JPH07113824A - Electric field sensor and voltage sensor - Google Patents
Electric field sensor and voltage sensorInfo
- Publication number
- JPH07113824A JPH07113824A JP5257321A JP25732193A JPH07113824A JP H07113824 A JPH07113824 A JP H07113824A JP 5257321 A JP5257321 A JP 5257321A JP 25732193 A JP25732193 A JP 25732193A JP H07113824 A JPH07113824 A JP H07113824A
- Authority
- JP
- Japan
- Prior art keywords
- electric field
- electro
- light
- optical resonator
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電気光学結晶を用いて電
界測定や電圧測定を行なう電界センサー及び電圧センサ
ーに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric field sensor and a voltage sensor for measuring an electric field and a voltage by using an electro-optic crystal.
【0002】[0002]
【従来の技術】電気光学結晶のポッケルス効果を利用し
て電界や電圧の測定を行なう考えは古くからあるが、電
界に対する電気光学結晶の感度が低いために、微弱な電
界及び電圧の測定には電気光学結晶への入射光に変調を
かけて同期検波を行なうなどの複雑な手段を必要とし
(特開平4−359165号公報等参照)、この点が実
用面での問題とされている。そこで、本発明者等は、電
気光学結晶を用いた電界及び電圧に対するセンサー部分
の高感度化を図るために、光共振器型の電界・電圧セン
サーを考案した。これは、電気光学結晶の両側にミラー
を配置して光共振器の構成とすることで、従来の電界及
び電圧センサーよりも大きな強度変化及び位相変化が得
られるようにしたものである。2. Description of the Related Art Although the idea of measuring an electric field and a voltage by utilizing the Pockels effect of an electro-optic crystal has long been known, it is difficult to measure a weak electric field and a voltage because the electro-optic crystal has a low sensitivity to the electric field. A complicated means such as performing synchronous detection by modulating the incident light on the electro-optic crystal is required (see Japanese Patent Laid-Open No. 4-359165, etc.), and this is a problem in practical use. Therefore, the inventors of the present invention have devised an optical resonator type electric field / voltage sensor in order to increase the sensitivity of the sensor portion to electric fields and voltages using an electro-optic crystal. In this structure, mirrors are arranged on both sides of the electro-optic crystal to form an optical resonator, so that a larger intensity change and a larger phase change than those of the conventional electric field and voltage sensor can be obtained.
【0003】[0003]
【発明が解決しようとする課題】しかし、光共振器型の
電界・電圧センサーは、光共振器へ光を入射させるため
の光源に線幅の狭いものを使用しなければならないこと
に加え、光源の周波数を光共振器の共振周波数近傍で安
定動作させなければならないという問題がある。本発明
は、このような不具合を解決するために創案されたもの
であって、より簡便な光源を用いながら、従来のポッケ
ルス効果によるリターデイションを測定する電界・電圧
センサーよりも高感度な光共振器型の電界センサー及び
電圧センサーを提供することを目的にしている。However, in the optical resonator type electric field / voltage sensor, in addition to the fact that a light source for making light incident on the optical resonator has to have a narrow line width, There is a problem that the frequency must be stably operated near the resonance frequency of the optical resonator. The present invention was devised to solve such a problem, and uses a light source with higher sensitivity than an electric field / voltage sensor that measures retardation due to the conventional Pockels effect while using a simpler light source. An object is to provide a resonator type electric field sensor and a voltage sensor.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、電界による電気光学結晶の屈折
率の変化を光を用いて検知することで、空間電界の測定
を行なう電界センサーにおいて、対向する2枚の部分透
過ミラーの間に電気光学結晶を配置して光共振器を構成
し、光源からの光を一方の前記部分透過ミラーから入射
させ、前記電気光学結晶中の2つの固有偏光に対応する
前記光共振器からの出射光を干渉させて、前記固有偏光
間の周波数差に対応するビート信号の周波数を検知する
ことで、空間電界の測定を行なうように構成したことを
特徴とする。In order to achieve the above object, the invention of claim 1 uses a light to detect a change in the refractive index of an electro-optic crystal due to an electric field, thereby measuring a spatial electric field. In the sensor, an electro-optic crystal is arranged between two facing partially transmissive mirrors to form an optical resonator, and light from a light source is made incident from one of the partially transmissive mirrors. The spatial light field is measured by interfering the light emitted from the optical resonator corresponding to one of the intrinsic polarizations and detecting the frequency of the beat signal corresponding to the frequency difference between the intrinsic polarizations. Is characterized by.
【0005】請求項2の発明は、対向電極で挾持された
電気光学結晶の電気光学効果による屈折率の変化を光を
用いて検知することで、前記電極間の電位差の測定を行
なう電圧センサーにおいて、対向する2枚の部分透過ミ
ラーの間に対向電極で挾持された電気光学結晶を配置し
て光共振器を構成し、光源からの光を一方の前記部分透
過ミラーから入射させ、前記電気光学結晶中の2つの固
有偏光に対応する前記光共振器からの出射光を干渉させ
て、前記固有偏光間の周波数差に対応するビート信号の
周波数を検知することで、前記対向電極間の電位差の測
定を行なうように構成したことを特徴とする。According to a second aspect of the invention, in a voltage sensor for measuring a potential difference between the electrodes by detecting a change in the refractive index of the electro-optic crystal held by the counter electrodes due to the electro-optic effect, using light. , An optical resonator is formed by disposing an electro-optic crystal sandwiched by a counter electrode between two facing partial transmission mirrors, and light from a light source is made incident from one of the partial transmission mirrors. By interfering the light emitted from the optical resonators corresponding to the two intrinsic polarizations in the crystal and detecting the frequency of the beat signal corresponding to the frequency difference between the intrinsic polarizations, the potential difference between the counter electrodes is It is characterized in that it is configured to perform measurement.
【0006】ここで、前記光共振器は、前記電気光学結
晶の外部に配置された外部部分透過ミラーと、前記電気
光学結晶の片面に備えた他方の部分透過ミラーによって
構成するか、あるいは、前記電気光学結晶の対向する2
つの端面上に部分透過ミラーを備えた構成とする(請求
項3)。Here, the optical resonator comprises an external partial transmission mirror arranged outside the electro-optic crystal and the other partial transmission mirror provided on one surface of the electro-optic crystal, or Opposite two of electro-optic crystal
The structure is such that a partial transmission mirror is provided on one end face (claim 3).
【0007】また、前記光共振器へ光を入射させるため
の前記光源には、LED(Light Emitting Diode)、ある
いは、SLD(Super Luminecence Diode)を用いた構成
にする(請求項4)。Further, the light source for causing the light to enter the optical resonator is configured to use an LED (Light Emitting Diode) or an SLD (Super Luminecence Diode) (claim 4).
【0008】[0008]
【作用】本発明は、電気光学結晶を用いて高感度な電界
・電圧の測定を行なうために創案されたものである。従
来の電気光学結晶を用いた電界・電圧センサーは、電気
光学効果によって生じるリターデイション(結晶中の2
つの固有偏光間の位相差)を検知することで、電界・電
圧の測定を行なっている。ところが、この方法では電気
光学結晶の半波長電圧が非常に高いために、微小な電界
や電圧を測定するのは困難とされている。そこで、本発
明では、請求項1の電界センサーや請求項2の電圧セン
サーのように、電気光学結晶を光共振器中に挿入する構
成を用いることで、より高感度な電界・電圧センサーを
実現した。The present invention was devised to measure electric fields and voltages with high sensitivity using an electro-optic crystal. An electric field / voltage sensor using a conventional electro-optic crystal has a retardation (2
The electric field and voltage are measured by detecting the phase difference between two intrinsic polarizations. However, in this method, the half-wave voltage of the electro-optic crystal is so high that it is difficult to measure a minute electric field or voltage. Therefore, in the present invention, as in the electric field sensor according to claim 1 and the voltage sensor according to claim 2, by using the configuration in which the electro-optic crystal is inserted into the optical resonator, a more sensitive electric field / voltage sensor is realized. did.
【0009】[0009]
【実施例】以下、本発明の構成・動作及び作用について
図面を参照して詳細に説明する。図1は本発明による光
共振器の原理説明図、図2は本発明の一実施例を示す電
界(電圧)センサーの概略構成図であり、この電界セン
サーは、光源、偏向子、センサー部分(光共振器)、検
光子、受光器、周波数計測器より構成されている。以
下、本発明の原理を図1、図2を参照して説明する。図
1に示すように、対向する2つの部分透過ミラー2,3
の間に電気光学結晶1(例えば、KDP,ADP,BS
O,LiNbO3 など)を挿入して光共振器を構成し、
片方の部分透過ミラー2から光を入射させる場合を考え
る。ただし、入射光には適当なスペクトル幅を持った光
を使用するものとし、また、簡単のため入射光は垂直入
射させるものとする。このとき、電気光学結晶1の2つ
の固有偏光a,bに対応するq番目の共振周波数fa,
fbは、 fa=qc0/2{n0(d1+d3)+nad2} ・・・(1) fb=qc0/2{n0(d1+d3)+nbd2} ・・・(2) と表わされる。ここで、c0 は光速度、d1,d2,d3
は各領域の厚み、n0 はd1,d3に対応する領域の屈折
率、na,nbは電気光学結晶の2つの固有偏光a,bに
対応するそれぞれの屈折率を表わしている。光共振器に
入射された光のうち、上記の共振周波数に一致した周波
数の光は光共振器を透過する。従って、電気光学結晶の
2つの固有偏光a,bに対応する透過光を、図2に示す
ように検光子を用いて干渉させ、それを受光器で受ける
ことにより、電気光学結晶中で各固有偏光が感じる屈折
率na,nbの差に応じた周波数|fa−fb|のビート信
号を得ることが可能である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration, operation and operation of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram illustrating the principle of an optical resonator according to the present invention, and FIG. 2 is a schematic configuration diagram of an electric field (voltage) sensor showing an embodiment of the present invention. The electric field sensor includes a light source, a deflector, and a sensor portion ( The optical resonator), the analyzer, the light receiver, and the frequency measuring device. Hereinafter, the principle of the present invention will be described with reference to FIGS. As shown in FIG. 1, two partially transmissive mirrors 2 and 3 facing each other.
Between electro-optic crystal 1 (eg KDP, ADP, BS
O, LiNbO 3 etc.) to form an optical resonator,
Consider a case where light is incident from one of the partial transmission mirrors 2. However, it is assumed that light having an appropriate spectrum width is used as the incident light, and that the incident light is vertically incident for simplicity. At this time, the q-th resonance frequency f a corresponding to the two intrinsic polarizations a and b of the electro-optic crystal 1
f b is, f a = qc 0/2 {n 0 (d 1 + d 3) + n a d 2} ··· (1) f b = qc 0/2 {n 0 (d 1 + d 3) + n b d 2 } It is expressed as (2). Where c 0 is the speed of light and d 1 , d 2 , d 3
Is the thickness of each region, n 0 is the refractive index of the regions corresponding to d 1 and d 3 , and n a and n b are the respective refractive indices corresponding to the two intrinsic polarizations a and b of the electro-optic crystal. . Of the light incident on the optical resonator, the light having a frequency matching the above resonance frequency is transmitted through the optical resonator. Therefore, as shown in FIG. 2, the transmitted lights corresponding to the two unique polarizations a and b of the electro-optic crystal are made to interfere with each other by the analyzer, and the light is received by the photodetector, so that the respective intrinsic lights in the electro-optic crystal are received. refractive index n a polarization feel, frequency corresponding to the difference between the n b | it is possible to obtain a beat signal of | f a -f b.
【0010】一方、光共振器中に挿入する電気光学結晶
1は、結晶の点群と方位を適当に選ぶことで結晶中の電
界強度に応じた複屈折を生じさせることができる。今、
固有偏光a,bに対する屈折率が電気光学効果によって
Δna,Δnbだけ変化したとすると、(1),(2)式の共
振周波数fa',fb'は、 fa'=qc0/2{n0(d1+d3)+(na+Δna)d2} ・・・(3) fb'=qc0/2{n0(d1+d3)+(nb+Δnb)d2} ・・・(4) となり、ビート信号の周波数は|fa−fb|から|fa'
−fb'|へと変化する。電気光学結晶中の電界と屈折率
の変化には特定の関係式が成り立っているので、このビ
ート周波数の変化を図2のように周波数計測器で検知す
ることにより、結晶中の電界を測定することが可能とな
る。On the other hand, the electro-optic crystal 1 inserted in the optical resonator can produce birefringence according to the electric field strength in the crystal by appropriately selecting the point group and orientation of the crystal. now,
Assuming that the refractive indices for the intrinsic polarized lights a and b are changed by Δn a and Δn b due to the electro-optic effect, the resonance frequencies f a ′ and f b ′ in the equations (1) and (2) are f a ′ = qc 0. / 2 {n 0 (d 1 + d 3) + (n a + Δn a) d 2} ··· (3) f b '= qc 0/2 {n 0 (d 1 + d 3) + (n b + Δn b ) d 2} ··· (4), and the frequency of the beat signal | f a -f b | a | f a '
-F b '| Since a specific relational expression holds for the change in the electric field and the refractive index in the electro-optic crystal, the change in the beat frequency is detected by the frequency measuring device as shown in FIG. 2 to measure the electric field in the crystal. It becomes possible.
【0011】次に、図3(a),(b)は本発明の電圧
センサーに用いられる光共振器の構成例を示し、図3
(a),(b)のように、電気光学結晶1を2枚の対向
電極4,5で挾んだ場合には、電極間の電位差に応じた
ビート周波数の信号を得ることができるので、この光共
振器を図2のセンサー部分に用いれば、電圧センサーと
して使用することができる。ただし、この場合には、2
枚の電極間に形成される電界によって電気光学結晶1が
上述のような複屈折を生じるように電気光学結晶1の点
群と方位及び電極4,5の配置(縦型配置または横型配
置)を適当に選んでおく必要がある。Next, FIGS. 3 (a) and 3 (b) show a structural example of an optical resonator used in the voltage sensor of the present invention.
As shown in (a) and (b), when the electro-optic crystal 1 is sandwiched by the two opposing electrodes 4 and 5, a beat frequency signal corresponding to the potential difference between the electrodes can be obtained. If this optical resonator is used in the sensor portion of FIG. 2, it can be used as a voltage sensor. However, in this case, 2
The point group and orientation of the electro-optical crystal 1 and the arrangement of the electrodes 4 and 5 (vertical arrangement or horizontal arrangement) are set so that the electro-optical crystal 1 causes the birefringence as described above by the electric field formed between the electrodes. It is necessary to select it appropriately.
【0012】尚、図1〜3では、2枚の部分透過ミラー
2,3を電気光学結晶の外部に設けたが、図4に示すよ
うに、片方の部分透過ミラーを電気光学結晶の端面に形
成することで、センサーの構成が単純化され小型化が図
れると共に、電気光学結晶表面での反射による損失を片
側だけに抑えることができる。また、図5に示すよう
に、2枚の部分透過ミラーを電気光学結晶の両面に形成
することで、センサーをさらに小型化することも可能で
ある。ただし、このような構成にすると、光共振器の特
性(透過光スペクトルの幅、フィネスなど)と電気光学
結晶の電界に対する感度(電界に対する光路長の変化)
が相関を持つことになり、使用目的に合った構成が取れ
ない場合が生じる。Although the two partial transmission mirrors 2 and 3 are provided outside the electro-optical crystal in FIGS. 1 to 3, as shown in FIG. 4, one partial transmission mirror is provided on the end surface of the electro-optical crystal. By forming it, the structure of the sensor can be simplified and miniaturized, and the loss due to reflection on the electro-optic crystal surface can be suppressed to only one side. Further, as shown in FIG. 5, it is possible to further miniaturize the sensor by forming two partial transmission mirrors on both sides of the electro-optic crystal. However, with this configuration, the characteristics of the optical resonator (width of transmitted light spectrum, finesse, etc.) and the sensitivity of the electro-optic crystal to the electric field (change in optical path length with respect to the electric field)
Will have a correlation, and there may be a case where a configuration suitable for the purpose of use cannot be obtained.
【0013】次に、本発明の電界・電圧センサーにおい
て、光共振器へ光を供給するための光源については、上
記2つの固有偏光に対応する光共振器の共振周波数の差
より大きなスペクトル幅を持つものが必要とされる。こ
こで、光源にレーザーを用いた場合には、レーザーの発
振スペクトル幅が狭いために、発振周波数を光共振器の
共振周波数近傍で安定動作させなければならないことに
加え、電界及び電圧に対するダイナミックレンジが狭く
なるという欠点が生じる。そこで、より実用的な光源と
しては、レーザよりスペクトル幅が広いものとしてLE
D(Light Emitting Diode)やSLD(Super Luminecenc
e Diode)が考えられる。しかし光源としてLEDを用い
た場合には、非常に安価にセンサーを構成できるという
利点はあるが、ビート信号周波数のスペクトル幅が広が
ってしまい感度の低下につながる恐れがある。これに対
して、SLDは、適度なスペクトル幅を持ち、また、輝
度も高いので、本発明の原理に適した光源である。尚、
どちらの光源を用いた場合にも、図2のように光共振器
に入射させる前段で偏光子を通過させることでコヒーレ
ンス度を上げることができる。Next, in the electric field / voltage sensor of the present invention, the light source for supplying light to the optical resonator has a spectral width larger than the difference between the resonance frequencies of the optical resonators corresponding to the above two intrinsic polarizations. What you have is needed. Here, when a laser is used as the light source, the oscillation spectrum width of the laser is narrow, so that the oscillation frequency must be stably operated in the vicinity of the resonance frequency of the optical resonator, and the dynamic range for the electric field and voltage is Has the drawback of being narrowed. Therefore, as a more practical light source, LE having a wider spectrum width than a laser is used.
D (Light Emitting Diode) and SLD (Super Luminecenc)
e Diode) is possible. However, when an LED is used as a light source, there is an advantage that the sensor can be constructed at a very low cost, but the spectrum width of the beat signal frequency is widened, which may lead to a decrease in sensitivity. On the other hand, the SLD has an appropriate spectrum width and high brightness, and is therefore a light source suitable for the principle of the present invention. still,
Whichever light source is used, the coherence degree can be increased by allowing the polarizer to pass before entering the optical resonator as shown in FIG.
【0014】[0014]
【発明の効果】以上説明したように、請求項1の電界セ
ンサーは、対向する2枚の部分透過ミラーの間に電気光
学結晶を配置して光共振器を構成し、光源からの光を一
方の前記部分透過ミラーから入射させ、前記電気光学結
晶中の2つの固有偏光に対応する前記光共振器からの出
射光を干渉させて、前記固有偏光間の周波数差に対応す
るビート信号の周波数を検知することで、空間電界の測
定を行なうように構成したことにより、従来のリターデ
イションを検知する電界センサーより、高感度な電界セ
ンサーが構成できる。As described above, in the electric field sensor according to the first aspect of the invention, an electro-optic crystal is arranged between two facing partial transmission mirrors to form an optical resonator, and the light from the light source is transmitted to one side. Of the beat signal corresponding to the frequency difference between the intrinsic polarizations by interfering the light emitted from the optical resonator corresponding to the two intrinsic polarizations in the electro-optic crystal. Since the spatial electric field is measured by the detection, the electric field sensor having a higher sensitivity than the conventional electric field sensor for detecting the retardation can be configured.
【0015】請求項2の電圧センサーは、対向する2枚
の部分透過ミラーの間に対向電極で挾持された電気光学
結晶を配置して光共振器を構成し、光源からの光を一方
の前記部分透過ミラーから入射させ、前記電気光学結晶
中の2つの固有偏光に対応する前記光共振器からの出射
光を干渉させて、前記固有偏光間の周波数差に対応する
ビート信号の周波数を検知することで、前記対向電極間
の電位差の測定を行なうように構成したことにより、従
来のリターデイションを検知する電圧センサーより、高
感度な電圧センサーが構成できる。According to another aspect of the voltage sensor of the present invention, an electro-optical crystal sandwiched by a counter electrode is arranged between two facing partially transmissive mirrors to form an optical resonator, and light from a light source is used for one of the above. The frequency of the beat signal corresponding to the frequency difference between the intrinsic polarizations is detected by causing the light emitted from the optical resonator corresponding to the two intrinsic polarizations in the electro-optic crystal to interfere with each other by entering the partial transmission mirror. Thus, since the potential difference between the opposed electrodes is configured to be measured, it is possible to configure a voltage sensor with higher sensitivity than the conventional voltage sensor that detects retardation.
【0016】請求項3の電界・電圧センサーは、光共振
器を、電気光学結晶の外部に配置された外部部分透過ミ
ラーと、電気光学結晶の片面に備えた他方の部分透過ミ
ラーによって構成することにより、光共振器の構成を単
純化し、小型化を図ると共に、電気光学結晶表面での反
射による共振器内部での光の損失を低減させることがで
きる。また、光共振器を、電気光学結晶の対向する2つ
の端面上に部分透過ミラーを備えた構成とすることによ
り、上記構成よりさらに小型のセンサーが構成できると
共に、共振器内部での光の損失を抑えることができる。According to another aspect of the electric field and voltage sensor of the present invention, the optical resonator comprises an external partial transmission mirror arranged outside the electro-optical crystal and the other partial transmission mirror provided on one surface of the electro-optical crystal. Thus, the structure of the optical resonator can be simplified and miniaturized, and the loss of light inside the resonator due to reflection on the electro-optic crystal surface can be reduced. Further, by configuring the optical resonator with the partial transmission mirrors on the two opposing end faces of the electro-optic crystal, a sensor smaller than the above configuration can be configured, and the loss of light inside the resonator can be achieved. Can be suppressed.
【0017】請求項4の電界・電圧センサーは、光共振
器へ光を入射させるための光源にLEDを用いた構成と
することにより、小型で安価なセンサーを構成すること
ができ、また、光源にSLDを用いた構成とした場合に
は、LEDを用いた場合より感度の高いセンサーを構成
することができる。According to the electric field / voltage sensor of the fourth aspect, by using an LED as a light source for making light incident on the optical resonator, a small and inexpensive sensor can be constructed. When the SLD is used for the sensor, a sensor having higher sensitivity than the case where the LED is used can be configured.
【図1】本発明による電界センサーの光共振器の原理説
明図である。FIG. 1 is a diagram illustrating the principle of an optical resonator of an electric field sensor according to the present invention.
【図2】本発明の一実施例を示す電界(電圧)センサー
の概略構成図である。FIG. 2 is a schematic configuration diagram of an electric field (voltage) sensor showing an embodiment of the present invention.
【図3】本発明の電圧センサーに用いられる光共振器の
構成例を示す図である。FIG. 3 is a diagram showing a configuration example of an optical resonator used in the voltage sensor of the present invention.
【図4】本発明の電界・電圧センサーに用いられる光共
振器の別の構成例を示す図である。FIG. 4 is a diagram showing another configuration example of the optical resonator used in the electric field / voltage sensor of the present invention.
【図5】本発明の電界・電圧センサーに用いられる光共
振器のさらに別の構成例を示す図である。FIG. 5 is a diagram showing still another configuration example of the optical resonator used in the electric field / voltage sensor of the present invention.
1 :電気光学結晶 2,3:部分透過ミラー 4,5:電極 a,b:固有偏光 1: electro-optic crystal 2, 3: partial transmission mirror 4, 5: electrode a, b: intrinsically polarized light
Claims (4)
光を用いて検知することで、空間電界の測定を行なう電
界センサーにおいて、対向する2枚の部分透過ミラーの
間に電気光学結晶を配置して光共振器を構成し、光源か
らの光を一方の前記部分透過ミラーから入射させ、前記
電気光学結晶中の2つの固有偏光に対応する前記光共振
器からの出射光を干渉させて、前記固有偏光間の周波数
差に対応するビート信号の周波数を検知することで、空
間電界の測定を行なうように構成したことを特徴とする
電界センサー。1. In an electric field sensor for measuring a spatial electric field by detecting a change in the refractive index of the electro-optic crystal due to an electric field using light, the electro-optic crystal is provided between two facing partial transmission mirrors. The optical resonators are arranged so that light from the light source is incident from one of the partial transmission mirrors, and light emitted from the optical resonators corresponding to two intrinsic polarizations in the electro-optic crystal is caused to interfere with each other. An electric field sensor configured to measure a spatial electric field by detecting a frequency of a beat signal corresponding to a frequency difference between the intrinsic polarized lights.
光学効果による屈折率の変化を光を用いて検知すること
で、前記電極間の電位差の測定を行なう電圧センサーに
おいて、対向する2枚の部分透過ミラーの間に対向電極
で挾持された電気光学結晶を配置して光共振器を構成
し、光源からの光を一方の前記部分透過ミラーから入射
させ、前記電気光学結晶中の2つの固有偏光に対応する
前記光共振器からの出射光を干渉させて、前記固有偏光
間の周波数差に対応するビート信号の周波数を検知する
ことで、前記対向電極間の電位差の測定を行なうように
構成したことを特徴とする電圧センサー。2. A voltage sensor for measuring a potential difference between the electrodes by detecting a change in the refractive index of the electro-optical crystal held by the counter electrodes due to the electro-optic effect by using light, and two electrodes facing each other. The electro-optic crystal sandwiched by the counter electrodes is arranged between the partial transmission mirrors of 1 to form an optical resonator, and the light from the light source is made incident from one of the partial transmission mirrors, and By measuring the frequency of the beat signal corresponding to the frequency difference between the intrinsic polarized lights by interfering the light emitted from the optical resonator corresponding to the intrinsic polarized light, the potential difference between the counter electrodes is measured. A voltage sensor characterized by being configured.
に配置された外部部分透過ミラーと、前記電気光学結晶
の片面に備えた他方の部分透過ミラーによって構成する
か、あるいは、前記電気光学結晶の対向する2つの端面
上に部分透過ミラーを備えた構成とすることを特徴とす
る請求項1記載の電界センサー及び請求項2記載の電圧
センサー。3. The optical resonator comprises an external partial transmission mirror arranged outside the electro-optic crystal and the other partial transmission mirror provided on one surface of the electro-optic crystal, or 3. The electric field sensor according to claim 1 and the voltage sensor according to claim 2, wherein a partial transmission mirror is provided on two opposing end faces of the optical crystal.
光源には、LED(Light EmittingDiode)、あるいは、
SLD(Super Luminecence Diode)を用いた構成にする
ことを特徴とする請求項1〜4記載の電界センサー及び
電圧センサー。4. An LED (Light Emitting Diode) or an LED (Light Emitting Diode) is provided in the light source for causing light to enter the optical resonator.
The electric field sensor and the voltage sensor according to any one of claims 1 to 4, wherein the electric field sensor and the voltage sensor have a configuration using an SLD (Super Luminecence Diode).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25732193A JP3260928B2 (en) | 1993-10-14 | 1993-10-14 | Electric field sensor and voltage sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25732193A JP3260928B2 (en) | 1993-10-14 | 1993-10-14 | Electric field sensor and voltage sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07113824A true JPH07113824A (en) | 1995-05-02 |
JP3260928B2 JP3260928B2 (en) | 2002-02-25 |
Family
ID=17304741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25732193A Expired - Fee Related JP3260928B2 (en) | 1993-10-14 | 1993-10-14 | Electric field sensor and voltage sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3260928B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109029764B (en) * | 2018-07-25 | 2020-07-14 | 嘉兴尚嘉智能技术有限公司 | Photoelectric mixed non-contact temperature measuring device |
-
1993
- 1993-10-14 JP JP25732193A patent/JP3260928B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3260928B2 (en) | 2002-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4702600A (en) | Method and apparatus for measuring angular rate with a passive optical resonator | |
US9810964B2 (en) | Electro-optic modulator having identical forward and backward electro-optic response | |
US5227715A (en) | Apparatus for measuring electromagnetic field intensity using dual polarized light beams | |
JPS62502227A (en) | Stabilized ring laser bias system | |
US6992777B2 (en) | Birefringent Mach-Zehnder interferometer | |
US3506362A (en) | Laser system which indicates the angular position of an optically anisotropic element | |
US8730481B2 (en) | Sagnac optical ingredient-measuring apparatus with circular polarizers in parallel | |
US4286878A (en) | Optical fibre interferometric gyrometer with polarization switching | |
JP3260928B2 (en) | Electric field sensor and voltage sensor | |
GB1576941A (en) | Laser gyroscope | |
JPH0989961A (en) | Electric field detecting device | |
US7102757B2 (en) | Current measurement method and device based on a fiber optic in-line Sagnac interferometer | |
JPH0447214A (en) | Optical fiber gyroscope | |
JPH07113825A (en) | Electric field sensor and voltage sensor | |
RU2539130C1 (en) | Fibre-optic device for measurement of electric field intensity | |
JPS59166873A (en) | Optical applied voltage and electric field sensor | |
JPH06289064A (en) | Fabry-perot resonator type electric field sensor | |
JPH09264939A (en) | Polarization-independent-type physical-quantity measuring method | |
JPH0237545B2 (en) | HIKARINYORUDENKAI * JIKAISOKUTEIKI | |
JP2580443B2 (en) | Optical voltage sensor | |
JPS60104236A (en) | Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber | |
JPH07191061A (en) | Sensor using light | |
JP2002257887A (en) | Reflection-type electric field sensor head and reflection-type electric field sensor | |
JP3435584B2 (en) | Electric field sensor head and electric field sensor | |
JPS61196103A (en) | Displacement meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071214 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091214 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |