JPH0711376B2 - Ice bank type water cooler - Google Patents

Ice bank type water cooler

Info

Publication number
JPH0711376B2
JPH0711376B2 JP63017995A JP1799588A JPH0711376B2 JP H0711376 B2 JPH0711376 B2 JP H0711376B2 JP 63017995 A JP63017995 A JP 63017995A JP 1799588 A JP1799588 A JP 1799588A JP H0711376 B2 JPH0711376 B2 JP H0711376B2
Authority
JP
Japan
Prior art keywords
water
pipe
ice
cold water
overflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63017995A
Other languages
Japanese (ja)
Other versions
JPH01193573A (en
Inventor
善昭 高野
裕 下瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63017995A priority Critical patent/JPH0711376B2/en
Publication of JPH01193573A publication Critical patent/JPH01193573A/en
Publication of JPH0711376B2 publication Critical patent/JPH0711376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷却コイルにより貯水槽の冷水の一部乃至は大
部分を氷層とするアイスバンク式冷水装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an ice bank type cold water device in which a part or most of the cold water in a water tank is an ice layer by a cooling coil.

(ロ)従来の技術 貯水槽内に配置された冷却コイルに所定の厚さの氷層を
付着形成させ、この氷の潜熱により冷水の冷却能力を高
めたものはアイスバンクと称され公知である。
(B) Conventional technology It is known that an ice layer having a predetermined thickness is adhered and formed on a cooling coil arranged in a water tank, and the cooling capacity of the cold water is enhanced by the latent heat of the ice, which is called an ice bank. .

前記貯水槽内の水位は貯水槽内が冷水のみの場合に比べ
て貯水槽内の冷水の一部を氷層とした場合の方が高くな
る。これは氷を含む冷水の体積が増加する関係上生じる
現象であり、かかる現象は実公昭61−29009号公報(F25
D 11/00)で公知である。この実公昭61−29009号公報の
飲料冷却注出機には、上部を大気に開放された筒状体で
冷水タンクの液面変化を検出する構成がとられる一方、
冷水タンク内には冷凍機ユニットの蒸発器と、飲料の冷
却管とが配置された構成がとられている。
The water level in the water storage tank is higher when a part of the cold water in the water storage tank is an ice layer than when the water in the water storage tank is only cold water. This is a phenomenon that occurs because the volume of cold water containing ice increases, and such a phenomenon is disclosed in Japanese Utility Model Publication No. 61-29009 (F25
D 11/00). In the beverage cooling pouring machine of Japanese Utility Model Publication No. 61-29009, a configuration is adopted in which a liquid level change of a cold water tank is detected by a cylindrical body whose upper part is open to the atmosphere.
The evaporator of the refrigerator unit and the cooling pipe of the beverage are arranged in the cold water tank.

(ハ)発明が解決しようとする課題 上記従来の技術にあっては、筒状体の上部は大気に開放
されている関係上、氷の厚さを検知する製氷検知器が故
障し蒸発器に付着形成された氷層が徐々に成長した場合
には、筒状体の上部から水が溢流して飲料冷却注出機を
漏れす外、辺り一面を汚すという問題点があった。
(C) Problem to be Solved by the Invention In the above-described conventional technique, the upper portion of the tubular body is open to the atmosphere, and therefore the ice-making detector that detects the thickness of ice fails and the When the ice layer formed by the adhesion gradually grows, there is a problem that water overflows from the upper part of the cylindrical body and leaks from the beverage cooling pouring machine, and the whole area is polluted.

本発明は上記問題点を解決することを1つの目的とし
て、水位制御装置及び又は氷厚検出装置が故障したとき
には、貯水槽の水を溢水路から外部に排出するように
し、又他の目的としては所定量の氷層が形成され貯水槽
の水位が上がった場合においても冷水の溢水を阻止する
ことにある。
One of the objects of the present invention is to solve the above problems, and when the water level control device and / or the ice thickness detection device fails, the water in the water storage tank is discharged to the outside from the overflow channel. Is to prevent the overflow of cold water even when a certain amount of ice layer is formed and the water level in the water tank rises.

(ニ)課題を解決するための手段 上記目的を達成するために、本発明の冷水装置において
は、入口が水位制御装置により決定される第1の水面及
び冷却コイルにより所定量の氷が貯水槽内に形成された
ときの第2の水面よりも高くなる溢水路を設け、水位制
御装置及び氷厚検出装置の正常作動時、即ち水位が第2
の水面であるときにも冷水の溢水を回避するようにした
構成である。
(D) Means for Solving the Problem In order to achieve the above object, in the chilled water device of the present invention, a predetermined amount of ice is stored in the water tank by the first water surface whose inlet is determined by the water level control device and the cooling coil. An overflow channel that is higher than the second water level when formed inside is provided, and when the water level control device and the ice thickness detection device operate normally, that is, the water level is the second level.
It is a structure that avoids the overflow of cold water even when the water surface is.

(ホ)作用 上記の構成によれば、溢水路となるオーバーフロー管の
入口は第1の水面及び第2の水面よりも高い位置にある
関係上、冷却パイプで冷却された冷水が冷却及び製氷過
程においてオーバーフローすることがなく、冷水の無駄
がなくなる。
(E) Action According to the above configuration, since the inlet of the overflow pipe, which is the overflow channel, is located higher than the first water surface and the second water surface, the cold water cooled by the cooling pipe is cooled and iced. There will be no overflow in and there will be no waste of cold water.

又、水位制御装置及び又は氷厚検出装置の異常即ち故障
が生じ給水が継続されるときや、氷層が予め定められた
厚さ以上に形成されるときには、オーバーフロー管から
排水管を通して外部に排水できる。
When the water level control device and / or the ice thickness detection device has an abnormality, that is, a malfunction, and water continues to be supplied, or when the ice layer is formed to have a predetermined thickness or more, drainage from the overflow pipe to the outside through the drain pipe. it can.

(ヘ)実施例 以下図面に基づいて本発明の実施例を説明する。(F) Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図に示す(1)は店舗の鮮魚売場やレス
トラン等の厨房で使用されるアイスバンク式冷水装置の
1種である冷水供給機で、この冷水供給機を使用する目
的は冷却保存された鮮魚を調理加工する際、冷水でもっ
て鮮魚の血や残滓を洗い流すことに併わせて、洗浄によ
り鮮魚の品質が変化しない、即ち鮮魚の温度が上昇しな
いようにすることにある。
(1) shown in Fig. 1 and Fig. 2 is a chilled water supply device which is one kind of ice bank type chilled water device used in kitchens such as fresh fish counters in restaurants and restaurants. The purpose of using this chilled water supply device is When cooking and processing fresh fish that has been stored in a cold state, it is necessary to wash away the blood and residue of the fresh fish with cold water so that the quality of the fresh fish does not change due to washing, that is, the temperature of the fresh fish does not rise.

前記冷水供給機(1)は貯水槽(2)を画成する内箱
(3)、この内箱を収納する外箱(4)、この内外両箱
(3)(4)間に充填された発泡断熱材(5)からな
り、上面の断熱蓋(6)を備えた断熱箱(7)と、この
断熱箱の下方に形成された機械室(8)とから構成され
ている。
The cold water supply device (1) is filled between an inner box (3) defining the water tank (2), an outer box (4) accommodating the inner box, and both the inner and outer boxes (3) and (4). It is composed of a foam insulation material (5), an insulation box (7) having an upper insulation lid (6), and a machine room (8) formed below the insulation box.

前記冷水供給機(1)には、蛇行状に曲成され貯水槽
(2)内に配置された冷却コイル(9)と、この冷却コ
イルを支持する上下一対の板状支持具(10)(11)と、
給水管(12)からの水道水を前記貯水槽(2)に所定量
例えば200l給水するフロート(13)付給水弁(14)から
なる水位制御装置(S)と、上下方向可動可能な前記フ
ロート(13)により決定される第1の水面(L)よりも
上端入口(15B)が稍上方例えば3.5cm上方に位置する溢
水路即ちオーバーフロー管(15)と、前記貯水槽(2)
の下部に上端入口が臨み、下端出口にカラン(16)を備
え、入口と出口との間に2基の循環ポンプ(17)(18)
及びこのポンプ(18)を駆動させるフロースイッチ(1
9)を備えた冷水取出管(20)と、上端出口が前記貯水
槽(2)内において前記冷水取出管(20)の入口よりも
上方に位置し、且つ下端入口が前記冷水取出管(20)の
循環ポンプ(18)とフロースイッチ(19)との間に接続
され、且つオリフィス又は玉形弁からなる流量調節弁
(21)を備えた冷水帰還管(22)と、一端がオーバーフ
ロー管(15)、他端が冷水取出管(20)に接続され、且
つ途中に排水弁(23)を備えた連絡管(24)とが設けら
れている。
The cold water supplier (1) includes a cooling coil (9) bent in a meandering shape and arranged in a water tank (2), and a pair of upper and lower plate-shaped support members (10) (10) for supporting the cooling coil. 11) and
A water level control device (S) including a water supply valve (14) with a float (13) for supplying a predetermined amount of, for example, 200 l of tap water from a water supply pipe (12) to the water storage tank (2), and the float movable vertically. An overflow channel or overflow pipe (15) whose upper end inlet (15B) is located slightly above, for example, 3.5 cm above the first water surface (L) determined by (13), and the water tank (2).
The upper end entrance faces the lower part of the base and the lower end outlet is equipped with a calan (16), and two circulation pumps (17) (18) are provided between the inlet and the outlet.
And a flow switch (1 that drives this pump (18)
9), a cold water extraction pipe (20) and an upper end outlet thereof are located above the inlet of the cold water extraction pipe (20) in the water storage tank (2), and a lower end inlet thereof is the cold water extraction pipe (20). ), A cold water return pipe (22) equipped with a flow rate control valve (21) consisting of an orifice or an elliptic valve, connected between the circulation pump (18) and the flow switch (19), and an overflow pipe (22) at one end. 15), the other end is connected to the cold water extraction pipe (20), and a communication pipe (24) provided with a drain valve (23) is provided midway.

又、前記機械室(8)には、前記冷却コイル(9)と共
に冷凍装置を構成する冷媒圧縮機(25)、凝縮器(2
6)、受液器(27)、気液分離器(28)の他、前記両ポ
ンプ(17)(18)やオーバーフロー管(15)の出口であ
る排水口(29)や冷水取出管(20)の口である冷水口
(30)が設けられている。前記排水口(29)及び冷水口
(30)は貯水槽(2)の水を抜く際、ポンプ(17)(1
8)の水も抜けるようこの両ポンプよりも低い機械室
(8)のベース(31)に設けられている。尚、前記排水
口(29)にはオーバーフロー管(15)の一部となる排水
管(15A)が接続され、又、冷水口(30)には冷水取出
管(20)の一部となる前記カラン(16)を備えたホース
(20A)が接続される。
Further, in the machine room (8), a refrigerant compressor (25) and a condenser (2) which constitute a refrigeration system together with the cooling coil (9).
6), liquid receiver (27), gas-liquid separator (28), drainage port (29) which is the outlet of both pumps (17) (18) and overflow pipe (15), and cold water extraction pipe (20) ) Is provided with a cold water port (30). The drain port (29) and the cold water port (30) are used for pumping (17) (1) when draining water from the water tank (2).
It is installed in the base (31) of the machine room (8) lower than both pumps so that the water in 8) will also drain. The drain port (29) is connected to a drain pipe (15A) which is a part of the overflow pipe (15), and the cold water port (30) is a part of the cold water take-out pipe (20). A hose (20A) equipped with a callan (16) is connected.

前記冷凍装置は圧縮機(25)、凝縮器(26)、受液器
(27)、膨張弁(32)、冷却コイル(9)、気液分離器
(28)を高圧ガス管(33)、高圧液管(34)、低圧液管
(35)、低圧ガス管(36)でもって環状接続することに
より閉回路として構成され、冷却運転に伴ない循環され
る冷媒を圧縮、凝縮液化、減圧、蒸発気化させることに
より水を冷水とし、冷却コイル(9)の周囲に所定厚の
氷層(H)を形成する。この氷層(H)の形成に伴ない
水位は上昇して第2図1点鎖線で示す第2の水面(M)
となる。(37)は前記高圧液管(34)の一部と、低圧ガ
ス管(36)の一部とで形成される熱交換部で、温度の高
い高圧液冷媒と温度の低い低圧気液混合冷媒とを相互に
熱交換させることにより、液冷媒を過冷却液とする一方
で気液混合冷媒をガス冷媒とする。(38)は前記冷却コ
イル(9)の表面から若干離れた位置に夫々設けられた
2個のセンサー(39)(40)を有する氷厚検出装置で、
前記両センサー(39)(40)間の電気伝導度の有無を検
出して高圧液管(34)の途中に設けた電磁弁(41)を開
閉させるものである。即ち両センサー(39)(40)が共
に氷で被われたときには、双方の間の電気伝導度は設定
値よりも低下して電磁弁(41)が閉となり、又両センサ
ー(39)(40)が共に水に晒されたときには、双方の間
の電気伝導度は設定値よりも上昇して電磁弁(41)が開
となる制御を行なう。前記電磁弁(41)はポンプダウン
(冷媒回収)用のもので、この電磁弁(41)が閉となる
ことにより、冷凍装置は冷却運転からポンプダウン運転
に切り換わる。このポンプダウン運転は、冷凍装置の低
圧々力が低圧ガス管(36)に設けられた低圧スイッチ
(42)の設定値以下に下がったときに停止される。又、
逆に冷却運転は、冷水が取出管(20)から外部に供給さ
れると共に、給水管(12)から貯水槽(2)内に水道水
が給水されて水温が上がり、センサー(39)(40)表面
が冷水に晒され電磁弁(41)が開放され、低圧々力が低
圧スイッチ(42)の設定値以上になったときに再開され
る。尚、この低圧スイッチ(42)は圧縮機(25)の発停
を行なう。前記膨張弁(32)は外均形温度式のもので、
その感温部(43)は前記熱交換部(37)と、気液分離器
(28)との間の低圧ガス管(36)に設けられ、熱交換部
(37)で加熱された低圧ガス冷媒の温度を検出する。
The refrigeration system includes a compressor (25), a condenser (26), a liquid receiver (27), an expansion valve (32), a cooling coil (9), a gas-liquid separator (28), a high pressure gas pipe (33), A high-pressure liquid pipe (34), a low-pressure liquid pipe (35), and a low-pressure gas pipe (36) are annularly connected to form a closed circuit, which compresses, liquefies, and decompresses the refrigerant circulated during the cooling operation. The water is made into cold water by evaporating and vaporizing, and an ice layer (H) having a predetermined thickness is formed around the cooling coil (9). With the formation of this ice layer (H), the water level rises to the second water surface (M) shown by the dashed line in FIG.
Becomes Reference numeral (37) is a heat exchange portion formed by a part of the high pressure liquid pipe (34) and a part of the low pressure gas pipe (36), and is a high temperature high pressure liquid refrigerant and a low temperature low pressure gas-liquid mixed refrigerant. By mutually exchanging heat with each other, the liquid refrigerant becomes a supercooled liquid while the gas-liquid mixed refrigerant becomes a gas refrigerant. (38) is an ice thickness detecting device having two sensors (39) (40) provided at positions slightly apart from the surface of the cooling coil (9),
The electromagnetic valve (41) provided in the middle of the high pressure liquid pipe (34) is opened and closed by detecting the presence or absence of electric conductivity between the both sensors (39, 40). That is, when both the sensors (39) (40) are covered with ice, the electric conductivity between the both falls below the set value, the solenoid valve (41) is closed, and the both sensors (39) (40) are closed. When both are exposed to water, the electric conductivity between the two is increased above the set value and the solenoid valve (41) is opened. The electromagnetic valve (41) is for pump down (refrigerant recovery), and when the electromagnetic valve (41) is closed, the refrigeration system switches from cooling operation to pump down operation. This pump-down operation is stopped when the low-pressure force of the refrigerating apparatus falls below the set value of the low-pressure switch (42) provided in the low-pressure gas pipe (36). or,
On the contrary, in the cooling operation, cold water is supplied to the outside through the extraction pipe (20), and tap water is supplied from the water supply pipe (12) into the water storage tank (2) to raise the water temperature, and the sensor (39) (40). ) When the surface is exposed to cold water, the solenoid valve (41) is opened, and the low-pressure force becomes equal to or higher than the set value of the low-pressure switch (42). The low pressure switch (42) starts and stops the compressor (25). The expansion valve (32) is of the external uniform temperature type,
The temperature sensing part (43) is provided in the low-pressure gas pipe (36) between the heat exchange part (37) and the gas-liquid separator (28), and the low-pressure gas heated in the heat exchange part (37). The temperature of the refrigerant is detected.

前記冷却コイル(9)は第3図及び第4図に示す如く蛇
行状に曲成された銅製の複数のパイプ群(9A)(9B)
(9C)を相互に溶接々続することにより構成されるもの
である。前記各パイプ群(9A)(9B)(9C)はロールに
巻かれたパイプを所定の長さに切断してNCベンダーで曲
成加工されるもので、この各パイプ群にはU字形に形成
された上下の曲部(44)と、この各曲部間に形成された
直線部(45)と、この直線部のうち上端接続部(46)が
前記曲部よりも上方に延出する最長直線部(45A)とが
夫々形成されている。(47)は前記各パイプ群(9A)
(9B)(9C)の接続部(46)を銀鑞、銅鑞等の鑞材を用
いて溶接々続することにより形成される溶接部で、第3
図及び第4図の如く冷却コイル(9)が貯水槽(2)に
配置された際には、溶接部(47)は前記水位制御装置
(S)により決定される第1の水面(L)、氷層(H)
形成時の第2の水面(M)及びオーバーフロー管(15)
の入口(15B)よりも上方に位置する。
The cooling coil (9) is composed of a plurality of copper pipe groups (9A) (9B) bent in a meandering shape as shown in FIGS. 3 and 4.
It is constructed by welding (9C) one after another. Each of the pipe groups (9A), (9B), and (9C) is formed by cutting a pipe wound on a roll into a predetermined length and bending it with an NC bender. Each pipe group is formed in a U shape. The upper and lower curved portions (44), the straight line portions (45) formed between the respective curved portions, and the upper end connecting portion (46) of the straight line portions is the longest extending above the curved portion. Straight portions (45A) are formed respectively. (47) is each pipe group (9A)
(9B) A welded portion formed by continuously connecting the connection portion (46) of (9C) with a brazing material such as silver braze or copper braze.
When the cooling coil (9) is arranged in the water storage tank (2) as shown in FIG. 4 and FIG. 4, the welded portion (47) has the first water level (L) determined by the water level control device (S). , Ice layer (H)
Second water surface (M) and overflow pipe (15) during formation
It is located above the entrance (15B).

ここで前記貯水槽(2)の開口の横寸法を60cm、縦寸を
50cmとし、200lの水を入れて冷却し100kg乃至115kgの氷
層(H)を冷却コイル(9)に付着形成した場合におけ
る水位上昇を計算すると次の様になる。尚、下の式で0.
917は氷の密度kg/lである。
Here, the horizontal dimension of the opening of the water tank (2) is 60 cm, and the vertical dimension is
The water level rise in the case of 50 cm, 200 liters of water and cooling, and 100 kg to 115 kg of ice layer (H) attached to the cooling coil (9) is calculated as follows. In the formula below, 0.
917 has an ice density of kg / l.

(1)100kgの氷層(H)を付着形成させると、 100kg÷0.917=109.05l となり、100lの水が凝固して109.05lの氷になる。(1) When 100 kg of ice layer (H) is adhered and formed, it becomes 100 kg / 0.917 = 109.05 l, and 100 l of water is solidified into 109.05 l of ice.

109.05l−100l=9.05l となり、氷層(H)により9.05l体積増加したことにな
る。
109.05l-100l = 9.05l, which means that the ice layer (H) increased the volume by 9.05l.

この体積増加分を開口面積で割ると、 9050÷(60×50)=3.05cm となり、3.05cm水位が上昇する。Dividing this volume increase by the opening area gives 9050 ÷ (60 × 50) = 3.05cm, and the 3.05cm water level rises.

(2)115kgの氷層(H)を付着形成させると、 115kg÷0.917=125.40l 125.40l−115l=10.40l 10400÷(60×50)=3.40cm となり、3.40cm水位が上昇する。(2) When 115 kg of ice layer (H) is adhered and formed, 115 kg / 0.917 = 125.40l 125.40l−115l = 10.40l 10400 / (60 × 50) = 3.40 cm, and the water level rises by 3.40 cm.

従って、オーバーフロー管(15)の入口(15B)の高さ
は、水位制御装置(S)によって決定される第1の水面
(L)及び所定厚さの氷層(H)が形成されたときの第
2の水面(M)よりも高い所にある関係上、製氷途中乃
至は完了時においても冷水がオーバーフローすることは
ない。尚、オーバーフロー管(15)の入口(15B)の高
さは製氷量に応じて適宜設定すればよい。
Therefore, the height of the inlet (15B) of the overflow pipe (15) is determined by the water level control device (S) when the first water surface (L) and the ice layer (H) having a predetermined thickness are formed. Due to the fact that it is higher than the second water surface (M), cold water does not overflow even during or after the completion of ice making. The height of the inlet (15B) of the overflow pipe (15) may be set appropriately according to the amount of ice making.

かゝる構成によれば、オーバーフロー管(15)の入口
(15B)は第1の水面(L)及び第2の水面(M)より
も高い位置にある関係上、冷却コイル(9)で冷却れた
冷水が冷却及び製氷過程においてオーバーフローするこ
とがなく、冷水の無駄がなくなり、冷凍装置の節電が省
れる。
According to such a configuration, the inlet (15B) of the overflow pipe (15) is located higher than the first water surface (L) and the second water surface (M), and therefore is cooled by the cooling coil (9). The cold water thus produced does not overflow during the cooling and ice making process, the waste of cold water is eliminated, and the refrigeration system saves electricity.

又、水位制御装置(S)及び又は氷厚検出装置(38)の
異常即ち故障が生じ給水が継続されるときや、氷層
(H)が予め定められた厚さ以上に形成されるときに
は、オーバーフロー管(15)から排水管(15A)を通し
て外部に排水でき、付属各装置の故障に対応した水処理
が行なえる。
Further, when the water level control device (S) and / or the ice thickness detection device (38) has an abnormality, that is, a malfunction, and water supply is continued, or when the ice layer (H) is formed to have a predetermined thickness or more, Water can be discharged from the overflow pipe (15) through the drain pipe (15A) to the outside, and water treatment that corresponds to the failure of each attached device can be performed.

(ト)発明の効果 上述した本発明によれば、次の効果が生じる。(G) Effect of the Invention According to the present invention described above, the following effects occur.

溢水路の入口は第1の水面及び第2の水面よりも高い
位置にある関係上、冷却コイルで冷却された冷水が冷却
及び製氷過程においてオーバーフローすることがなく、
冷水の無駄がなくなり、冷凍装置の節電が省れる。
Since the inlet of the overflow channel is located at a position higher than the first water surface and the second water surface, the cold water cooled by the cooling coil does not overflow in the cooling and ice making process,
The waste of cold water is eliminated and the refrigeration system saves electricity.

水位制御装置及び又は氷厚検出装置の異常即ち故障が
生じ給水が継続されるときや、氷層が予め定められた厚
さ以上に形成されるときには、溢水路から排水管を通し
て外部に排水でき、付属各装置の故障に対応した水処理
が行なえる。
When the water level control device and / or the ice thickness detection device has an abnormality, that is, a malfunction, and water supply is continued, or when the ice layer is formed to have a predetermined thickness or more, it can be drained to the outside from the overflow channel through the drain pipe, Water treatment that corresponds to the failure of each attached device can be performed.

【図面の簡単な説明】[Brief description of drawings]

図面は何れも本発明冷水装置の実施例を示し、第1図は
全体縦断面図、第2図は冷水、冷媒回路を付設した概略
断面図、第3図は冷却パイプの側面図、第4図は冷却コ
イルの平面図である。 (2)……貯水槽、(9)……冷却コイル、(15)……
オーバーフロー管(溢水路)、(15B)……入口、
(L)……第1の水面、(M)……第2の水面、(H)
……氷層、(S)……水位制御装置。
Each of the drawings shows an embodiment of the chilled water device of the present invention, FIG. 1 is an overall longitudinal sectional view, FIG. 2 is a schematic sectional view with chilled water and a refrigerant circuit attached, FIG. 3 is a side view of a cooling pipe, and FIG. The figure is a plan view of the cooling coil. (2) …… Water tank, (9) …… Cooling coil, (15) ……
Overflow pipe (overflow channel), (15B) …… Inlet,
(L) ... first water surface, (M) ... second water surface, (H)
...... Ice layer, (S) ...... Water level control device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】給水管と、この給水管から所定量の水を貯
水槽内に供給し、且つこの貯水槽内の水位を決定する水
位制御装置と、前記水を冷却し、少なくともこの水の一
部を氷とする冷却コイルと、入口が前記水位制御装置に
より決定された第一の水面よりも高く、且つ前記冷却コ
イルにより所定量の氷が貯水槽内に形成されたときの第
2の水面よりも高い位置に配置された溢水路と、この溢
水路に接続され、この溢水路からの水を外部に排出する
配水管とを具備してなるアイスバンク式冷水装置。
1. A water supply pipe, a water level control device for supplying a predetermined amount of water from the water supply pipe into a water storage tank and determining the water level in the water storage tank, and cooling the water, and at least this water. A cooling coil having a part of ice and a second inlet when the inlet is higher than the first water surface determined by the water level control device and a predetermined amount of ice is formed in the water tank by the cooling coil. An ice bank type cold water device comprising an overflow channel arranged at a position higher than the water surface and a water pipe connected to the overflow channel and discharging water from the overflow channel to the outside.
JP63017995A 1988-01-28 1988-01-28 Ice bank type water cooler Expired - Lifetime JPH0711376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63017995A JPH0711376B2 (en) 1988-01-28 1988-01-28 Ice bank type water cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63017995A JPH0711376B2 (en) 1988-01-28 1988-01-28 Ice bank type water cooler

Publications (2)

Publication Number Publication Date
JPH01193573A JPH01193573A (en) 1989-08-03
JPH0711376B2 true JPH0711376B2 (en) 1995-02-08

Family

ID=11959306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63017995A Expired - Lifetime JPH0711376B2 (en) 1988-01-28 1988-01-28 Ice bank type water cooler

Country Status (1)

Country Link
JP (1) JPH0711376B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005014838D1 (en) 2004-10-22 2009-07-23 Canon Kk Temperature control in induction image heating device with magnetic flux adjustment element
JP2011080655A (en) * 2009-10-06 2011-04-21 Toshiba Electric Appliance Co Ltd Ice-making machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204279U (en) * 1986-06-18 1987-12-26

Also Published As

Publication number Publication date
JPH01193573A (en) 1989-08-03

Similar Documents

Publication Publication Date Title
US5479707A (en) Method of making an integrally formed, modular ice cuber having a stainless steel evaporator and a microcontroller
KR20080006427U (en) Water cooler and water heater being able to make ice
US6581391B2 (en) Ice thickness control system and sensor probe
JPH0711376B2 (en) Ice bank type water cooler
KR102404047B1 (en) Large capacity straight line type fast cooling water supply apparatus and method for fast cooling and cold reserving of refrigerant
JPH09250839A (en) Heat pump hot water supply apparatus
US5379603A (en) Method and apparatus for prechilling tap water in ice machines
US2997860A (en) Ice making and refrigerating systems
JPH0586546B2 (en)
JPS6367630B2 (en)
JPH0512634B2 (en)
JPH09203573A (en) Ice making device
CN217154621U (en) Ice making equipment and refrigerating system
JPH01189474A (en) Freezing device
JP3657668B2 (en) Beverage cooler
JPH038925Y2 (en)
CN213514538U (en) Aseptic ice machine with fretwork cooling bath
JPS6013022Y2 (en) ice machine
CN114777369A (en) Ice making equipment and refrigerating system
JP2561322B2 (en) Condensation control structure in refrigeration cycle
JPH09152245A (en) Cooling device
JPH068467Y2 (en) Chiller
JP2006234328A (en) Ice making machine
JPS6129009Y2 (en)
GB2179128A (en) Apparatus for cooling liquids