JPH07113643A - Piezoelectric vibrational angular velocity meter - Google Patents

Piezoelectric vibrational angular velocity meter

Info

Publication number
JPH07113643A
JPH07113643A JP5258102A JP25810293A JPH07113643A JP H07113643 A JPH07113643 A JP H07113643A JP 5258102 A JP5258102 A JP 5258102A JP 25810293 A JP25810293 A JP 25810293A JP H07113643 A JPH07113643 A JP H07113643A
Authority
JP
Japan
Prior art keywords
vibrator
piezoelectric
angular velocity
electrode
velocity meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5258102A
Other languages
Japanese (ja)
Inventor
Hisamitsu Fujio
尚光 藤生
Shunji Watanabe
俊二 渡辺
Yoshitaka Sango
貴敬 三五
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5258102A priority Critical patent/JPH07113643A/en
Publication of JPH07113643A publication Critical patent/JPH07113643A/en
Priority to US08/504,725 priority patent/US5802684A/en
Priority to US08/674,708 priority patent/US5796000A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/04Gramophone pick-ups using a stylus; Recorders using a stylus
    • H04R17/08Gramophone pick-ups using a stylus; Recorders using a stylus signals being recorded or played back by vibration of a stylus in two orthogonal directions simultaneously

Abstract

PURPOSE:To obtain a small-sized velocity meter, which can be mass-produced at low cost, by forming a vibrator in the shape of a beam supported on both ends by a base body. CONSTITUTION:A lower electrode 4 is divided into an electrode 9 for driving and electrodes 8a, 8b for detection. When an upper electrode 6 is used as a common ground and an electric field having frequency close to the cantilever natural frequency of a vibrator 1 is applied to the electrode 9, cantilever vibrations are excited in the direction of V by the vibrations of a PZT piezoelectric film 5. When the vibrator 1 is moved in the direction V at velocity V, Coriolis force Fc works on the vibrator 1 when rotational angular velocity OMEGA is applied around the axis of a cantilever in the axial direction of the cantilever. The force deflects the vibrator 1 in the direction perpendicular to the direction of vibrations. When force is applied in the directions of OMEGA and Fc, compressive stress works on the electrode 8a side and tensile stress to the electrode 8b side. When voltage between the electrode 8a and a ground is represented by Va and voltage between the electrode 8b and the ground by Vb, a signal resulting from cantilever vibrations is offset in a signal by Coriolis force when difference Va-V2b of both voltage is taken, and only the signal by Coriolis force can be read.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正・逆の圧電効果を利
用して振動の回転角速度を検出する圧電振動角速度計に
関する。特に、小型で安価に量産できる圧電振動角速度
計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric vibrating angular velocity meter for detecting a rotational angular velocity of vibration by utilizing forward and reverse piezoelectric effects. In particular, it relates to a piezoelectric vibrating angular velocity meter that is small and can be mass-produced at low cost.

【0002】[0002]

【従来の技術】正、逆の圧電効果を利用した圧電振動角
速度計では、従来、GEタイプとワトソンタイプの2種
類が主流となっていた。GEタイプの圧電振動角速度計
では、図3に示すように金属でできた棒状振動子に圧電
セラミックス板を接着し、これにより金属振動子を駆動
するとともに、振動子の回転にともない生ずるコリオリ
力を検出する。使われる振動のモードは無拘束の横振動
で、普通、振動の節点で振動を基体に固定する。
2. Description of the Related Art Piezoelectric vibrating angular velocimeters utilizing the positive and negative piezoelectric effects have conventionally been GE type and Watson type. In the GE type piezoelectric vibrating angular velocity meter, as shown in FIG. 3, a piezoelectric ceramic plate is adhered to a rod-shaped vibrator made of metal to drive the metal vibrator, and the Coriolis force generated by the rotation of the vibrator is generated. To detect. The mode of vibration used is unrestrained lateral vibration, which is usually fixed to the substrate at the node of vibration.

【0003】ワトソンタイプ圧電振動角速度計では、図
4に示すように、4枚の圧電セラミックバイモルフを2
枚ずつ互いに直交するように重ね音叉形状とし、駆動用
バイモルフで音叉全体を励振し、素子の回転に伴い生ず
るコリオリ力を検出用バイモルフで検知する。これらの
素子は角速度センサー、手振れセンサー等として応用さ
れ多くの実績を持つ。
In the Watson type piezoelectric vibrating angular velocity meter, four piezoelectric ceramic bimorphs are used as shown in FIG.
Overlapping tuning forks are formed so that they are orthogonal to each other, the entire tuning fork is excited by the driving bimorph, and the Coriolis force generated with the rotation of the element is detected by the detecting bimorph. These elements are applied as angular velocity sensors, camera shake sensors, etc. and have a lot of achievements.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の圧電振動角速度計は、振動子の構成、固定の方法が複
雑であり、セラミックス板の接着、リード線の取付等の
煩雑な工程が不可欠であるため、小型化、低コスト化を
行うことは不可能であった。本発明の目的は、これらの
問題を解決し、小型で安価に量産できる圧電振動角速度
計を提供することにある。
However, in these piezoelectric vibrating gyroscopes, the structure and fixing method of the vibrator are complicated, and complicated steps such as adhesion of ceramic plates and attachment of lead wires are indispensable. Therefore, it has been impossible to reduce the size and cost. An object of the present invention is to solve these problems and provide a piezoelectric vibrating angular velocity meter that is small in size and can be mass-produced at low cost.

【0005】[0005]

【課題を解決するための手段】本発明は、シリコン加工
プロセスと最近盛んとなった圧電・電歪材料の気相合成
法とを、圧電振動角速度計を作製するための手段として
組み合わせできるとの着想に基づき、シリコン加工プロ
セスにより基体となるシリコン基板上に振動子を形成
し、その上にシリコン加工プロセスと整合する方法によ
り圧電・電歪材料からなる薄膜を形成するとともに、振
動子の形状を、基体に支持された片持ち梁あるいは両持
ち梁形状とした。
According to the present invention, it is possible to combine the silicon processing process with the recently popular vapor phase synthesis method of piezoelectric / electrostrictive materials as a means for producing a piezoelectric vibrating gyro. Based on the idea, a vibrator is formed on a silicon substrate that is a base by a silicon processing process, and a thin film made of a piezoelectric / electrostrictive material is formed on the vibrator by a method that matches the silicon processing process. The shape is a cantilever beam or a double-supported beam supported by a substrate.

【0006】[0006]

【作用】圧電・電歪材料からなる薄膜に、シリコンでで
きた片持ち梁型あるいは両持ち梁型の振動子の横振動の
共振周波数付近の周波数の交流電界を印加すると、圧電
逆効果により振動子に固有振動が励起される。この段階
で梁の軸の回りに回転が起こると、梁の軸方向と振動方
向の両方向に垂直な方向にコリオリ力が発生する。この
力は駆動電界によって起こる振動と垂直方向に梁を変形
させ、これにより振動子に固定された別の圧電・電歪薄
膜に圧電正効果によって生ずる誘起電荷を検出すれば、
次に示す関係により回転角速度を見積もることができ
る。
[Function] When a thin film made of piezoelectric / electrostrictive material is applied with an AC electric field having a frequency close to the resonance frequency of the lateral vibration of a cantilever beam type or a doubly supported beam type oscillator made of silicon, vibration occurs due to the piezoelectric inverse effect The natural vibration is excited in the child. When rotation occurs around the beam axis at this stage, Coriolis force is generated in a direction perpendicular to both the beam axial direction and the vibration direction. This force deforms the beam in the direction perpendicular to the vibration caused by the driving electric field, and if the induced charge generated by the piezoelectric positive effect is detected in another piezoelectric / electrostrictive thin film fixed to the vibrator by this,
The rotational angular velocity can be estimated by the following relationship.

【0007】 Fc=2m[v・Ω] ・・・ (1) ここで、Fcはコリオリ力、mは振動子の質量、vは振
動子の振動速度、Ωは回転角速度である。振動子の上に
直接または電極等の他の層を介して形成される圧電・電
歪材料からなる薄膜は、シリコン加工プロセスと整合す
る方法で形成されることが望ましく、例えばスパッタリ
ング、真空蒸着、EB蒸着、MOCVD法等の真空薄膜
形成技術により形成される。
F c = 2 m [v · Ω] (1) where F c is the Coriolis force, m is the mass of the vibrator, v is the vibration speed of the vibrator, and Ω is the rotational angular speed. The thin film made of a piezoelectric / electrostrictive material formed directly on the vibrator or through another layer such as an electrode is preferably formed by a method compatible with the silicon processing process, for example, sputtering, vacuum deposition, It is formed by a vacuum thin film forming technique such as EB vapor deposition and MOCVD.

【0008】フォトリソグラフィーおよび異方性ケミカ
ルエッチングに代表されるシリコン加工プロセスは基本
的に2次元の加工プロセスであるため特に安価とするた
めには2次元的に加工できる振動子の形状とすることが
望ましく、このためには圧電・電歪材料からなる薄膜、
さらにはこの薄膜から圧電効果を取り出すための電極が
シリコンウェハー面に平行に形成されることが望まし
い。
The silicon processing process typified by photolithography and anisotropic chemical etching is basically a two-dimensional processing process. Therefore, in order to make the cost particularly low, the shape of a vibrator that can be two-dimensionally processed is used. Is desirable, for this purpose, a thin film made of piezoelectric / electrostrictive material,
Further, it is desirable that electrodes for taking out the piezoelectric effect from this thin film are formed parallel to the surface of the silicon wafer.

【0009】検出用電極からはコリオリ力に起因する圧
電信号に加えて、梁の振動に伴う圧電信号が加算された
出力が得られる。コリオリ力が加わると梁は振動方向と
垂直方向に撓み、梁の中心面に対して対称に、片側に圧
縮応力が、他の側に引っ張り応力が加わる。ここで検出
用電極が梁の中心軸に対称に配置してあれば、両電極か
ら得られるコリオリ力に起因する圧電信号は絶対値が等
しく符号が反対となる。梁の振動に基づく圧電信号は両
電極で等しくなるので、両電極から得られる出力の差を
取ればコリオリ力に起因する信号のみを得ることができ
る。
From the detection electrode, in addition to the piezoelectric signal caused by the Coriolis force, an output obtained by adding the piezoelectric signal associated with the vibration of the beam is obtained. When Coriolis force is applied, the beam bends in the direction perpendicular to the vibration direction, and compressive stress is applied to one side and tensile stress is applied to the other side symmetrically with respect to the center plane of the beam. Here, if the detection electrodes are arranged symmetrically with respect to the central axis of the beam, the piezoelectric signals due to the Coriolis force obtained from both electrodes have the same absolute value and opposite signs. Since the piezoelectric signal based on the vibration of the beam is the same at both electrodes, only the signal due to the Coriolis force can be obtained by taking the difference between the outputs obtained from both electrodes.

【0010】素子をさらに簡略化するためには、駆動
用、検出用各々の圧電・電歪薄膜を別々に形成するので
はなく、一つの圧電・電歪薄膜に対して分割された電極
を付け、膜の一部を駆動用、他の部分を検出用として使
うことが望ましい。
In order to further simplify the element, instead of separately forming the driving / detecting piezoelectric / electrostrictive thin films, separate electrodes are attached to one piezoelectric / electrostrictive thin film. It is desirable to use a part of the film for driving and another part for detecting.

【0011】[0011]

【実施例】以下に実施例により本発明についてさらに詳
細に説明する。図1−1は本発明に基づく圧電振動角速
度計の1例を示す。シリコンでできた片持ち梁型振動子
(1)が同じシリコンの基体(2)に固定されている。
シリコン上面には窒化珪素膜(3)が形成され、この上
に白金下部電極(4)、チタン酸ジルコニウム酸鉛(P
ZT)圧電膜(5)さらに白金上部電極(6)が形成さ
れている。図1−2は白金下部電極の面で切断し素子を
上方から見た図である。
The present invention will be described in more detail with reference to the following examples. FIG. 1-1 shows an example of the piezoelectric vibrating gyro according to the present invention. A cantilever type oscillator (1) made of silicon is fixed to the same silicon substrate (2).
A silicon nitride film (3) is formed on the silicon upper surface, and a platinum lower electrode (4) and lead zirconate titanate (P) are formed on the silicon nitride film (3).
A ZT) piezoelectric film (5) and a platinum upper electrode (6) are formed. FIG. 1-2 is a view of the element as seen from above cut along the surface of the platinum lower electrode.

【0012】下部電極は駆動用(9)、検出用(8a、
b)の3部分に分割されている。上部電極を共通のグラ
ンドとして使い、駆動用電極に振動子の片持ち梁固有振
動数に近い周波数の電界を印加すると、PZT圧電膜の
振動により図中Vで示した方向に片持ち梁振動が励起さ
れる。振動子が速度VでVの方向に移動しているとき、
片持ち梁の軸方向にこの軸の回りに回転角速度Ωが加わ
ると先に示した式(1)に従いコリオリ力Fcが振動子
に働く。この力は振動の方向と垂直方向に振動子をたわ
ませる。図1−2に示す方向に力が加わった場合、検出
用電極8aの側には圧縮応力が、検出用電極8bの側に
は引っ張り応力が作用する。検出用電極8aとグランド
との間で検出される電圧をva、検出用電極8bとグラ
ンドとの間で検出される電圧をvbとすると、va、vb
共にコリオリ力に伴う信号に加えて片持ち梁振動に起因
する信号が合成された形で検出される。コリオリ力によ
る信号はvaとvbで符号が異なるため両者の差va−vb
を取れば片持ち梁振動に起因する信号が相殺され、コリ
オリ力による信号のみを読みとることができる。
The lower electrode is for driving (9) and for detecting (8a,
It is divided into 3 parts of b). When the upper electrode is used as a common ground and an electric field having a frequency close to the cantilever natural frequency of the vibrator is applied to the driving electrode, the cantilever vibration is generated in the direction indicated by V in the figure by the vibration of the PZT piezoelectric film. Be excited. When the oscillator is moving in the direction of V at velocity V,
When a rotational angular velocity Ω is applied around this axis in the axial direction of the cantilever, the Coriolis force F c acts on the oscillator according to the above-mentioned formula (1). This force causes the oscillator to flex in a direction perpendicular to the direction of vibration. When a force is applied in the direction shown in FIG. 1-2, compressive stress acts on the detection electrode 8a side and tensile stress acts on the detection electrode 8b side. Let v a be the voltage detected between the detection electrode 8 a and the ground, and v b be the voltage detected between the detection electrode 8 b and the ground, then v a , v b
In addition, in addition to the signal associated with the Coriolis force, the signal resulting from the cantilever vibration is detected in a combined form. Since the signals due to the Coriolis force have different signs in v a and v b , the difference v a −v b between the two
If is taken, the signal due to the cantilever vibration is canceled out, and only the signal due to the Coriolis force can be read.

【0013】図2に図1に示した圧電振動角速度計の作
製プロセスの1例を示す。Si(110)ウェハーの両
面に窒化珪素膜をCVD法で製膜後片面に下部電極とな
るPt/Ti膜をスパッタ法で製膜する(2−1)。次
に、駆動及び検出用電極となる3分割電極パターンと、
これらと同時に必要となるリード部、配線用ボンディン
グ部に対応するレジストパターンをフォトリソグラフィ
ーにより形成する(2−2)。さらに、反応性エッチン
グによりPt/Ti膜をレジストパターンで被覆された
部分を除き下地の窒化珪素膜に達するまで取り除く(2
−3)。そして、片持ち梁を形成するのに必要な空隙と
なる部分と各素子間境界に当たる部分を除きフォトリソ
グラフィーによりレジストを形成する(2−4)。同様
に反応性エッチングにより空隙部分に対応する窒化珪素
を取り除く(2−5)。裏面に対しても同様に空隙にあ
たる部分を残してレジストパタ─ンを形成し(2−
6)、この部分に窒化珪素膜を反応性エッチングにより
除去する(2−7)。このように加工したシリコンウェ
ハー全体に水酸化カリウムで異方性エッチングを行う
と、エッチングに対する保護膜となる窒化珪素の無い部
分からエッチングが進み、片持ち梁形状が得られる(2
−8)。次に、片持ち梁を中心とする部分にスパッタ法
によりPZT薄膜を形成する(2−9)。最後にマスク
蒸着により上部電極を形成して素子が完成する(2−1
0)。この素子に適切な駆動電源と検出回路を接続すれ
ば圧電振動角速度計として使用することができる。
FIG. 2 shows an example of a manufacturing process of the piezoelectric vibration angular velocity meter shown in FIG. A silicon nitride film is formed on both surfaces of a Si (110) wafer by a CVD method, and then a Pt / Ti film to be a lower electrode is formed on one surface by a sputtering method (2-1). Next, a three-divided electrode pattern to be a drive and detection electrode,
At the same time, a resist pattern corresponding to the necessary lead portion and wiring bonding portion is formed by photolithography (2-2). Further, the Pt / Ti film is removed by reactive etching except the part covered with the resist pattern until the underlying silicon nitride film is reached (2
-3). Then, a resist is formed by photolithography except for a portion which becomes a void necessary for forming the cantilever and a portion which corresponds to a boundary between elements (2-4). Similarly, silicon nitride corresponding to voids is removed by reactive etching (2-5). Similarly, a resist pattern is formed on the back surface, leaving a portion corresponding to the void (2-
6) Then, the silicon nitride film is removed by reactive etching in this portion (2-7). When the entire silicon wafer processed in this way is anisotropically etched with potassium hydroxide, the etching proceeds from a portion without silicon nitride serving as a protective film against etching to obtain a cantilever shape (2
-8). Next, a PZT thin film is formed on a portion centered on the cantilever by a sputtering method (2-9). Finally, the upper electrode is formed by mask vapor deposition to complete the device (2-1
0). By connecting an appropriate driving power supply and a detection circuit to this element, it can be used as a piezoelectric vibration angular velocity meter.

【0014】両持ち梁型圧電振動角速度計に関しても、
作製プロセス、動作原理とも基本的には片持ち梁型と同
様である。
With respect to the doubly supported beam type piezoelectric vibration angular velocity meter,
The manufacturing process and operating principle are basically the same as those of the cantilever type.

【0015】[0015]

【発明の効果】以上の通り、本発明に従えば極めて小型
のしかも安価な圧電振動角速度計を得ることができる。
本発明の圧電振動角速度計は単に単体で使うのみでな
く、マイクロマシン、マイクロロボット等の小型システ
ムへ組み込むことが可能である。
As described above, according to the present invention, an extremely small and inexpensive piezoelectric vibrating angular velocity meter can be obtained.
The piezoelectric vibrating angular velocity meter of the present invention can be used not only as a single unit but also as a small system such as a micromachine or a microrobot.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に基づく圧電振動角速度計の1例であ
る。
FIG. 1 is an example of a piezoelectric vibrating angular velocity meter according to the present invention.

【図2】 図1に示した圧電振動角速度計を作製するた
めのプロセスの一例である。
FIG. 2 is an example of a process for manufacturing the piezoelectric vibration gyro shown in FIG.

【図3】 従来の圧電振動角速度計の概念図である。FIG. 3 is a conceptual diagram of a conventional piezoelectric vibration angular velocity meter.

【図4】 従来の圧電振動角速度計の概念図である。FIG. 4 is a conceptual diagram of a conventional piezoelectric vibration angular velocity meter.

【符号の説明】[Explanation of symbols]

1 振動子 2 基体 3 窒化珪素 4 下部電極 5 PZT膜 6 上部電極 7 窒化珪素膜(基体) 8 検出用電極 9 駆動用電極 10 レジスト 11 切断用溝 12 PZT 13 金属振動子 14 駆動用圧電セラミック板 15 検出用圧電セラミック板 16 駆動用圧電セラミックバイモルフ 17 検出用圧電セラミックバイモルフ 1 oscillator 2 substrate 3 silicon nitride 4 lower electrode 5 PZT film 6 upper electrode 7 silicon nitride film (substrate) 8 detection electrode 9 drive electrode 10 resist 11 cutting groove 12 PZT 13 metal oscillator 14 drive piezoelectric ceramic plate 15 Piezoelectric Ceramic Plate for Detection 16 Piezoelectric Ceramic Bimorph for Driving 17 Piezoelectric Ceramic Bimorph for Detection

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】シリコン加工プロセスにより形成された振
動子およびそれを支持する基体と、前記振動子上に直接
または他の層を介して形成された圧電および/または電
歪材料からなる薄膜とから構成される圧電振動角速度計
において、前記振動子が前記基体に支持された両持ち梁
形状を有することを特徴とする圧電振動角速度計。
1. A vibrator and a substrate that supports the vibrator formed by a silicon processing process, and a thin film made of a piezoelectric and / or electrostrictive material formed on the vibrator directly or through another layer. A piezoelectric vibrating angular velocity meter, wherein the vibrator has a doubly supported beam shape supported by the base body.
【請求項2】シリコン加工プロセスにより形成された振
動子およびそれを支持する基体と、前記振動子上に直接
または他の層を介して形成された圧電および/または電
歪材料からなる薄膜とから構成される圧電振動角速度計
において、前記振動子が前記基体に支持された片持ち梁
形状を有することを特徴とする圧電振動角速度計。
2. A vibrator formed by a silicon processing process, a substrate supporting the vibrator, and a thin film made of a piezoelectric and / or electrostrictive material formed on the vibrator directly or through another layer. A piezoelectric vibrating angular velocity meter, wherein the vibrating element has a cantilever shape supported by the base body.
【請求項3】請求項1または請求項2に記載の圧電振動
角速度計において、前記圧電および/または電歪材料か
らなる薄膜が、該薄膜の両面に電極を伴って前記振動子
上に平行に形成されていることを特徴とする圧電振動角
速度計。
3. The piezoelectric vibrating gyro according to claim 1, wherein a thin film made of the piezoelectric and / or electrostrictive material is parallel to the vibrator with electrodes on both sides of the thin film. A piezoelectric vibrating gyro characterized by being formed.
【請求項4】請求項3に記載の圧電振動角速度計におい
て、前記薄膜の両面に形成した電極の少なくとも一方の
電極を梁の軸に対して対称に2分割し、両電極から得ら
れる信号の差を取ってコリオリ力に起因する圧電信号を
検出することを特徴とする圧電振動角速度計。
4. The piezoelectric vibration angular velocity meter according to claim 3, wherein at least one of the electrodes formed on both surfaces of the thin film is divided into two symmetrically with respect to the axis of the beam, and signals obtained from both electrodes are divided. A piezoelectric vibrating angular velocity meter characterized by detecting a piezoelectric signal resulting from Coriolis force by taking a difference.
【請求項5】請求項3に記載の圧電振動角速度計におい
て、前記薄膜の両面に形成した電極の少なくとも一方の
電極を梁の軸に対して対称に3分割し、中央の電極部を
駆動用、両側の電極部を検出用とし、両検出電極から得
られる信号の差を取ってコリオリ力に起因する圧電信号
を検出することを特徴とする圧電振動角速度計。
5. The piezoelectric vibration angular velocity meter according to claim 3, wherein at least one of the electrodes formed on both surfaces of the thin film is divided into three symmetrically with respect to the axis of the beam, and the central electrode portion is for driving. A piezoelectric vibrating angular velocity meter characterized in that the electrode portions on both sides are for detection, and the difference between the signals obtained from both detection electrodes is taken to detect the piezoelectric signal due to the Coriolis force.
JP5258102A 1993-09-14 1993-10-15 Piezoelectric vibrational angular velocity meter Pending JPH07113643A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5258102A JPH07113643A (en) 1993-10-15 1993-10-15 Piezoelectric vibrational angular velocity meter
US08/504,725 US5802684A (en) 1993-09-14 1995-07-20 Process for producing a vibration angular-velocity sensor
US08/674,708 US5796000A (en) 1993-09-14 1996-07-02 Vibration angular-velocity sensor and process for producing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5258102A JPH07113643A (en) 1993-10-15 1993-10-15 Piezoelectric vibrational angular velocity meter

Publications (1)

Publication Number Publication Date
JPH07113643A true JPH07113643A (en) 1995-05-02

Family

ID=17315533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5258102A Pending JPH07113643A (en) 1993-09-14 1993-10-15 Piezoelectric vibrational angular velocity meter

Country Status (1)

Country Link
JP (1) JPH07113643A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329899A (en) * 2001-04-27 2002-11-15 Sony Corp Piezoelectric thin-film element and manufacturing method therefor
EP1696206A1 (en) 2005-02-28 2006-08-30 Sony Corporation Method for manufacturing vibrating gyrosensor and vibrating element
JP2007024862A (en) * 2005-03-04 2007-02-01 Sony Corp Vibration gyro sensor and its adjusting method
JP2008199570A (en) * 2007-01-18 2008-08-28 Seiko Epson Corp Piezoelectric vibrator and manufacturing method thereof, oscillator, real-time clock, and radio-controlled timepiece reception module
US7654139B2 (en) 2005-02-23 2010-02-02 Sony Corporation Vibratory gyrosensor having a vibration element provided with terminals
US7830215B2 (en) 2007-01-25 2010-11-09 Seiko Epson Corporation Piezoelectric oscillator and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329899A (en) * 2001-04-27 2002-11-15 Sony Corp Piezoelectric thin-film element and manufacturing method therefor
US7654139B2 (en) 2005-02-23 2010-02-02 Sony Corporation Vibratory gyrosensor having a vibration element provided with terminals
EP1696206A1 (en) 2005-02-28 2006-08-30 Sony Corporation Method for manufacturing vibrating gyrosensor and vibrating element
JP2007024862A (en) * 2005-03-04 2007-02-01 Sony Corp Vibration gyro sensor and its adjusting method
JP2008199570A (en) * 2007-01-18 2008-08-28 Seiko Epson Corp Piezoelectric vibrator and manufacturing method thereof, oscillator, real-time clock, and radio-controlled timepiece reception module
US7830215B2 (en) 2007-01-25 2010-11-09 Seiko Epson Corporation Piezoelectric oscillator and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3659160B2 (en) Angular velocity sensor
US5802684A (en) Process for producing a vibration angular-velocity sensor
US7188525B2 (en) Angular velocity sensor
JP3039860B2 (en) Monolithic vibration beam angular velocity sensor
JP2003227719A (en) Thin-film micro-machine type resonator, thin-film micro- machine type resonator gyroscope, navigation system and automobile using the resonator gyroscope
JPH1089968A (en) Angular velocity sensor
JPH0791958A (en) Angular velocity sensor
JPH07113643A (en) Piezoelectric vibrational angular velocity meter
JPH08278146A (en) Vibrating gyro
JP3218702B2 (en) Vibrating gyro
JPH07190783A (en) Vibrational angular velocity meter
JPH07190782A (en) Vibrational angular velocity meter
JPH07134037A (en) Vibration angular velocity meter and its manufacture
JPH1038578A (en) Angular speed sensor
JPH08327364A (en) Manufacture of piezoelectric vibration angular velocity meter
JP3310029B2 (en) Vibrator
JPH10221087A (en) Vibrator, vibration-type gyroscope, its manufacture, method for excitation of vibrator and method for detection of vibration of vibrator
JPH11201758A (en) Piezoelectric vibrator and piezoelectric vibrational angular velocity meter
JPH08261766A (en) Vibration gyro scope
JP3230331B2 (en) Angular velocity sensor
JPH0968433A (en) Piezoelectric vibration angular velocity meter
JPH07151550A (en) Vibration angular velocity meter
JP3198194B2 (en) Gyro device and driving method thereof
JPH08261763A (en) Piezoelectric vibration angle velocity meter and its manufacture
JPH09166442A (en) Vibrating gyro