cracks due to placement, which is characterized by cooling without passing through each dangerous zone of the straight line DEF connecting the temperature range (550℃).
JP19680685A 1985-09-05 1985-09-05 Method for cooling ferrite stainless steel slab without generating season crack Granted JPS6256517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19680685A JPS6256517A (en) 1985-09-05 1985-09-05 Method for cooling ferrite stainless steel slab without generating season crack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19680685A JPS6256517A (en) 1985-09-05 1985-09-05 Method for cooling ferrite stainless steel slab without generating season crack

Publications (2)

Publication Number Publication Date
JPS6256517A JPS6256517A (en) 1987-03-12
JPH0158249B2 true JPH0158249B2 (en) 1989-12-11

Family

ID=16363955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19680685A Granted JPS6256517A (en) 1985-09-05 1985-09-05 Method for cooling ferrite stainless steel slab without generating season crack

Country Status (1)

Country Link
JP (1) JPS6256517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168924A (en) * 1990-10-30 1992-06-17 Kubota Corp Power receiving unit for non-utility generator
JPH05260655A (en) * 1992-03-06 1993-10-08 Kubota Corp Power equipment for receiving both non-utility generated power and commercial power

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830254B2 (en) * 1993-09-22 1996-03-27 日本冶金工業株式会社 Ferritic stainless steel with excellent high temperature oxidation resistance
JP5670064B2 (en) * 2010-02-22 2015-02-18 日新製鋼株式会社 Ferrite single-phase stainless steel slab manufacturing method
JP7281893B2 (en) * 2018-11-19 2023-05-26 日鉄ステンレス株式会社 Ferritic stainless steel cold cast slab and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168924A (en) * 1990-10-30 1992-06-17 Kubota Corp Power receiving unit for non-utility generator
JPH05260655A (en) * 1992-03-06 1993-10-08 Kubota Corp Power equipment for receiving both non-utility generated power and commercial power

Also Published As

Publication number Publication date
JPS6256517A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
KR101564152B1 (en) High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5885884B2 (en) Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
JP4751137B2 (en) Steel plate manufacturing method that can be easily bent by linear heating
WO2018158854A1 (en) Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP2012172161A (en) High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and method for manufacturing the same
WO2018158853A1 (en) Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
JPH08144021A (en) Production of ferritic stainless steel and cold rolled sheet therefrom
JP5206056B2 (en) Manufacturing method of non-tempered steel
JP6550325B2 (en) Ferritic stainless steel hot rolled steel sheet for flange and method of manufacturing the same
JPH10280090A (en) High strength cold rolled steel sheet having superior shape and excellent in bendability, and its production
JPH0158249B2 (en)
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP2015132019A (en) High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and method for producing the same
JPH0579727B2 (en)
JP2012172160A (en) High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and method for manufacturing the same
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPS6052522A (en) Manufacture of weather-resistant steel material
JP2022513747A (en) Low Cr ferrite stainless steel with excellent formability and high temperature characteristics and its manufacturing method
JPS61136624A (en) Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPH07233449A (en) Ferritic stainless steel sheet and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees