JPH07111891A - Expression of recombinant bile salt activated lipase in high yield - Google Patents

Expression of recombinant bile salt activated lipase in high yield

Info

Publication number
JPH07111891A
JPH07111891A JP5245079A JP24507993A JPH07111891A JP H07111891 A JPH07111891 A JP H07111891A JP 5245079 A JP5245079 A JP 5245079A JP 24507993 A JP24507993 A JP 24507993A JP H07111891 A JPH07111891 A JP H07111891A
Authority
JP
Japan
Prior art keywords
bal
amino acid
recombinant
ala
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5245079A
Other languages
Japanese (ja)
Inventor
Akira Murasugi
章 村杉
Yukio Asami
幸夫 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP5245079A priority Critical patent/JPH07111891A/en
Publication of JPH07111891A publication Critical patent/JPH07111891A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the expression of a recombinant bile salt activated lipase useful for the treatment of pancreatic insufficiency, etc., in high yield by culturing a specific transformant under specific condition. CONSTITUTION:A gene coding a secretory signal is linked to a defective gene fragment obtained by deleting a part or total of the gene coding an amino acid sequence consisting of 16 repeated structures containing a peptide composed of 11 amino acid residues existing in the carboxy-terminal region of a gene sequence coding a bile salt activated lipase. The obtained gene is integrated to an EcoRI site of a plasmid pHIL301 and Pichia pastoris GSl15 strain is transformed by the plasmid. The transformant is proliferated at about 30 deg.C and a dissolved oxygen content of 30-50% and cultured in a methanol-containing medium at 15-25 deg.C and a dissolved oxygen content of <20% to effect the induction and expression of bile salt activated lipase in the medium. The recombinant bile salt activated lipase can be expressed in high yield by this process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は組換え胆汁酸塩活性化リ
パーゼ、当該リパーゼをコードする遺伝子、当該遺伝子
を有する組換えプラスミド、当該プラスミドを保持する
形質転換体、及び組換え胆汁酸塩活性化リパーゼの製造
法に関する。
The present invention relates to a recombinant bile salt-activating lipase, a gene encoding the lipase, a recombinant plasmid having the gene, a transformant carrying the plasmid, and a recombinant bile salt activity. The present invention relates to a method for producing a modified lipase.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】胆汁酸
塩活性化リパーゼ(Bile salt-activated Lipase; 以下
BALということがある)は、脂質加水分解酵素(リパ
ーゼ)の一つであり、消化管にあっては膵臓から分泌さ
れ、乳汁中にも見出される。BALは小腸内において胆
汁酸塩によって活性化され、トリグリセライドを脂肪酸
とグリセリンにまで完全に加水分解し、コレステロール
やビタミンのエステルも加水分解する。
BACKGROUND OF THE INVENTION Bile salt-activated lipase (hereinafter sometimes referred to as BAL) is one of lipid hydrolase (lipase) and is a digestive tract. It is secreted by the pancreas and is also found in milk. BAL is activated by bile salts in the small intestine, and completely hydrolyzes triglyceride into fatty acids and glycerin, and also hydrolyzes cholesterol and vitamin esters.

【0003】BALの欠乏は、乳児にあっては乳脂肪の
消化不良による発育不全をもたらすため、BALを添加
した食品添加物が提唱されている(特開平1-231848
号)。また、BALの投与により嚢胞性繊維症(cystic
fibrosis)などの膵臓不全の症状を、脂質消化の観点
から軽減することが期待されるが、例えばBALを乳か
ら抽出しようとする場合、原料となる母乳の確保、精製
に要するコスト、ウィルスのコンタミネーション等の問
題があり、十分な量を確保するのは容易ではない。この
ため、遺伝子組換え技術を用いるBALの製造が期待さ
れており、BALの乳からの単離精製が既になされ(Wa
ng and Johnson: Anal. Biochem. 133, 457-461(198
3))。さらにBALをコードするcDNAも知られて
いる。その配列から、BAL蛋白質は722個のアミノ
酸からなり、C末端には16回の11アミノ酸からなる
繰り返し構造が存在することが判明している(WO91/152
34号)。
[0003] BAL deficiency causes growth failure in infants due to indigestion of milk fat. Therefore, food additives containing BAL have been proposed (Japanese Patent Laid-Open No. 1-231848).
issue). In addition, administration of BAL caused cystic fibrosis.
It is expected that symptoms of pancreatic insufficiency such as fibrosis) will be reduced from the viewpoint of lipid digestion. However, when extracting BAL from milk, for example, the cost required for securing and refining breast milk as a raw material, and contamination by viruses. Due to problems such as nation, it is not easy to secure a sufficient amount. Therefore, the production of BAL using gene recombination technology is expected, and BAL has already been isolated and purified from milk (Wa
ng and Johnson: Anal. Biochem. 133, 457-461 (198
3)). Further, a cDNA encoding BAL is also known. From the sequence, it has been revealed that the BAL protein consists of 722 amino acids, and a repeating structure consisting of 16 times 11 amino acids is present at the C-terminus (WO91 / 152).
No. 34).

【0004】しかし、上記cDNAを用いる遺伝子組換
えBAL及びその製造方法は未だ見出されていない。
However, a recombinant BAL using the above cDNA and a method for producing the same have not been found yet.

【0005】そこで、上記組換えBAL及びそれを高収
率で発現する方法の開発が望まれていた。
Therefore, it has been desired to develop the above recombinant BAL and a method for expressing it in high yield.

【0006】[0006]

【課題を解決するための手段】酵母による異種蛋白質発
現系の一つとして、ピキア・パストリス(Pichia pasto
ris、以下ピキア酵母という)を宿主として用いる方法
が知られており(特開昭61-108383号、特開昭61-173781
号、特開昭63-44899号、特開平1-128790号等)、具体的
な物質生産の例としては、ストレプトキナーゼ(特開昭
62-296881号)、TNF(特開昭63-164891号)、HIV
24kDA gag蛋白質(特開平2-20286号)、ヒ
トIL−2(特開平2-104292号)、B型肝炎のpre
S2蛋白質(特開平2-84176号、特開平2-27990号)等が
知られている。本発明者らはこれらの知見をもとに、ピ
キア酵母を宿主としてBALのcDNAを用い、BAL
の大量生産について鋭意研究した結果、組換えBALを
産生させることに初めて成功した。
[Means for Solving the Problems] As one of the yeast heterologous protein expression systems, Pichia pasto (Pichia pasto)
ris, hereinafter referred to as Pichia yeast) is known as a host (JP-A-61-108383, JP-A-61-173781).
No. 63-44899, JP-A No. 1-128790, etc., and specific examples of substance production include streptokinase (JP-A No.
62-296881), TNF (JP-A-63-164891), HIV
24kDA gag protein (JP-A-2-20286), human IL-2 (JP-A-2-104292), hepatitis B pre
S2 protein (JP-A-2-84176, JP-A-2-27990) and the like are known. Based on these findings, the present inventors have used BAL cDNA with Pichia yeast as a host,
As a result of diligent research on the large-scale production of BAL, they succeeded in producing recombinant BAL for the first time.

【0007】すなわち、本発明者らは、BAL蛋白質の
C末端領域に存在する16回の繰り返し構造が組換えB
AL蛋白質の発現と関連するものと考え、繰り返し構造
を削除して発現を調べたところ、繰り返し構造が一部又
は全部削除されたBAL(以下、欠損BALということ
がある)が16回の繰り返し構造を有するBALと比較
して約10〜100倍も効率よく発現されることを見出
した。しかもこの繰り返し構造が一部又は全部削除され
た、すなわち、C末端の繰り返し構造が0〜15回であ
るBALは、pH安定性、温度安定性、ヘパリンへの結合
能、各種の脂肪酸トリグリセライドの分解速度、乳児用
粉ミルクの分解等、各種の性質において、天然のBAL
と違いはないことから、天然のBALと同様に使用でき
る有用なものであることも見出した。
That is, the present inventors have found that the 16-fold repeating structure existing in the C-terminal region of BAL protein is a recombinant B
When the expression was examined by deleting the repetitive structure, which was considered to be related to the expression of AL protein, BAL in which a part or all of the repetitive structure was deleted (hereinafter sometimes referred to as defective BAL) has a repetitive structure of 16 times. It was found that the expression was about 10 to 100 times more efficiently than that of BAL having Moreover, BAL in which this repeating structure is partially or completely deleted, that is, the C-terminal repeating structure is 0 to 15 times, BAL has pH stability, temperature stability, heparin-binding ability, and decomposition of various fatty acid triglycerides. Natural BAL in various properties such as speed and decomposition of infant formula
Since it is not different from the above, it was also found to be a useful one which can be used similarly to natural BAL.

【0008】また、本発明者らは、上記組換え胆汁酸塩
活性化リパーゼがそのN末端に特定の5個のアミノ酸配
列を有するのが好ましいことを見出した。
The present inventors have also found that it is preferable that the above recombinant bile salt-activated lipase has a specific 5 amino acid sequence at its N-terminus.

【0009】すなわち、本発明は配列番号1記載のアミ
ノ酸配列、当該アミノ酸配列のC末端に配列番号2記載
のアミノ酸配列(1)〜(7)から選ばれたアミノ酸配
列が1〜15個結合してなるアミノ酸配列、当該アミノ
酸配列のN末端に配列番号3記載のアミノ酸配列が結合
してなるアミノ酸配列、又は当該アミノ酸配列のC末端
に配列番号2記載のアミノ酸配列(1)〜(7)から選
ばれたアミノ酸配列が1〜15個結合し、N末端に配列
番号3記載のアミノ酸配列が結合してなるアミノ酸配列
で表わされる組換えBALを提供するものである。
That is, in the present invention, 1 to 15 amino acid sequences selected from amino acid sequences (1) to (7) described in SEQ ID NO: 2 are bound to the amino acid sequence of SEQ ID NO: 1 and the C-terminal of the amino acid sequence. From the amino acid sequence (1) to (7) described in SEQ ID NO: 2 at the C-terminal of the amino acid sequence, or the amino acid sequence in which the amino acid sequence described in SEQ ID NO: 3 is bound to the N-terminal of the amino acid sequence. A recombinant BAL represented by an amino acid sequence in which 1 to 15 selected amino acid sequences are bound and the amino acid sequence of SEQ ID NO: 3 is bound to the N-terminus.

【0010】また、本発明は上記組換えBALをコード
する遺伝子;その遺伝子を有する組換えプラスミド;及
びその組換えプラスミドを保持する形質転換体を提供す
るものである。
The present invention also provides a gene encoding the above recombinant BAL; a recombinant plasmid having the gene; and a transformant carrying the recombinant plasmid.

【0011】さらにまた本発明は当該組換えプラスミド
を保持する形質転換体を培養し、その培養物から採取す
ることを特徴とする組換えBALの製造法を提供するも
のである。
Furthermore, the present invention provides a method for producing recombinant BAL, which comprises culturing a transformant carrying the recombinant plasmid, and collecting the transformant from the culture.

【0012】一方、ファーメンター培養においてピキア
酵母によりBALを発現させる場合、通常の至適発現条
件よりも低い培養温度及び低い溶存酸素量を設定するこ
とにより、遥かに大きな発現量が得られることを見出し
た。
On the other hand, when BAL is expressed by Pichia yeast in fermenter culture, a much higher expression level can be obtained by setting a lower culture temperature and a lower dissolved oxygen content than the usual optimum expression conditions. I found it.

【0013】すなわち、本発明は、プラスミドpHL3
01のEcoRI部位に分泌シグナルをコードするDN
Aを連結した胆汁酸塩活性化リパーゼの構造遺伝子を組
込んでなる組換えプラスミドにより形質転換したピキア
・パストリス(Pichia pastoris)GS115株を用
い、ファーメンター培養により胆汁酸塩活性化リパーゼ
を発現させる方法において、培養温度を15〜25℃、
かつ溶存酸素量を20%以下とすることを特徴とする胆
汁酸塩活性化リパーゼの高効率発現方法を提供するもの
である。
That is, the present invention relates to the plasmid pHL3.
DN encoding a secretory signal at the EcoRI site of 01
Bile salt-activated lipase is expressed by fermenter culture using Pichia pastoris GS115 strain transformed with a recombinant plasmid incorporating a structural gene for bile salt-activated lipase linked to A. In the method, the culture temperature is 15 to 25 ° C.,
The present invention also provides a method for highly efficient expression of bile salt-activated lipase, which is characterized in that the amount of dissolved oxygen is 20% or less.

【0014】本発明の組換えBALを製造するには、B
ALの全長cDNAをもとにして、本発明組換えBAL
をコードする遺伝子を調製し、これを各種公知のベクタ
ー系に組み込み、組換えプラスミドを得、これを酵母に
代表される宿主を形質転換し、得られた形質転換体を培
養すればよい。
To produce the recombinant BAL of the present invention, B
Based on the full-length cDNA of AL, the recombinant BAL of the present invention
The gene encoding the gene may be prepared, incorporated into various known vector systems to obtain a recombinant plasmid, which is transformed into a host typified by yeast, and the obtained transformant may be cultured.

【0015】本発明において組換えプラスミドを得るた
めのBALのcDNAとしては、泌乳しているヒト乳房
組織から作成したcDNAライブラリー(Clontech社
製)から、WO91/15234号記載の方法に従ってcDNAを
調製してもよく、WO91/15234号記載の配列から化学合成
してもよい。
As the BAL cDNA for obtaining the recombinant plasmid in the present invention, cDNA is prepared from a cDNA library (Clontech) prepared from lactating human breast tissue according to the method described in WO91 / 15234. Alternatively, it may be chemically synthesized from the sequence described in WO91 / 15234.

【0016】欠損BALは、BALの全長cDNAから
BAL蛋白質のC末端領域の16回の繰り返し構造のう
ち、1〜16回分をコードする部分を取り除いたcDN
Aを用いる。また、N末端に配列番号3記載のアミノ酸
配列が結合したBALは、BALの全長cDNAの5′
側に当該アミノ酸配列をコードする塩基配列を結合させ
てもよい。このようなcDNAを得る方法は問わない。
WO91/15234号記載の方法に従ってcDNAを調製し、こ
れから1〜16回分の繰り返し構造を除去してもよく、
化学合成してもよく、該cDNAを含むプラスミドベク
ターを宿主内で増殖させるうちに自然に生じた欠損cD
NAを用いてもよい。なお、組換えBALのC末端領域
の1〜15個の繰り返し構造は、配列番号2の(1)〜
(7)の配列が任意の順序で結合していてもよい。
Defective BAL is a cDN obtained by removing from the full-length cDNA of BAL the part encoding 1 to 16 times of the 16 times repeating structure of the C-terminal region of BAL protein.
A is used. BAL in which the amino acid sequence of SEQ ID NO: 3 is bound to the N-terminus is 5'of the full-length BAL cDNA.
A nucleotide sequence encoding the amino acid sequence may be attached to the side. There is no limitation on the method for obtaining such cDNA.
CDNA may be prepared according to the method described in WO91 / 15234, from which 1 to 16 repeated structures may be removed.
It may be chemically synthesized, and a defective cD naturally generated during the growth of a plasmid vector containing the cDNA in a host.
NA may be used. In addition, 1 to 15 repeating structures of the C-terminal region of recombinant BAL are (1) to SEQ ID NO: 2 to
The sequences of (7) may be combined in any order.

【0017】本発明の組換えBALの発現に用いる宿主
・ベクター系としては、上記の特開昭61-108383号、特
開昭61-173781号、特開昭63-44899号及び特開平1-12879
0号等に記載されている、ヒスチジノール脱水素酵素活
性が欠如しているピキア酵母であるピキアGS115
(寄託番号NRRL Y-15851)を宿主として用い、pA08
04(寄託番号NRRL B-18114の大腸菌株より抽出・調製
する)にカナマイシン耐性遺伝子を導入したpHIL3
01(特開平2-104292号参照)を発現ベクターとして用
いるのが好ましい。
The host-vector system used for the expression of the recombinant BAL of the present invention is the above-mentioned JP-A-61-108383, JP-A-61-173781, JP-A-63-44899 and JP-A-1-48383. 12879
Pichia GS115, which is a Pichia yeast lacking the histidinol dehydrogenase activity described in No. 0, etc.
(Deposit No. NRRL Y-15851) was used as the host and pA08
No. 04 (extracted and prepared from the Escherichia coli strain of deposit number NRRL B-18114) into which the kanamycin resistance gene was introduced, pHIL3
01 (see JP-A-2-104292) is preferably used as an expression vector.

【0018】これらを用いて本発明の組換えBALを製
造するには、まず前記発現ベクターpHIL301のユ
ニークサイトであるEcoRIに組換えBALのcDN
Aを挿入した組換え発現ベクターを調製する(図1)。
In order to produce the recombinant BAL of the present invention using these, the recombinant BAL cDN is first added to EcoRI which is a unique site of the expression vector pHIL301.
A recombinant expression vector having A inserted therein is prepared (FIG. 1).

【0019】ピキア酵母を形質転換するには、細胞壁を
酵素で消化してスフェロプラストとした後、カルシウム
イオンとポリエチレングリコールの存在下で、前記組換
え発現ベクターと混合する。さらにヒスチジンが欠損し
た選択培地及びカナマイシンを含有する選択培地で培養
して生育するコロニーを取り、スフェロプラストを再生
する。
To transform Pichia yeast, the cell wall is digested with an enzyme to give spheroplasts, which are then mixed with the recombinant expression vector in the presence of calcium ions and polyethylene glycol. Further, spheroplasts are regenerated by culturing in a selective medium lacking histidine and a selective medium containing kanamycin to grow colonies.

【0020】組換えBAL蛋白質の発現においては、形
質転換したピキア酵母株を約30℃でかつ好気的な条件
で十分に増殖させた後、メタノールを含む発現培地で温
度を約15〜25℃に下げ、溶存酸素(DO)量を20
%以下とすることにより、組換えBAL蛋白質の発現を
誘導する。
In expressing the recombinant BAL protein, the transformed Pichia yeast strain was sufficiently grown at about 30 ° C. under aerobic conditions, and then the temperature was about 15 to 25 ° C. in an expression medium containing methanol. And reduce the amount of dissolved oxygen (DO) to 20
The expression of the recombinant BAL protein is induced by adjusting the amount to be not more than%.

【0021】かかる培養条件を用いればWO91/15234号記
載の全長BAL(天然BAL)の発現量も増大する。
When such culture conditions are used, the expression level of full-length BAL (natural BAL) described in WO91 / 15234 is also increased.

【0022】[0022]

【発明の効果】本発明によれば、天然のBALと同等の
性能を有する遺伝子組換えによるBALを高効率で簡便
かつ安価に発現せしめることができる。
INDUSTRIAL APPLICABILITY According to the present invention, BAL by gene recombination having a performance equivalent to that of natural BAL can be expressed with high efficiency, simply and inexpensively.

【0023】[0023]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0024】実施例1(組換えBALの製造) (1)BAL発現ベクターの構築 BALの全長cDNAはWO91/15234号記載の方法に従っ
て調製し、これをプラスミドpBR322のPstI部
位に挿入して組換えプラスミドを得た。これを大腸菌M
C1061に導入して増殖させ、プラスミドをBirnboim
らの方法(Birnboim and Doby, Nucleic Acids Researc
h, 7, 1513(1979))により単離した。一方、BALの
cDNAからBAL蛋白質のC末端領域の繰り返し構造
の一部が取り除かれたcDNAは、BALのcDNAを
含むプラスミドを大腸菌内で増殖させることによって自
発的に生じた、繰り返し構造のうち9回分が欠損してい
るBAL cDNAを選択して得た。このようにして得
られたBAL cDNAからBAL自身の分泌シグナル
をコードする部分とその5′上流を取り除き、代わりに
パン酵母インベルターゼの分泌シグナル(SUC2)をコード
するDNAを連結した。このBAL cDNAを発現ベ
クターpHIL301のEcoRI部位に組込んで組換
え発現ベクターを得た(図1)。すなわち、pHIL3
01をEcoRIで消化し、アルカリ性フォスファター
ゼで処理して脱燐酸化した。
Example 1 (Production of Recombinant BAL) (1) Construction of BAL Expression Vector Full-length BAL cDNA was prepared according to the method described in WO91 / 15234, and inserted into the PstI site of plasmid pBR322 for recombination. A plasmid was obtained. E. coli M
The plasmid was introduced into C1061 and propagated, and the plasmid was transferred to Birnboim.
Et al. (Birnboim and Doby, Nucleic Acids Researc
h, 7, 1513 (1979)). On the other hand, a cDNA obtained by removing a part of the repeating structure of the C-terminal region of the BAL protein from the BAL cDNA was prepared from 9 of the repeating structures spontaneously generated by growing a plasmid containing the BAL cDNA in E. coli. A batch-deficient BAL cDNA was selected and obtained. From the BAL cDNA thus obtained, the portion encoding the secretory signal of BAL itself and its 5 ′ upstream were removed, and instead, the DNA encoding the secretory signal of baker's yeast invertase (SUC2) was ligated. This BAL cDNA was incorporated into the EcoRI site of the expression vector pHIL301 to obtain a recombinant expression vector (Fig. 1). That is, pHIL3
01 was digested with EcoRI, treated with alkaline phosphatase and dephosphorylated.

【0025】(2)細胞増殖 GTS115のコロニーを10mlのYPD培地(1Lの
組成:イースト・エキス10g、ペプトン20g及び2
0gのグルコース)に接種し、30℃で飽和になるまで
振盪培養して種培養を得た。500mlの培養フラスコに
200mlのYPD培地を入れ、これに前記種培養を10
μl加え、撹拌しつつ培養液の600nmにおける吸光度
が0.2〜0.3になるまで30℃で培養した。培養終
了後1500×gで5分間室温で遠心して細胞を集菌し
た。この細胞を以下の形質転換に用いた。
(2) Cell Proliferation GTS115 colonies were mixed with 10 ml of YPD medium (1 L composition: yeast extract 10 g, peptone 20 g and 2).
0 g of glucose) and inoculated with shaking at 30 ° C. until saturated to obtain a seed culture. In a 500 ml culture flask, 200 ml of YPD medium was added, and the seed culture was added to 10 ml.
μl was added, and the mixture was cultivated at 30 ° C. with stirring until the absorbance at 600 nm of the culture reached 0.2 to 0.3. After completion of the culture, the cells were collected by centrifugation at 1500 xg for 5 minutes at room temperature. This cell was used for the following transformation.

【0026】(3)スフェロプラストの調製 集菌した細胞を10mlの滅菌水で一度洗い、1500×
gで5分間室温で遠心して上清を捨てた。続いて10ml
の新鮮なSED(1Mのソルビトール、25mMのEDT
A及び50mMのDTT)で一度洗い、1500×gで5
分間室温で遠心して上清を捨てた。さらに10mlの1M
のソルビトールで一度洗い、1500×gで5分間室温
で遠心して上清を捨てた。10mlのSCE緩衝液(9.
1gのソルビトール、1.47gのクエン酸ナトリウム
及び0.168gのEDTAを50mlの水に溶かし、塩
酸でpHを5.8としたもの)に細胞を懸濁した。続いて
3mg/mlのチモリアーゼ60,000溶液(Zymolyas
e、Miles Laboratories社製)7.5μlを加え、ゆっ
くりかき混ぜて30℃に10分間保って細胞壁を消化し
た。形成されたスフェロプラストを集菌し、10mlの1
Mのソルビトールを加えて1,000×gで5分間遠心
した。上清を捨て、10mlのCaS(1Mのソルビトー
ル、10mMのCaCl2及び10mMのトリス塩酸(pH
7.5))で1回洗い、0.6mlのCaSに懸濁した。
(3) Preparation of spheroplast The collected cells were washed once with 10 ml of sterilized water and 1500 ×
Centrifuge at room temperature for 5 minutes at room temperature and discard the supernatant. Then 10 ml
Fresh SED (1 M sorbitol, 25 mM EDT
Wash once with A and 50 mM DTT), 5 at 1500 × g
After centrifuging at room temperature for minutes, the supernatant was discarded. 10 ml of 1M
Was washed once with sorbitol, and centrifuged at 1500 xg for 5 minutes at room temperature, and the supernatant was discarded. 10 ml of SCE buffer (9.
The cells were suspended in 1 g of sorbitol, 1.47 g of sodium citrate and 0.168 g of EDTA dissolved in 50 ml of water and adjusted to pH 5.8 with hydrochloric acid. Subsequently, a 60 mg solution of 3 mg / ml of thymolyase (Zymolyas
e, Miles Laboratories) 7.5 μl was added, and the mixture was gently stirred and kept at 30 ° C. for 10 minutes to digest the cell wall. Collect the formed spheroplasts and collect 10 ml of 1
M sorbitol was added and the mixture was centrifuged at 1,000 × g for 5 minutes. The supernatant is discarded and 10 ml of CaS (1 M sorbitol, 10 mM CaCl 2 and 10 mM Tris-HCl (pH
It was washed once with 7.5)) and suspended in 0.6 ml of CaS.

【0027】(4)形質転換 BAL cDNAを含む組換え発現ベクター10μgを
Bg1IIで完全消化して線状とし、これをTE緩衝液
(1.0mMのEDTAを含む0.01M(pH7.4)の
トリス緩衝液)10μlに懸濁して12×75mm滅菌ポ
リプロピレン管に入れ、スフェロプラスト100μlを
加えて室温で約20分間インキュベートした。次いでP
EG溶液(20%ポリエチレングリコール3350、1
0mM CaCl2及び10mMトリス塩酸(pH7.4))
1mlを加えて室温で約15分インキュベーションし、7
00×gで5分間遠心して上清を捨てた。SOS溶液
(1Mソルビトール、10mM CaCl2及び33.3
%YPD培地)を加え、室温で30分間インキュベート
した後、850μlの1Mソルビトール溶液を加えた。
(4) Transformation 10 μg of the recombinant expression vector containing the BAL cDNA was completely digested with Bg1II to give a linear form, which was treated with TE buffer (0.01 M containing 1.0 mM EDTA, pH 7.4). The suspension was suspended in 10 μl of Tris buffer and placed in a sterile polypropylene tube of 12 × 75 mm, 100 μl of spheroplast was added, and the mixture was incubated at room temperature for about 20 minutes. Then P
EG solution (20% polyethylene glycol 3350, 1
0 mM CaCl 2 and 10 mM Tris-HCl (pH 7.4))
Add 1 ml and incubate at room temperature for about 15 minutes.
The supernatant was discarded by centrifuging at 00 × g for 5 minutes. SOS solution (1 M sorbitol, 10 mM CaCl 2 and 33.3)
% YPD medium), and incubated at room temperature for 30 minutes, and then 850 μl of 1M sorbitol solution was added.

【0028】(5)スフェロプラストの再生 再生寒天培地(1Lの組成:yeast nitrogen base with
ammonium sulfate 6.7g、ビオチン400μg、、
ソルビトール182g、デキストロース10g、寒天1
0g、グルタミン、メチオニン、リジン、ロイシン及び
イソロイシン各々50mg、ヒスチジンアッセイ培地(Dif
ico)2g)10mlをオートクレーブにて溶解し、プレー
トに流し込んで固化しておいた。一方で、再生寒天10
mlをオートクレーブにて溶解し、45℃に保った状態で
10又は990μlの形質転換サンプルを加え、前記の
固化させておいた再生寒天の上に流し込んだ。このプレ
ートを30℃で、3〜5日間インキュベートした。
(5) Regeneration of spheroplast Regenerated agar medium (1 L composition: yeast nitrogen base with
ammonium sulfate 6.7g, biotin 400μg,
182 g sorbitol, 10 g dextrose, 1 agar
0 g, glutamine, methionine, lysine, leucine and isoleucine 50 mg each, histidine assay medium (Dif
2 ml of ico) was dissolved in an autoclave and poured into a plate to be solidified. On the other hand, recycled agar 10
ml was dissolved in an autoclave, 10 or 990 μl of a transformation sample was added while keeping it at 45 ° C., and the mixture was poured onto the solidified regenerated agar. The plate was incubated at 30 ° C for 3-5 days.

【0029】(6)BAL産生クローンの同定 再生寒天培地(ヒスチジンを含んでいない)で生育して
きたコロニーを採取することにより、His+形質転換
株を得た。形質転換株をBMGY培地(1Lの組成:リ
ン酸カルシウム緩衝液(pH6.0)100ml、yeast ni
trogen base with ammonium sulfate 13.4g、ビオ
チン400μg、酵母エキス10g、グリセロール10
ml、ペプトン20g)で2日間培養後、培地をBMMY
培地(BMGY培地においてグリセリンの代わりにメタ
ノール5mlを加えたもの)で2日間培養した。遠心して
10μlの培養上清を取り、SDS−ポリアクリルアミ
ドゲル電気泳動(SDS-PAGE)にかけ、抗BAL抗体によ
るウェスタンブロットハイブリダイゼーションを行っ
た。この結果から、全長BALのcDNAを導入した形
質転換株は全長のBALに対応する約110kdのBAL
を、繰り返し構造が9回分欠損したBALのcDNAを
導入した形質転換株は繰り返し構造が9回分欠損したB
ALに対応する約85kdのBALを産生していることが
認められた。また、繰り返し構造が9回分欠損したBA
Lの方が全長BALよりも約10〜100倍多く発現さ
れていることも明らかになった。残りの培養上清を全て
回収し、ヘパリンを担体としたアフィニティーカラムク
ロマトグラフィーにかけて欠損BALを精製し、N末端
のアミノ酸分析を行ったところ、蛋白質のN末端側にSe
r-Met-Thr-Gly-Serという5個のアミノ酸が付加されて
いることが判明した。
(6) Identification of BAL-producing clones His + transformants were obtained by collecting colonies that had grown on the regenerated agar medium (without histidine). The transformant was used as BMGY medium (1 L composition: calcium phosphate buffer (pH 6.0) 100 ml, yeast ni).
trogen base with ammonium sulfate 13.4 g, biotin 400 μg, yeast extract 10 g, glycerol 10
ml, peptone 20 g), after culturing for 2 days, the medium was BMMY
The cells were cultured for 2 days in a medium (BMGY medium supplemented with 5 ml of methanol in place of glycerin). After centrifugation, 10 μl of the culture supernatant was collected, subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and subjected to Western blot hybridization with an anti-BAL antibody. From this result, the transformant into which the full-length BAL cDNA was introduced was approximately 110 kd BAL corresponding to full-length BAL.
In the transformant into which the BAL cDNA in which the repeat structure was deleted 9 times was introduced, B was deleted in which the repeat structure was deleted 9 times.
It was confirmed that about 85 kd of BAL corresponding to AL was produced. In addition, BA in which the repeating structure was deleted 9 times
It was also revealed that L was expressed about 10 to 100 times more than full-length BAL. All of the remaining culture supernatant was collected, purified by affinity column chromatography using heparin as a carrier to purify the defective BAL, and the amino acid at the N-terminus was analyzed.
It was revealed that 5 amino acids, r-Met-Thr-Gly-Ser, were added.

【0030】実施例2(N末端が成熟BALと同じであ
る欠損BALの製造)
Example 2 (Production of defective BAL whose N-terminus is the same as mature BAL)

【0031】この5個のアミノ酸のない天然のBALと
同じアミノ酸配列を有するBALを産生させるため、酵
母インベルターゼ遺伝子SUC2の分泌シグナル(表
1)、
In order to produce BAL having the same amino acid sequence as the natural BAL lacking these 5 amino acids, the secretion signal of the yeast invertase gene SUC2 (Table 1),

【0032】[0032]

【表1】 [Table 1]

【0033】の分泌シグナル切断部位の直上流の2個の
アミノ酸配列を変えずに、塩基配列のみを表2のように
制限酵素Aor51HIの認識部位(AGCGCT)に変え
た。
As shown in Table 2, only the base sequence was changed to the recognition site (AGCGCT) of the restriction enzyme Aor51HI without changing the two amino acid sequences immediately upstream of the secretory signal cleavage site.

【0034】[0034]

【表2】 [Table 2]

【0035】さらにこの制限酵素部位をN末端に持ち、
かつC末端の9回分の繰り返し構造を欠損したBAL遺
伝子を構築し、上記のようにSUC2の分泌シグナルと
つないだ。
Furthermore, having this restriction enzyme site at the N-terminus,
In addition, a BAL gene lacking the C-terminal 9-fold repeating structure was constructed and ligated with the SUC2 secretion signal as described above.

【0036】この塩基配列を前述と同じ方法で発現ベク
ターpHIL301に挿入し、得られた組換え発現ベク
ターを用いてGS115株を形質転換した。得られた形
質転換株にBALを発現させ、培養上清をそのままSD
S−PAGEにかけたところ、予想される分子量の位置
に分泌される蛋白質が検出された。また、エステラーゼ
活性の測定によりタウロコール酸で活性化される蛋白質
の存在が確認された。さらに、培養上清からヘパリンを
担体としたアフィニティーカラムクロマトグラフィーに
かけてBALを精製し、N末端のアミノ酸分析を行った
ところ、N末端から10アミノ酸まで、成熟BALのc
DNA配列から予想される配列と一致していた。従っ
て、この組換えBALは配列番号7記載の成熟BALの
アミノ酸配列からC末端の9回の繰り返し構造が欠損し
たアミノ酸配列(1-615)を有し、実施例1で得られた
組換えBALとはN末端に配列番号3記載の5個のアミ
ノ酸が存在しない点でのみ異なる。
This base sequence was inserted into the expression vector pHIL301 by the same method as described above, and the GS115 strain was transformed with the obtained recombinant expression vector. BAL is expressed in the obtained transformant, and the culture supernatant is used as it is for SD.
When subjected to S-PAGE, a protein secreted at the position of the expected molecular weight was detected. The presence of a protein activated by taurocholate was confirmed by measuring the esterase activity. Furthermore, BAL was purified from the culture supernatant by affinity column chromatography using heparin as a carrier, and N-terminal amino acid analysis was carried out. From N-terminal to 10 amino acids, mature BAL c
It was in agreement with the sequence expected from the DNA sequence. Therefore, this recombinant BAL had an amino acid sequence (1-615) in which the C-terminal 9-fold repeating structure was deleted from the amino acid sequence of mature BAL shown in SEQ ID NO: 7, and the recombinant BAL obtained in Example 1 was obtained. Differs from that in the absence of the 5 amino acids set forth in SEQ ID NO: 3 at the N-terminus.

【0037】実施例3(ファーメンター培養による高効
率発現) (1)BAL発現ベクターのコピー数の増大 上記で得られた繰り返し構造が9回分欠損した107個
のBAL産生株の中から、GS115の染色体に多くの
BAL遺伝子が導入された株を得るために、カナマイシ
ン耐性(1.5mg/ml)で選択したところ、2つの耐性
株(♯53及び♯57)が得られた。これらの耐性株か
らゲノムDNAを抽出し、サザンブロットハイブリダイ
ゼーションにより挿入されたBAL遺伝子のコピー数を
検討したところ、♯53には6コピー、♯57には14
コピーの挿入が確認された。♯53を上記と同じ方法で
BALを発現させ、培養上清を直接SDS−PAGEに
かけてBALの発現量を調べたところ、BAL遺伝子が
1コピーしか導入されていない株と比べて約10倍の発
現が見られた。この♯53を以下のファーメンターでの
BAL発現に用いた。
Example 3 (High-efficiency expression by fermenter culture) (1) Increase in copy number of BAL expression vector Among 107 BAL-producing strains lacking the repeated structure obtained in the above 9 times, GS115 was selected. In order to obtain a strain in which many BAL genes were introduced into the chromosome, kanamycin resistance (1.5 mg / ml) was selected, and two resistant strains (# 53 and # 57) were obtained. Genomic DNA was extracted from these resistant strains and the copy number of the inserted BAL gene was examined by Southern blot hybridization. As a result, 6 copies were found in # 53 and 14 copies were found in # 57.
A copy insertion was confirmed. BAL was expressed in # 53 by the same method as described above, and the culture supernatant was directly subjected to SDS-PAGE to examine the expression level of BAL. As a result, it was found that the expression was about 10 times that of the strain in which only one copy of the BAL gene was introduced. It was observed. This # 53 was used for BAL expression in the following fermenter.

【0038】(2)ファーメンター培養における高効率
発現 10L容のジャー3基にそれぞれ5Lの培地(1L当た
りの組成は、グリセロール50.0g、H3PO4(85
%)21ml、CaSO4 ・2H2O 0.9g、K2SO
4 14.28g、MgSO4・7H2O 11.7g、K
OH 3.9g、ペプトン10.0g、酵母エキス5.
0g、微量金属及び無機質溶液(1L当たりの組成は、
FeSO4・7H2O 65.0g、CuSO4・5H2
6.0g、ZnSO4・7H2O 20g、MnSO
4 3.0g、H2SO4 5.0ml)1.0ml)を入れ、
YPD培地で培養した♯53の前培養液150mlを加え
て培養を開始した。培養条件は以下の通りであった。 温度:30℃ 撹拌:500rpm(但し溶存酸素(DO)コントロール
時は999rpm まで上昇させた) 送気:3L空気/分 DOコントロール:30〜50% pHコントロール:5.6〜6.2 以上の条件で25時間培養した後、40〜50g/時間
の割合でグリセロールを培地に添加しつつ、さらに18
時間培養した(合計で873.4gのグリセロールを添
加した)。次いで、3基のジャーのそれぞれについて、
メタノールを添加してBAL蛋白質の誘導を行い、表3
に示す条件で7日間培養した。
(2) High-efficiency expression in fermentor culture 5 L of medium was added to 3 jars each having a volume of 10 L (composition per liter was 50.0 g of glycerol, H 3 PO 4 (85
%) 21 ml, CaSO 4 .2H 2 O 0.9 g, K 2 SO
4 14.28g, MgSO 4 · 7H 2 O 11.7g, K
OH 3.9 g, peptone 10.0 g, yeast extract 5.
0 g, trace metals and inorganic solutions (composition per liter is
FeSO 4 · 7H 2 O 65.0g, CuSO 4 · 5H 2 O
6.0g, ZnSO 4 · 7H 2 O 20g, MnSO
4 3.0 g, H 2 SO 4 5.0 ml) 1.0 ml),
The culture was started by adding 150 ml of the preculture solution of # 53 cultured in YPD medium. The culture conditions were as follows. Temperature: 30 ° C. Agitation: 500 rpm (however, increased to 999 rpm when dissolved oxygen (DO) control) Air supply: 3 L air / min DO control: 30-50% pH control: 5.6-6.2 or higher conditions After culturing at 25% for 25 hours, glycerol was added to the medium at a rate of 40 to 50 g / hour for 18 hours.
Incubated for a period of time (a total of 873.4 g of glycerol was added). Then for each of the three jars
Induction of BAL protein was performed by adding methanol, and
Culture was performed for 7 days under the conditions shown in.

【0039】[0039]

【表3】 [Table 3]

【0040】ジャー1〜ジャー3のそれぞれの条件で発
現誘導を行ったときのBALの発現量の推移を図2に示
す。図2に示されるように、ジャー1、ジャー2及びジ
ャー3の条件におけるBALの発現量はそれぞれ、約1
00mg/L、約250mg/L及び約170mg/Lであっ
た。なお、温度を30℃、DOコントロールを30〜5
0%とした他は上記と同じ条件でファーメンターにて発
現誘導を行ったときのBALの発現量は約30mg/Lで
あり、低い温度或いは溶存酸素量を制限した環境で培養
することにより、BALの発現量が多くなることが示さ
れた。なお、BALの発現量は培養上清のエステラーゼ
活性から逆算した(組換えBALの精製品の比活性は1
11unit/mg)。なおエステラーゼ活性は、2mMタウロ
コール酸及び2mMパラニトロフェニール酢酸(PAN
A)を含む0.1M燐酸緩衝液(pH7.5)を反応溶液
として、培養上清によるPANAの分解能を測定した。
測定に当たっては1mlの反応溶液に1μlの培養上清を
加え、25℃で10分間反応させて、400nmにおける
吸光度を見た。PANAを1分間に1nmole 分解する活
性を1munit とした。
FIG. 2 shows the changes in the expression level of BAL when the expression induction was performed under the respective conditions of jar 1 to jar 3. As shown in FIG. 2, the expression level of BAL under the conditions of jar 1, jar 2 and jar 3 was about 1 each.
It was 00 mg / L, about 250 mg / L and about 170 mg / L. The temperature is 30 ° C. and the DO control is 30 to 5
The expression level of BAL is about 30 mg / L when the expression is induced in a fermenter under the same conditions as above except that the content is 0%. By culturing at a low temperature or in an environment in which the amount of dissolved oxygen is limited, It was shown that the expression level of BAL was increased. The expression level of BAL was calculated back from the esterase activity of the culture supernatant (the specific activity of the purified recombinant BAL product was 1
11 unit / mg). The esterase activity was 2 mM taurocholic acid and 2 mM paranitrophenylacetic acid (PAN).
A 0.1 M phosphate buffer (pH 7.5) containing A) was used as a reaction solution to measure the PANA degradability by the culture supernatant.
In the measurement, 1 μl of the culture supernatant was added to 1 ml of the reaction solution, the mixture was reacted at 25 ° C. for 10 minutes, and the absorbance at 400 nm was observed. The activity of decomposing PANA by 1 nmole per minute was defined as 1 munit.

【0041】実施例4(天然BALとの比較) 本発明で得られた組換えBALとヒト母乳中のBAL
(以下母乳BALという)との性質を比較した。以下の
試験結果が示すように、 (1)免疫学的性質 (2)タウロコール酸の濃度、NaCl濃度、基質濃度、反
応pH及び反応温度のリパーゼ活性に対する影響 (3)pH安定性 (4)温度安定性 (5)各種阻害剤による酵素活性の阻害の程度 (6)ヘパリンへの結合能 (7)各種脂肪酸のトリグリセリドの分解速度 において、組換えBALと母乳BALとでは殆ど相違は
なかった。
Example 4 (Comparison with natural BAL) Recombinant BAL obtained in the present invention and BAL in human breast milk
(Hereinafter, referred to as breast milk BAL) As the following test results show, (1) Immunological properties (2) Effects of taurocholic acid concentration, NaCl concentration, substrate concentration, reaction pH and reaction temperature on lipase activity (3) pH stability (4) Temperature Stability (5) Degree of inhibition of enzyme activity by various inhibitors (6) Binding ability to heparin (7) Degradation rate of triglycerides of various fatty acids, there was almost no difference between recombinant BAL and breast milk BAL.

【0042】組換えBAL及び母乳BALは、それぞれ
BAL発現ピキア酵母(♯53)の発現培養上清及び母
乳から、Wangの方法(Anal. Biochem. 105, 398-402(19
80)、Anal. Biochem. 133, 457-461(1983))及びBlaeck
bergらの方法(Eur. J. Biochem. 116, 221-225(198
1))に準じて、コール酸セファロースカラムとヘパリン
セファロースカラムを用いて調製した。
Recombinant BAL and human milk BAL were obtained by the method of Wang (Anal. Biochem. 105, 398-402 (19) from BAL-expressing Pichia yeast (# 53) expression culture supernatant and human milk, respectively.
80), Anal. Biochem. 133, 457-461 (1983)) and Blaeck.
Berg et al. (Eur. J. Biochem. 116, 221-225 (198
According to 1)), it was prepared using a cholate sepharose column and a heparin sepharose column.

【0043】リパーゼ活性は、エマルジョンにしたオリ
ーブオイルのトリグリセリド(脂肪酸の約80%はオレ
イン酸)の分解をラジオメーター社製のpHスタット装置
を用いて測定することによって測定した。反応液には5
%オリーブオイル、30mMNaCl及び20mMのタウロ
コール酸を含み、反応温度は37℃、pHは8.2であっ
た。
The lipase activity was measured by measuring the decomposition of triglycerides (about 80% of the fatty acids were oleic acid) of olive oil in emulsion, using a pH stat device manufactured by Radiometer. 5 for reaction
% Olive oil, 30 mM NaCl and 20 mM taurocholic acid, the reaction temperature was 37 ° C. and the pH was 8.2.

【0044】イ.免疫学的性質 母乳BALで免疫したウサギ血清の部分精製IgG、ヒ
トスキムミルク、組換えBAL及び母乳BALを用い
て、二重拡散法により組換えBALと母乳BALの抗原
性を調べたところ、組換えBALと母乳BALの沈降線
は部分融合型を示した。このことから、組換えBALは
母乳BALと共通抗原性も有しているが、母乳BALの
一部の抗原性を欠いていることが判明した。また、上記
部分精製IgGと母乳BAL或いは組換えBALとを混
合して室温で1時間沈降させた後、上清に残るリパーゼ
活性を測定したところ、組換えBALは母乳BALより
も残存リパーゼ活性が10〜20%高かった。
A. Immunological properties Using partially purified IgG of rabbit serum immunized with breast milk BAL, human skim milk, recombinant BAL and breast milk BAL, the antigenicity of recombinant BAL and breast milk BAL was examined by the double diffusion method. The sedimentation lines of BAL and breast milk BAL showed a partial fusion type. From this, it was revealed that recombinant BAL also has a common antigenicity with breast milk BAL, but lacks part of the antigenicity of breast milk BAL. In addition, after the partially purified IgG was mixed with breast milk BAL or recombinant BAL and allowed to settle at room temperature for 1 hour, the lipase activity remaining in the supernatant was measured. As a result, recombinant BAL had a residual lipase activity higher than that of breast milk BAL. It was 10-20% higher.

【0045】ロ.酵素化学的性質 タウロコール酸の濃度、NaCl濃度、基質濃度、反応
pH及び反応温度のリパーゼ活性に対する影響を調べたと
ころ、これらの全てにおいて組換えBALと母乳BAL
との間に顕著な差は見られなかった。37℃で各種pHで
1時間処理したときのpH安定性は、pH4〜9においてい
ずれも残存活性が80%以上であった。また、pH8.2
における各種温度で1時間処理したときの温度安定性
(40℃以下で残存活性80%以上)においても、組換
えBALと母乳BALとの間には殆ど差が見られなかっ
た。また、各種の阻害物質に対する効果は、コリンエス
テラーゼ阻害剤であるエセリン、セリンプロテアーゼ阻
害剤であるDFP及びPMSF、基質と競合する可能性
のあるフェニル硼酸、及び酵素蛋白質一般を阻害するプ
ロタミンで調べたところ、表4の通りであった。
B. Enzyme chemistry Taurocholic acid concentration, NaCl concentration, substrate concentration, reaction
When the effects of pH and reaction temperature on lipase activity were examined, recombinant BAL and breast milk BAL were found in all of them.
There was no significant difference between Regarding the pH stability when treated at 37 ° C for 1 hour at various pHs, the residual activity was 80% or more at pH 4-9. Also, the pH is 8.2
Regarding the temperature stability (remaining activity of 80% or more at 40 ° C. or lower) when treated at various temperatures for 1 hour, almost no difference was observed between the recombinant BAL and the breast milk BAL. In addition, the effects on various inhibitors were examined by using cholinesterase inhibitor eserine, serine protease inhibitors DFP and PMSF, phenylboric acid which may compete with substrates, and protamine which inhibits enzyme proteins in general. , As shown in Table 4.

【0046】[0046]

【表4】 [Table 4]

【0047】なお、DFP及びPMSFについては両B
ALと25℃で30分間前処理した。また、フェニル硼
酸及び硫酸プロタミンは、反応液に加えた。表4に示さ
れるように、これらの阻害物質の特定濃度における活性
阻害の程度は、組換えBALと母乳BALとで殆ど同じ
であった。
For DFP and PMSF, both B
Pre-treatment with AL at 25 ° C. for 30 minutes. Further, phenylboric acid and protamine sulfate were added to the reaction solution. As shown in Table 4, the degree of activity inhibition of these inhibitors at specific concentrations was almost the same in recombinant BAL and breast milk BAL.

【0048】ニ.ヘパリンへの結合能 BALは小腸の表面のヘパリン様物質に吸着して存在し
ており、そこでコレステロールエステルを分解し、さら
にコレステロールと脂肪酸の細胞内への輸送にも貢献し
ていると言われている。従ってBALがヘパリンに結合
することは、BALの機能発現にとって有用であると思
われる。組換えBAL及び母乳BALそれぞれをヘパリ
ンカラム(Tosoh Heparin-5PW(φ7.5mm×7.5cm)に吸着
させて緩衝液で洗った後、0〜1MのNaClの直線的
濃度勾配で280nmの吸光度でモニターしつつ溶出させ
た。溶出位置を組換えBALと母乳BALとで比較した
ところ、両者とも殆ど同じ位置(直線的勾配濃度のほぼ
中間)であった。これから組換えBALと母乳BALと
はヘパリンへの結合能は同一であると判断された。
D. Ability to bind to heparin BAL is present by adsorbing to a heparin-like substance on the surface of the small intestine, where it degrades cholesterol ester and further contributes to the intracellular transport of cholesterol and fatty acids. There is. Therefore, the binding of BAL to heparin seems to be useful for the functional expression of BAL. Recombinant BAL and breast milk BAL were each adsorbed on a heparin column (Tosoh Heparin-5PW (φ7.5 mm × 7.5 cm) and washed with a buffer solution, and then monitored by absorbance at 280 nm with a linear concentration gradient of 0 to 1 M NaCl. When the elution positions of the recombinant BAL and the breast milk BAL were compared, both were almost at the same position (almost in the middle of the linear gradient concentration) From this, the recombinant BAL and the breast milk BAL were changed to heparin. Were determined to have the same binding ability.

【0049】ホ.各種脂肪酸のトリグリセリドの分解速
度 トリパルミトレイン酸グリセリド、トリオレイン酸グリ
セリド、トリリノール酸グリセリド、トリリノレン酸グ
リセリド及びトリドコサヘキサエン酸グリセリドの組換
えBAL及び母乳BALによる分解速度を測定した。母
乳BALによるトリオレイン酸グリセリドの分解速度を
100%として表5に結果を示す。
E. Decomposition rate of triglycerides of various fatty acids The decomposition rates of tripalmitoleic acid glyceride, trioleic acid glyceride, trilinoleic acid glyceride, trilinolenic acid glyceride and tridocosahexaenoic acid glyceride by recombinant BAL and breast milk BAL were measured. The results are shown in Table 5 assuming that the decomposition rate of trioleic acid glyceride by breast milk BAL is 100%.

【0050】[0050]

【表5】 [Table 5]

【0051】この表から組換えBALの各種脂肪酸のト
リグリセリドの分解速度は母乳BALとほぼ同じであっ
た。
From this table, the rate of triglyceride decomposition of various fatty acids of recombinant BAL was almost the same as that of breast milk BAL.

【0052】[0052]

【配列表】 配列番号:1 配列の長さ:538 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Ala Lys Leu Gly Ala Val Tyr Thr Glu Gly Gly Phe Val Glu Gly Val 5 10 15 Asn Lys Lys Leu Gly Leu Leu Gly Asp Ser Val Asp Ile Phe Lys Gly 20 25 30 Ile Pro Phe Ala Ala Pro Thr Lys Ala Leu Glu Asn Pro Gln Pro His 35 40 45 Pro Gly Trp Gln Gly Thr Leu Lys Ala Lys Asn Phe Lys Lys Arg Cys 50 55 60 Leu Gln Ala Thr Ile Thr Gln Asp Ser Thr Tyr Gly Asp Glu Asp Cys 65 70 75 80 Leu Tyr Leu Asn Ile Trp Val Pro Gln Gly Arg Lys Gln Val Ser Arg 85 90 95 Asp Leu Pro Val Met Ile Trp Ile Tyr Gly Gly Ala Phe Leu Met Gly 100 105 110 Ser Gly His Gly Ala Asn Phe Leu Asn Asn Tyr Leu Tyr Asp Gly Glu 115 120 125 Glu Ile Ala Thr Arg Gly Asn Val Ile Val Val Thr Phe Asn Tyr Arg 130 135 140 Val Gly Pro Leu Gly Phe Leu Ser Thr Gly Asp Ala Asn Leu Pro Gly 145 150 155 160 Asn Tyr Gly Leu Arg Asp Gln His Met Ala Ile Ala Trp Val Lys Arg 165 170 175 Asn Ile Ala Ala Phe Gly Gly Asp Pro Asn Asn Ile Thr Leu Phe Gly 180 185 190 Glu Ser Ala Gly Gly Ala Ser Val Ser Leu Gln Thr Leu Ser Pro Tyr 195 200 205 Asn Lys Gly Leu Ile Arg Arg Ala Ile Ser Gln Ser Gly Val Ala Leu 210 215 220 Ser Pro Trp Val Ile Gln Lys Asn Pro Leu Phe Trp Ala Lys Lys Val 225 230 235 240 Ala Glu Lys Val Gly Cys Pro Val Gly Asp Ala Ala Arg Met Ala Gln 245 250 255 Cys Leu Lys Val Thr Asp Pro Arg Ala Leu Thr Leu Ala Tyr Lys Val 260 265 270 Pro Leu Ala Gly Leu Glu Tyr Pro Met Leu His Tyr Val Gly Phe Val 275 280 285 Pro Val Ile Asp Gly Asp Phe Ile Pro Ala Asp Pro Ile Asn Leu Tyr 290 295 300 Ala Asn Ala Ala Asp Ile Asp Tyr Ile Ala Gly Thr Asn Asn Met Asp 305 310 315 320 Gly His Ile Phe Ala Ser Ile Asp Met Pro Ala Ile Asn Lys Gly Asn 325 330 335 Lys Lys Val Thr Glu Glu Asp Phe Tyr Lys Leu Val Ser Glu Phe Thr 340 345 350 Ile Thr Lys Gly Leu Arg Gly Ala Lys Thr Thr Phe Asp Val Tyr Thr 355 360 365 Glu Ser Trp Ala Gln Asp Pro Ser Gln Glu Asn Lys Lys Lys Thr Val 370 375 380 Val Asp Phe Glu Thr Asp Val Leu Phe Leu Val Pro Thr Glu Ile Ala 385 390 395 400 Leu Ala Gln His Arg Ala Asn Ala Lys Ser Ala Lys Thr Tyr Ala Tyr 405 410 415 Leu Phe Ser His Pro Ser Arg Met Pro Val Tyr Pro Lys Trp Val Gly 420 425 430 Ala Asp His Ala Asp Asp Ile Gln Tyr Val Phe Gly Lys Pro Phe Ala 435 440 445 Thr Pro Thr Gly Tyr Arg Pro Gln Asp Arg Thr Val Ser Lys Ala Met 450 455 460 Ile Ala Tyr Trp Thr Asn Phe Ala Lys Thr Gly Asp Pro Asn Met Gly 465 470 475 480 Asp Ser Ala Val Pro Thr His Trp Glu Pro Tyr Thr Thr Glu Asn Ser 485 490 495 Gly Tyr Leu Glu Ile Thr Lys Lys Met Gly Ser Ser Ser Met Lys Arg 500 505 510 Ser Leu Arg Thr Asn Phe Leu Arg Tyr Trp Thr Leu Thr Tyr Leu Ala 515 520 525 Leu Pro Thr Val Thr Asp Gln Glu Ala Thr 530 535 [Sequence Listing] SEQ ID NO: 1 Sequence length: 538 Sequence type: Amino acid Topology: Linear Sequence type: Peptide sequence Ala Lys Leu Gly Ala Val Tyr Thr Glu Gly Gly Phe Val Glu Gly Val 5 10 15 Asn Lys Lys Leu Gly Leu Leu Gly Asp Ser Val Asp Ile Phe Lys Gly 20 25 30 Ile Pro Phe Ala Ala Pro Thr Lys Ala Leu Glu Asn Pro Gln Pro His 35 40 45 Pro Gly Trp Gln Gly Thr Leu Lys Ala Lys Asn Phe Lys Lys Arg Cys 50 55 60 Leu Gln Ala Thr Ile Thr Gln Asp Ser Thr Tyr Gly Asp Glu Asp Cys 65 70 75 80 Leu Tyr Leu Asn Ile Trp Val Pro Gln Gly Arg Lys Gln Val Ser Arg 85 90 95 Asp Leu Pro Val Met Ile Trp Ile Tyr Gly Gly Ala Phe Leu Met Gly 100 105 110 Ser Gly His Gly Ala Asn Phe Leu Asn Asn Tyr Leu Tyr Asp Gly Glu 115 120 125 Glu Ile Ala Thr Arg Gly Asn Val Ile Val Val Thr Phe Asn Tyr Arg 130 135 140 Val Gly Pro Leu Gly Phe Leu Ser Thr Gly Asp Ala Asn Leu Pro Gly 145 150 155 160 Asn Tyr Gly Leu Arg Asp Gln His Met Ala Ile Ala Trp Val Lys Arg 165 170 175 Asn Ile Ala Ala Pla Gly Gly Asp Pro Asn Asn Ile Thr Leu Phe Gly 180 185 190 Glu Ser Ala Gly Gly Ala Ser Val Ser Leu Gln Thr Leu Ser Pro Tyr 195 200 205 Asn Lys Gly Leu Ile Arg Arg Ala Ile Ser Gln Ser Gly Val Ala Leu 210 215 220 Ser Pro Trp Val Ile Gln Lys Asn Pro Leu Phe Trp Ala Lys Lys Val 225 230 235 240 Ala Glu Lys Val Gly Cys Pro Val Gly Asp Ala Ala Arg Met Ala Gln 245 250 255 Cys Leu Lys Val Thr Asp Pro Arg Ala Leu Thr Leu Ala Tyr Lys Val 260 265 270 Pro Leu Ala Gly Leu Glu Tyr Pro Met Leu His Tyr Val Gly Phe Val 275 280 285 Pro Val Ile Asp Gly Asp Phe Ile Pro Ala Asp Pro Ile Asn Leu Tyr 290 295 300 Ala Asn Ala Ala Asp Ile Asp Tyr Ile Ala Gly Thr Asn Asn Met Asp 305 310 315 320 Gly His Ile Phe Ala Ser Ile Asp Met Pro Ala Ile Asn Lys Gly Asn 325 330 335 Lys Lys Val Thr Glu Glu Asp Phe Tyr Lys Leu Val Ser Glu Phe Thr 340 345 350 Ile Thr Lys Gly Leu Arg Gly Ala Lys Thr Thr Phe Asp Val Tyr Thr 355 360 365 Glu Ser Trp Ala Gln Asp Pro Ser Gln Glu Asn Lys Lys Lys Thr Val 370 375 380 Val Asp Phe Glu Thr As p Val Leu Phe Leu Val Pro Thr Glu Ile Ala 385 390 395 400 Leu Ala Gln His Arg Ala Asn Ala Lys Ser Ala Lys Thr Tyr Ala Tyr 405 410 415 Leu Phe Ser His Pro Ser Arg Met Pro Val Tyr Pro Lys Trp Val Gly 420 425 430 Ala Asp His Ala Asp Asp Ile Gln Tyr Val Phe Gly Lys Pro Phe Ala 435 440 445 Thr Pro Thr Gly Tyr Arg Pro Gln Asp Arg Thr Val Ser Lys Ala Met 450 455 460 Ile Ala Tyr Trp Thr Asn Phe Ala Lys Thr Gly Asp Pro Asn Met Gly 465 470 475 480 Asp Ser Ala Val Pro Thr His Trp Glu Pro Tyr Thr Thr Glu Asn Ser 485 490 495 Gly Tyr Leu Glu Ile Thr Lys Lys Met Gly Ser Ser Ser Met Lys Arg 500 505 510 Ser Leu Arg Thr Asn Phe Leu Arg Tyr Trp Thr Leu Thr Tyr Leu Ala 515 520 525 Leu Pro Thr Val Thr Asp Gln Glu Ala Thr 530 535

【0053】配列番号:2 配列の長さ:11 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 (1)Pro Val Pro Pro Thr Gly Asp Ser Glu Ala Thr (2)Pro Val Pro Pro Thr Gly Asp Ser Glu Thr Ala (3)Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro (4)Pro Val Pro Pro Thr Gly Asp Ala Gly Pro Pro (5)Pro Val Thr Pro Thr Gly Asp Ser Glu Thr Ala (6)Pro Val Pro Pro Thr Gly Asp Ser Glu Ala Ala (7)Pro Val Pro Pro Thr Asp Asp Ser Lys Glu AlaSEQ ID NO: 2 Sequence length: 11 Sequence type: Amino acid Topology: Linear Sequence type: Peptide sequence (1) Pro Val Pro Pro Thr Gly Asp Ser Glu Ala Thr (2) Pro Val Pro Pro Thr Gly Asp Ser Glu Thr Ala (3) Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro (4) Pro Val Pro Pro Thr Gly Asp Ala Gly Pro Pro (5) Pro Val Thr Pro Thr Gly Asp Ser Glu Thr Ala ( 6) Pro Val Pro Pro Thr Gly Asp Ser Glu Ala Ala (7) Pro Val Pro Pro Thr Asp Asp Ser Lys Glu Ala

【0054】配列番号:3 配列の長さ:5 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Ser Met Thr Gly SerSEQ ID NO: 3 Sequence length: 5 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Sequence Ser Met Thr Gly Ser

【0055】配列番号:4 配列の長さ:1614 配列の型:核酸 配列の数:1本鎖 配列の種類:cDNA 配列 GCGAAGCTGG GCGCCGTGTA CACAGAAGGT GGGTTCGTGG AAGGCGTCAA TAAGAAGCTC 60 GGCCTCCTGG GTGACTCTGT GGACATCTTC AAGGGCATCC CCTTCGCAGC TCCCACCAAG 120 GCCCTGGAAA ATCCTCAGCC ACATCCTGGC TGGCAAGGGA CCCTGAAGGC CAAGAACTTC 180 AAGAAGAGAT GCCTGCAGGC CACCATCACC CAGGACAGCA CCTACGGGGA TGAAGACTGC 240 CTGTACCTCA ACATTTGGGT GCCCCAGGGC AGGAAGCAAG TCTCCCGGGA CCTGCCCGTT 300 ATGATCTGGA TCTATGGAGG CGCCTTCCTC ATGGGGTCCG GCCATGGGGC CAACTTCCTC 360 AACAACTACC TGTATGACGG CGAGGAGATC GCCACACGCG GAAACGTCAT CGTGGTCACC 420 TTCAACTACC GTGTCGGCCC CCTTGGGTTC CTCAGCACTG GGGACGCCAA TCTGCCAGGT 480 AACTATGGTC TTCGGGATCA GCACATGGCC ATTGCTTGGG TGAAGAGGAA TATCGCGGCC 540 TTCGGGGGGG ACCCCAACAA CATCACGCTC TTCGGGGAGT CTGCTGGAGG TGCCAGCGTC 600 TCTCTGCAGA CCCTCTCCCC CTACAACAAG GGCCTCATCC GGCGAGCCAT CAGCCAGAGC 660 GGCGTGGCCC TGAGTCCCTG GGTCATCCAG AAAAACCCAC TCTTCTGGGC CAAAAAGGTG 720 GCTGAGAAGG TGGGTTGCCC TGTGGGTGAT GCCGCCAGGA TGGCCCAGTG TCTGAAGGTT 780 ACTGATCCCC GAGCCCTGAC GCTGGCCTAT AAGGTGCCGC TGGCAGGCCT GGAGTACCCC 840 ATGCTGCACT ATGTGGGCTT CGTCCCTGTC ATTGATGGAG ACTTCATCCC CGCTGACCCG 900 ATCAACCTGT ACGCCAACGC CGCCGACATC GACTATATAG CAGGCACCAA CAACATGGAC 960 GGCCACATCT TCGCCAGCAT CGACATGCCT GCCATCAACA AGGGCAACAA GAAAGTCACG 1020 GAGGAGGACT TCTACAAGCT GGTCAGTGAG TTCACAATCA CCAAGGGGCT CAGAGGCGCA 1080 AAGACGACCT TTGATGTCTA CACCGAGTCC TGGGCCCAGG ACCCATCCCA GGAGAATAAG 1140 AAGAAGACTG TGGTGGACTT TGAGACCGAT GTCCTCTTCC TGGTGCCCAC CGAGATTGCC 1200 CTAGCCCAGC ACAGAGCCAA TGCCAAGAGT GCCAAGACCT ACGCCTACCT GTTTTCCCAT 1260 CCCTCTCGGA TGCCCGTCTA CCCCAAATGG GTGGGGGCCG ACCATGCAGA TGACATTCAG 1320 TACGTTTTCG GGAAGCCCTT CGCCACCCCC ACGGGCTACC GGCCCCAAGA CAGGACAGTC 1380 TCTAAGGCCA TGATCGCCTA CTGGACCAAC TTTGCCAAAA CAGGGGACCC CAACATGGGC 1440 GACTCGGCTG TGCCCACACA CTGGGAACCC TACACTACGG AAAACAGCGG CTACCTGGAG 1500 ATCACCAAGA AGATGGGCAG CAGCTCCATG AAGCGGAGCC TGAGAACCAA CTTCCTGCGC 1560 TACTGGACCC TCACCTATCT GGCGCTGCCC ACAGTGACCG ACCAGGAGGC CACC 1614SEQ ID NO: 4 Sequence length: 1614 Sequence type: Nucleic acid Number of sequences: Single-stranded Sequence type: cDNA sequence GCGAAGCTGG GCGCCGTGTA CACAGAAGGT GGGTTCGTGG AAGGCGTCAA TAAGAAGCTC 60 GGCCTCCTGG GTGACTCTGT GGACATCTTC AAGGGCATCCCCGAAGACCCCCCCACGAGCCCC CCTTCGCAGC TC TC CAAGAACTTC 180 AAGAAGAGAT GCCTGCAGGC CACCATCACC CAGGACAGCA CCTACGGGGA TGAAGACTGC 240 CTGTACCTCA ACATTTGGGT GCCCCAGGGC AGGAAGCAAG TCTCCCGGGA CCTGCCCGTT 300 ATGATCTGGA TCTATGGAGG CGCCTTCCTC ATGGGGTCCG GCCATGGGGC CAACTTCCTC 360 AACAACTACC TGTATGACGG CGAGGAGATC GCCACACGCG GAAACGTCAT CGTGGTCACC 420 TTCAACTACC GTGTCGGCCC CCTTGGGTTC CTCAGCACTG GGGACGCCAA TCTGCCAGGT 480 AACTATGGTC TTCGGGATCA GCACATGGCC ATTGCTTGGG TGAAGAGGAA TATCGCGGCC 540 TTCGGGGGGG ACCCCAACAA CATCACGCTC TTCGGGGAGT CTGCTGGAGG TGCCAGCGTC 600 TCTCTGCAGA CCCTCTCCCC CTACAACAAG GGCCTCATCC GGCGAGCCAT CAGCCAGAGC 660 GGCGTGGCCC TGAGTCCCTG GGTCATCCAG AAAAACCCAC TCTTCTGGGC CAAAAAGGTG 720 GCTGAGAA GG TGGGTTGCCC TGTGGGTGAT GCCGCCAGGA TGGCCCAGTG TCTGAAGGTT 780 ACTGATCCCC GAGCCCTGAC GCTGGCCTAT AAGGTGCCGC TGGCAGGCCT GGAGTACCCC 840 ATGCTGCACT ATGTGGGCTT CGTCCCTGTC ATTGATGGAG ACTTCATCCC CGCTGACCCG 900 ATCAACCTGT ACGCCAACGC CGCCGACATC GACTATATAG CAGGCACCAA CAACATGGAC 960 GGCCACATCT TCGCCAGCAT CGACATGCCT GCCATCAACA AGGGCAACAA GAAAGTCACG 1020 GAGGAGGACT TCTACAAGCT GGTCAGTGAG TTCACAATCA CCAAGGGGCT CAGAGGCGCA 1080 AAGACGACCT TTGATGTCTA CACCGAGTCC TGGGCCCAGG ACCCATCCCA GGAGAATAAG 1140 AAGAAGACTG TGGTGGACTT TGAGACCGAT GTCCTCTTCC TGGTGCCCAC CGAGATTGCC 1200 CTAGCCCAGC ACAGAGCCAA TGCCAAGAGT GCCAAGACCT ACGCCTACCT GTTTTCCCAT 1260 CCCTCTCGGA TGCCCGTCTA CCCCAAATGG GTGGGGGCCG ACCATGCAGA TGACATTCAG 1320 TACGTTTTCG GGAAGCCCTT CGCCACCCCC ACGGGCTACC GGCCCCAAGA CAGGACAGTC 1380 TCTAAGGCCA TGATCGCCTA CTGGACCAAC TTTGCCAAAA CAGGGGACCC CAACATGGGC 1440 GACTCGGCTG TGCCCACACA CTGGGAACCC TACACTACGG AAAACAGCGG CTACCTGGAG 1500 ATCACCAAGA AGATGGGCAG CAGCTCCATG AAGCGGAGCC TGAGAACCAA CTTCCTGCGC 1560 TACTGGACCC TCACCTA TCT GGCGCTGCCC ACAGTGACCG ACCAGGAGGC CACC 1614

【0056】配列番号:5 配列の長さ:33 配列の型:核酸 配列の数:1本鎖 配列の種類:DNA 配列 (1)CCT GTG CCC CCC ACA GGG GAC TCC GAG GCA ACT (2)CCC GTG CCC CCC ACG GGT GAC TCC GAG ACC GCC (3)CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC CCC (4)CCC GTG CCG CCC ACG GGT GAC TCC GGC GCC CCC (5)CCC GTG CCG CCC ACG GGT GAC GCC GGG CCC CCC (6)CCC GTG ACC CCC ACG GGT GAC TCC GAG ACC GCC (7)CCT GTG CCC CCC ACG GGT GAC TCT GAG GCT GCC (8)CCT GTG CCC CCC ACA GAT GAC TCC AAG GAA GCTSEQ ID NO: 5 Sequence length: 33 Sequence type: Nucleic acid Number of sequences: Single-stranded Sequence type: DNA sequence (1) CCT GTG CCC CCC ACA GGG GAC TCC GAG GCA ACT (2) CCC GTG CCC CCC ACG GGT GAC TCC GAG ACC GCC (3) CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC CCC (4) CCC GTG CCG CCC ACG GGT GAC TCC GGC GCC CCC (5) CCC GTG CCG CCC ACG GGT GAC GCC GGG CCC CCC (6) CCC GTG ACC CCC ACG GGT GAC TCC GAG ACC GCC (7) CCT GTG CCC CCC ACG GGT GAC TCT GAG GCT GCC (8) CCT GTG CCC CCC ACA GAT GAC TCC AAG GAA GCT

【0057】配列番号:6 配列の長さ:15 配列の型:核酸 配列の数:1本鎖 配列の種類:DNA 配列 TCAATGACA GGTTCASEQ ID NO: 6 Sequence length: 15 Sequence type: Nucleic acid Number of sequences: Single-stranded Sequence type: DNA sequence TCAATGACA GGTTCA

【0058】配列番号:7 配列の長さ:2166 配列の型:核酸 トポロジー:直鎖状 配列の数:1本鎖 配列の種類:cDNA 配列 GCG AAG CTG GGC GCC GTG TAC ACA GAA GGT GGG TTC GTG GAA GGC GTC Ala Lys Leu Gly Ala Val Tyr Thr Glu Gly Gly Phe Val Glu Gly Val 5 10 15 AAT AAG AAG CTC GGC CTC CTG GGT GAC TCT GTG GAC ATC TTC AAG GGC Asn Lys Lys Leu Gly Leu Leu Gly Asp Ser Val Asp Ile Phe Lys Gly 20 25 30 ATC CCC TTC GCA GCT CCC ACC AAG GCC CTG GAA AAT CCT CAG CCA CAT Ile Pro Phe Ala Ala Pro Thr Lys Ala Leu Glu Asn Pro Gln Pro His 35 40 45 CCT GGC TGG CAA GGG ACC CTG AAG GCC AAG AAC TTC AAG AAG AGA TGC Pro Gly Trp Gln Gly Thr Leu Lys Ala Lys Asn Phe Lys Lys Arg Cys 50 55 60 CTG CAG GCC ACC ATC ACC CAG GAC AGC ACC TAC GGG GAT GAA GAC TGC Leu Gln Ala Thr Ile Thr Gln Asp Ser Thr Tyr Gly Asp Glu Asp Cys 65 70 75 80 CTG TAC CTC AAC ATT TGG GTG CCC CAG GGC AGG AAG CAA GTC TCC CGG Leu Tyr Leu Asn Ile Trp Val Pro Gln Gly Arg Lys Gln Val Ser Arg 85 90 95 GAC CTG CCC GTT ATG ATC TGG ATC TAT GGA GGC GCC TTC CTC ATG GGG Asp Leu Pro Val Met Ile Trp Ile Tyr Gly Gly Ala Phe Leu Met Gly 100 105 110 TCC GGC CAT GGG GCC AAC TTC CTC AAC AAC TAC CTG TAT GAC GGC GAG Ser Gly His Gly Ala Asn Phe Leu Asn Asn Tyr Leu Tyr Asp Gly Glu 115 120 125 GAG ATC GCC ACA CGC GGA AAC GTC ATC GTG GTC ACC TTC AAC TAC CGT Glu Ile Ala Thr Arg Gly Asn Val Ile Val Val Thr Phe Asn Tyr Arg 130 135 140 GTC GGC CCC CTT GGG TTC CTC AGC ACT GGG GAC GCC AAT CTG CCA GGT Val Gly Pro Leu Gly Phe Leu Ser Thr Gly Asp Ala Asn Leu Pro Gly 145 150 155 160 AAC TAT GGT CTT CGG GAT CAG CAC ATG GCC ATT GCT TGG GTG AAG AGG Asn Tyr Gly Leu Arg Asp Gln His Met Ala Ile Ala Trp Val Lys Arg 165 170 175 AAT ATC GCG GCC TTC GGG GGG GAC CCC AAC AAC ATC ACG CTC TTC GGG Asn Ile Ala Ala Phe Gly Gly Asp Pro Asn Asn Ile Thr Leu Phe Gly 180 185 190 GAG TCT GCT GGA GGT GCC AGC GTC TCT CTG CAG ACC CTC TCC CCC TAC Glu Ser Ala Gly Gly Ala Ser Val Ser Leu Gln Thr Leu Ser Pro Tyr 195 200 205 AAC AAG GGC CTC ATC CGG CGA GCC ATC AGC CAG AGC GGC GTG GCC CTG Asn Lys Gly Leu Ile Arg Arg Ala Ile Ser Gln Ser Gly Val Ala Leu 210 215 220 AGT CCC TGG GTC ATC CAG AAA AAC CCA CTC TTC TGG GCC AAA AAG GTG Ser Pro Trp Val Ile Gln Lys Asn Pro Leu Phe Trp Ala Lys Lys Val 225 230 235 240 GCT GAG AAG GTG GGT TGC CCT GTG GGT GAT GCC GCC AGG ATG GCC CAG Ala Glu Lys Val Gly Cys Pro Val Gly Asp Ala Ala Arg Met Ala Gln 245 250 255 TGT CTG AAG GTT ACT GAT CCC CGA GCC CTG ACG CTG GCC TAT AAG GTG Cys Leu Lys Val Thr Asp Pro Arg Ala Leu Thr Leu Ala Tyr Lys Val 260 265 270 CCG CTG GCA GGC CTG GAG TAC CCC ATG CTG CAC TAT GTG GGC TTC GTC Pro Leu Ala Gly Leu Glu Tyr Pro Met Leu His Tyr Val Gly Phe Val 275 280 285 CCT GTC ATT GAT GGA GAC TTC ATC CCC GCT GAC CCG ATC AAC CTG TAC Pro Val Ile Asp Gly Asp Phe Ile Pro Ala Asp Pro Ile Asn Leu Tyr 290 295 300 GCC AAC GCC GCC GAC ATC GAC TAT ATA GCA GGC ACC AAC AAC ATG GAC Ala Asn Ala Ala Asp Ile Asp Tyr Ile Ala Gly Thr Asn Asn Met Asp 305 310 315 320 GGC CAC ATC TTC GCC AGC ATC GAC ATG CCT GCC ATC AAC AAG GGC AAC Gly His Ile Phe Ala Ser Ile Asp Met Pro Ala Ile Asn Lys Gly Asn 325 330 335 AAG AAA GTC ACG GAG GAG GAC TTC TAC AAG CTG GTC AGT GAG TTC ACA Lys Lys Val Thr Glu Glu Asp Phe Tyr Lys Leu Val Ser Glu Phe Thr 340 345 350 ATC ACC AAG GGG CTC AGA GGC GCA AAG ACG ACC TTT GAT GTC TAC ACC Ile Thr Lys Gly Leu Arg Gly Ala Lys Thr Thr Phe Asp Val Tyr Thr 355 360 365 GAG TCC TGG GCC CAG GAC CCA TCC CAG GAG AAT AAG AAG AAG ACT GTG Glu Ser Trp Ala Gln Asp Pro Ser Gln Glu Asn Lys Lys Lys Thr Val 370 375 380 GTG GAC TTT GAG ACC GAT GTC CTC TTC CTG GTG CCC ACC GAG ATT GCC Val Asp Phe Glu Thr Asp Val Leu Phe Leu Val Pro Thr Glu Ile Ala 385 390 395 400 CTA GCC CAG CAC AGA GCC AAT GCC AAG AGT GCC AAG ACC TAC GCC TAC Leu Ala Gln His Arg Ala Asn Ala Lys Ser Ala Lys Thr Tyr Ala Tyr 405 410 415 CTG TTT TCC CAT CCC TCT CGG ATG CCC GTC TAC CCC AAA TGG GTG GGG Leu Phe Ser His Pro Ser Arg Met Pro Val Tyr Pro Lys Trp Val Gly 420 425 430 GCC GAC CAT GCA GAT GAC ATT CAG TAC GTT TTC GGG AAG CCC TTC GCC Ala Asp His Ala Asp Asp Ile Gln Tyr Val Phe Gly Lys Pro Phe Ala 435 440 445 ACC CCC ACG GGC TAC CGG CCC CAA GAC AGG ACA GTC TCT AAG GCC ATG Thr Pro Thr Gly Tyr Arg Pro Gln Asp Arg Thr Val Ser Lys Ala Met 450 455 460 ATC GCC TAC TGG ACC AAC TTT GCC AAA ACA GGG GAC CCC AAC ATG GGC Ile Ala Tyr Trp Thr Asn Phe Ala Lys Thr Gly Asp Pro Asn Met Gly 465 470 475 480 GAC TCG GCT GTG CCC ACA CAC TGG GAA CCC TAC ACT ACG GAA AAC AGC Asp Ser Ala Val Pro Thr His Trp Glu Pro Tyr Thr Thr Glu Asn Ser 485 490 495 GGC TAC CTG GAG ATC ACC AAG AAG ATG GGC AGC AGC TCC ATG AAG CGG Gly Tyr Leu Glu Ile Thr Lys Lys Met Gly Ser Ser Ser Met Lys Arg 500 505 510 AGC CTG AGA ACC AAC TTC CTG CGC TAC TGG ACC CTC ACC TAT CTG GCG Ser Leu Arg Thr Asn Phe Leu Arg Tyr Trp Thr Leu Thr Tyr Leu Ala 515 520 525 CTG CCC ACA GTG ACC GAC CAG GAG GCC ACC CCT GTG CCC CCC ACA GGG Leu Pro Thr Val Thr Asp Gln Glu Ala Thr Pro Val Pro Pro Thr Gly 530 535 540 GAC TCC GAG GCA ACT CCC GTG CCC CCC ACG GGT GAC TCC GAG ACC GCC Asp Ser Glu Ala Thr Pro Val Pro Pro Thr Gly Asp Ser Glu Thr Ala 545 550 555 560 CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC CCC CCC GTG CCG CCC ACG Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro Pro Val Pro Pro Thr 565 570 575 GGT GAC TCC GGG GCC CCC CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC Gly Asp Ser Gly Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Gly Ala 580 585 590 CCC CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC CCC CCC GTG CCG CCC Pro Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro Pro Val Pro Pro 595 600 605 ACG GGT GAC TCC GGG GCC CCC CCC GTG CCG CCC ACG GGT GAC TCC GGG Thr Gly Asp Ser Gly Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Gly 610 615 620 GCC CCC CCC GTG CCG CCC ACG GGT GAC TCC GGC GCC CCC CCC GTG CCG Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro Pro Val Pro 625 630 635 640 CCC ACG GGT GAC GCC GGG CCC CCC CCC GTG CCG CCC ACG GGT GAC TCC Pro Thr Gly Asp Ala Gly Pro Pro Pro Val Pro Pro Thr Gly Asp Ser 645 650 655 GGC GCC CCC CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC CCC CCC GTG Gly Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro Pro Val 660 665 670 ACC CCC ACG GGT GAC TCC GAG ACC GCC CCC GTG CCG CCC ACG GGT GAC Thr Pro Thr Gly Asp Ser Glu Thr Ala Pro Val Pro Pro Thr Gly Asp 675 680 685 TCC GGG GCC CCC CCT GTG CCC CCC ACG GGT GAC TCT GAG GCT GCC CCT Ser Gly Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Glu Ala Ala Pro 690 695 700 GTG CCC CCC ACA GAT GAC TCC AAG GAA GCT CAG ATG CCT GCA GTC ATT Val Pro Pro Thr Asp Asp Ser Lys Glu Ala Gln Met Pro Ala Val Ile 705 710 715 720 AGG TTT Arg PheSEQ ID NO: 7 Sequence length: 2166 Sequence type: Nucleic acid Topology: Linear Sequence number: Single-stranded Sequence type: cDNA sequence GCG AAG CTG GGC GCC GTG TAC ACA GAA GGT GGG TTC GTG GAA GGC GTC Ala Lys Leu Gly Ala Val Tyr Thr Glu Gly Gly Phe Val Glu Gly Val 5 10 15 AAT AAG AAG CTC GGC CTC CTG GGT GAC TCT GTG GAC ATC TTC AAG GGC Asn Lys Lys Leu Gly Leu Leu Gly Asp Ser Val Asp Ile Phe Lys Gly 20 25 30 ATC CCC TTC GCA GCT CCC ACC AAG GCC CTG GAA AAT CCT CAG CCA CAT Ile Pro Phe Ala Ala Pro Thr Lys Ala Leu Glu Asn Pro Gln Pro His 35 40 45 CCT GGC TGG CAA GGG ACC CTG AAG GCC AAG AAC TTC AAG AAG AGA TGC Pro Gly Trp Gln Gly Thr Leu Lys Ala Lys Asn Phe Lys Lys Arg Cys 50 55 60 CTG CAG GCC ACC ATC ACC CAG GAC AGC ACC TAC GGG GAT GAA GAC TGC Leu Gln Ala Thr Ile Thr Gln Asp Ser Thr Tyr Gly Asp Glu Asp Cys 65 70 75 80 CTG TAC CTC AAC ATT TGG GTG CCC CAG GGC AGG AAG CAA GTC TCC CGG Leu Tyr Leu Asn Ile Trp Val Pro Gln Gly Arg Lys Gln Val Ser Arg 85 90 95 GAC CTG CCC GTT ATG ATC TGG ATC TAT GGA GGC GCC TTC CTC ATG GGG Asp Leu Pro Val Met Ile Trp Ile Tyr Gly Gly Ala Phe Leu Met Gly 100 105 110 TCC GGC CAT GGG GCC AAC TTC CTC AAC AAC TAC CTG TAT GAC GGC GAG Ser Gly His Gly Ala Asn Phe Leu Asn Asn Tyr Leu Tyr Asp Gly Glu 115 120 125 GAG ATC GCC ACA CGC GGA AAC GTC ATC GTG GTC ACC TTC AAC TAC CGT Glu Ile Ala Thr Arg Gly Asn Val Ile Val Val Thr Thr Phe Asn Tyr Arg 130 135 140 GTC GGC CCC CTT GGG TTC CTC AGC ACT GGG GAC GCC AAT CTG CCA GGT Val Gly Pro Leu Gly Phe Leu Ser Thr Gly Asp Ala Asn Leu Pro Gly 145 150 155 160 AAC TAT GGT CTT CGG GAT CAG CAC ATG GCC ATT GCT TGG GTG AAG AGG Asn Tyr Gly Leu Arg Asp Gln His Met Ala Ile Ala Trp Val Lys Arg 165 170 175 AAT ATC GCG GCC TTC GGG GGG GAC CCC AAC AAC ATC ACG CTC TTC GGG Asn Ile Ala Ala Pla Gly Gly Asp Pro Asn Asn Ile Thr Leu Phe Gly 180 185 190 GAG TCT GCT GGA GGT GCC AGC GTC TCT CTG CAG ACC CTC TCC CCC TAC Glu Ser Ala Gly Gly Ala Ser Val Ser Leu Gln Thr Leu Ser Pro Tyr 195 200 205 AAC AAG GG C CTC ATC CGG CGA GCC ATC AGC CAG AGC GGC GTG GCC CTG Asn Lys Gly Leu Ile Arg Arg Ala Ile Ser Gln Ser Gly Val Ala Leu 210 215 220 AGT CCC TGG GTC ATC CAG AAA AAC CCA CTC TTC TGG GCC AAA AAG GTG Ser Pro Trp Val Ile Gln Lys Asn Pro Leu Phe Trp Ala Lys Lys Val 225 230 235 240 GCT GAG AAG GTG GGT TGC CCT GTG GGT GAT GCC GCC AGG ATG GCC CAG Ala Glu Lys Val Gly Cys Pro Val Gly Asp Ala Ala Arg Met Ala Gln 245 250 255 TGT CTG AAG GTT ACT GAT CCC CGA GCC CTG ACG CTG GCC TAT AAG GTG Cys Leu Lys Val Thr Asp Pro Arg Ala Leu Thr Leu Ala Tyr Lys Val 260 265 270 CCG CTG GCA GGC CTG GAG TAC CCC ATG CTG CAC TAT GTG GGC TTC GTC Pro Leu Ala Gly Leu Glu Tyr Pro Met Leu His Tyr Val Gly Phe Val 275 280 285 CCT GTC ATT GAT GGA GAC TTC ATC CCC GCT GAC CCG ATC AAC CTG TAC Pro Val Ile Asp Gly Asp Phe Ile Pro Ala Asp Pro Ile Asn Leu Tyr 290 295 300 GCC AAC GCC GCC GAC ATC GAC TAT ATA GCA GGC ACC AAC AAC ATG GAC Ala Asn Ala Ala Asp Ile Asp Tyr Ile Ala Gly Thr Asn Asn Met Asp 305 310 315 320 GGC CAC ATC TTC GCC A GC ATC GAC ATG CCT GCC ATC AAC AAG GGC AAC Gly His Ile Phe Ala Ser Ile Asp Met Pro Ala Ile Asn Lys Gly Asn 325 330 335 AAG AAA GTC ACG GAG GAG GAC TTC TAC AAG CTG GTC AGT GAG TTC ACA Lys Lys Val Thr Glu Glu Asp Phe Tyr Lys Leu Val Ser Glu Phe Thr 340 345 350 ATC ACC AAG GGG CTC AGA GGC GCA AAG ACG ACC TTT GAT GTC TAC ACC Ile Thr Lys Gly Leu Arg Gly Ala Lys Thr Thr Phe Asp Val Tyr Thr 355 360 365 365 GAG TCC TGG GCC CAG GAC CCA TCC CAG GAG AAT AAG AAG AAG ACT GTG Glu Ser Trp Ala Gln Asp Pro Ser Gln Glu Asn Lys Lys Lys Thr Val 370 375 380 GTG GAC TTT GAG ACC GAT GTC CTC TTC CTG GTG CCC ACC GAG ATT GCC Val Asp Phe Glu Thr Asp Val Leu Phe Leu Val Pro Thr Glu Ile Ala 385 390 395 400 CTA GCC CAG CAC AGA GCC AAT GCC AAG AGT GCC AAG ACC TAC GCC TAC Leu Ala Gln His Arg Ala Asn Ala Lys Ser Ala Lys Thr Tyr Ala Tyr 405 410 415 CTG TTT TCC CAT CCC TCT CGG ATG CCC GTC TAC CCC AAA TGG GTG GGG Leu Phe Ser His Pro Ser Arg Met Pro Val Tyr Pro Lys Trp Val Gly 420 425 430 GCC GAC CAT GCA GAT GAC ATT CAG TAC G TT TTC GGG AAG CCC TTC GCC Ala Asp His Ala Asp Asp Ile Gln Tyr Val Phe Gly Lys Pro Phe Ala 435 440 445 ACC ACC CCC ACG GGC TAC CGG CCC CAA GAC AGG ACA GTC TCT AAG GCC ATG Thr Pro Thr Gly Tyr Arg Pro Gln Asp Arg Thr Val Ser Lys Ala Met 450 455 460 ATC GCC TAC TGG ACC AAC TTT GCC AAA ACA GGG GAC CCC AAC ATG GGC Ile Ala Tyr Trp Thr Asn Phe Ala Lys Thr Gly Asp Pro Asn Met Gly 465 470 475 480 GAC TCG GCT GTG CCC ACA CAC TGG GAA CCC TAC ACT ACG GAA AAC AGC Asp Ser Ala Val Pro Thr His Trp Glu Pro Tyr Thr Thr Glu Asn Ser 485 490 495 GGC TAC CTG GAG ATC ACC AAG AAG ATG GGC AGC AGC TCC ATG AAG CGG Gly Tyr Leu Glu Ile Thr Lys Lys Met Gly Ser Ser Ser Met Lys Arg 500 505 510 AGC CTG AGA ACC AAC TTC CTG CGC TAC TGG ACC CTC ACC TAT CTG GCG Ser Leu Arg Thr Asn Phe Leu Arg Tyr Trp Thr Leu Thr Tyr Leu Ala 515 520 525 CTG CCC ACA GTG ACC GAC CAG GAG GCC ACC CCT GTG CCC CCC ACA GGG Leu Pro Thr Val Thr Asp Gln Glu Ala Thr Pro Val Pro Pro Thr Gly 530 535 540 GAC TCC GAG GCA ACT CCC GTG CCC CCC ACG GGT GAC TCC G AG ACC GCC Asp Ser Glu Ala Thr Pro Val Pro Pro Thr Gly Asp Ser Glu Thr Ala 545 550 555 560 CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC CCC CCC GTG CCG CCC ACG Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro Pro Val Pro Pro Thr 565 570 575 GGT GAC TCC GGG GCC CCC CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC Gly Asp Ser Gly Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Gly Ala 580 585 590 CCC CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC CCC CCC GTG CCG CCC Pro Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro Pro Val Pro Pro 595 600 605 ACG GGT GAC TCC GGG GCC CCC CCC GTG CCG CCC ACG GGT GAC TCC GGG Thr Gly Asp Ser Gly Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Gly 610 615 620 GCC CCC CCC GTG CCG CCC ACG GGT GAC TCC GGC GCC CCC CCC GTG CCG Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro Pro Val Pro 625 630 635 640 CCC ACG GGT GAC GCC GGG CCC CCC CCC GTG CCG CCC ACG GGT GAC TCC Pro Thr Gly Asp Ala Gly Pro Pro Pro Val Pro Pro Thr Gly Asp Ser 645 650 655 GGC GCC CCC CCC GTG CCG CCC ACG GGT GAC TCC GGG GCC CCC CCC GTGGly Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Gly Ala Pro Pro Val 660 665 670 ACC CCC ACG GGT GAC TCC GAG ACC GCC CCC GTG CCG CCC ACG GGT GAC Thr Pro Thr Gly Asp Ser Glu Thr Ala Pro Val Pro Pro Thr Gly Asp 675 680 685 TCC GGG GCC CCC CCT GTG CCC CCC ACG GGT GAC TCT GAG GCT GCC CCT Ser Gly Ala Pro Pro Val Pro Pro Thr Gly Asp Ser Glu Ala Ala Pro 690 695 700 GTG CCC CCC ACA GAT GAC TCC AAG GAA GCT CAG ATG CCT GCA GTC ATT Val Pro Pro Thr Asp Asp Ser Lys Glu Ala Gln Met Pro Ala Val Ile 705 710 715 720 AGG TTT Arg Phe

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明組換えペプチドの1例を示す図である。FIG. 1 is a view showing an example of the recombinant peptide of the present invention.

【図2】ファーメンター培養の条件によるBALの発現
量の変化を示す図である。
FIG. 2 is a diagram showing changes in the expression level of BAL depending on the conditions of fermenter culture.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年12月22日[Submission date] December 22, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 組換え胆汁酸塩活性化リパーゼの高収
率発現方法
Title: Method for high-yield expression of recombinant bile salt-activated lipase

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は組換え胆汁酸塩活性化リ
パーゼの高収率発現方法に関する。
TECHNICAL FIELD The present invention relates to a high-yield expression method of recombinant bile salt-activated lipase.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】胆汁酸
塩活性化リパーゼ(Bile salt−activa
ted Lipase;以下BALということがある)
は、脂質加水分解酵素(リパーゼ)の一つであり、消化
管にあっては膵臓から分泌され、乳汁中にも見出され
る。BALは小腸内において胆汁酸塩によって活性化さ
れ、トリグリセライドを脂肪酸とグリセリンにまで完全
に加水分解し、コレステロールやビタミンのエステルも
加水分解する。
BACKGROUND OF THE INVENTION Bile salt-activated lipase (Bile salt-activa)
Ted Lipase; sometimes referred to as BAL below)
Is a lipid hydrolase (lipase), which is secreted by the pancreas in the digestive tract and is also found in milk. BAL is activated by bile salts in the small intestine, and completely hydrolyzes triglyceride into fatty acids and glycerin, and also hydrolyzes cholesterol and vitamin esters.

【0003】BALの欠乏は、乳児にあっては乳脂肪の
消化不良による発育不全をもたらすため、BALを添加
した食品添加物が提唱されている(特開平1−2318
48号)。また、BALの投与により嚢胞性繊維症(c
ystic fibrosis)などの膵臓不全の症状
を、脂質消化の観点から軽減することが期待されるが、
例えばBALを乳から抽出しようとする場合、原料とな
る母乳の確保、精製に要するコスト、ウイルスのコンタ
ミネーション等の問題があり、十分な量を確保するのは
容易ではない。このため、遺伝子組換え技術を用いるB
ALの製造が期待されており、BALの乳からの単離精
製が既になされ(Wang and Johnton:
Anal.Biochem.133,457−461
(1983))、さらにBALをコードするcDNAも
知られている。その配列から、BAL蛋白質は722個
のアミノ酸からなり、C末端には16回の11アミノ酸
からなる繰り返し構造が存在することが判明している
(WO91/15234号)。
Insufficiency of BAL causes growth failure in infants due to indigestion of milk fat, so that a food additive containing BAL has been proposed (Japanese Patent Laid-Open No. 1-2318).
No. 48). In addition, cystic fibrosis (c
It is expected that symptoms of pancreatic insufficiency such as cystic fibrosis) will be reduced from the viewpoint of lipid digestion,
For example, when trying to extract BAL from milk, there are problems such as the cost required for securing the milk as a raw material, the cost required for purification, and virus contamination, and it is not easy to secure a sufficient amount. Therefore, B using genetic recombination technology
AL is expected to be produced, and BAL has already been isolated and purified from milk (Wang and Johnton:
Anal. Biochem. 133,457-461
(1983)), and cDNA encoding BAL is also known. From the sequence, it has been revealed that the BAL protein consists of 722 amino acids, and that the C-terminal has a repeating structure consisting of 16 11 amino acids (WO91 / 15234).

【0004】しかし、上記cDNAを用いる遺伝子組換
えBALを培地中に高収率で分泌発現させる方法は未だ
見出されていない。
However, a method for secreting and expressing recombinant BAL using the above-mentioned cDNA in a medium in a high yield has not yet been found.

【0005】そこで、上記組換えBALを高収率で発現
させる方法の開発が望まれていた。
Therefore, it has been desired to develop a method for expressing the recombinant BAL in a high yield.

【0006】[0006]

【課題を解決するための手段】酵母による異種蛋白質発
現系の一つとして、ピキア・パストリス(Pichia
pastoris、以下ピキア酵母という)を宿主と
して用いる方法が知られており(特開昭61−1083
83号、特開昭61−173781号、特開昭63−4
4899号、特開平1−128790号等)、具体的な
物質生産の例としては、ストレプトキナーゼ(特開昭6
2−296881号)、TNF(特開昭63−1648
91号)、HIV 24kDA gag蛋白質(特開平
2−20286号)、ヒトIL−2(特開平2−104
292号)、B型肝炎のpreS2蛋白質(特開平2−
84176号、特開平2−27990号)等が知られて
いる。本発明者らはこれらの知見をもとに、ピキア酵母
を宿主としてBALのcDNAを用い、組換えBALの
高収率発現方法について鋭意研究した結果、本発明を完
成した。
[Means for Solving the Problems] As one of yeast expression systems for heterologous proteins, Pichia pastoris (Pichia)
Pastoris, hereinafter referred to as Pichia yeast) is known as a host (Japanese Patent Laid-Open No. 61-1083).
83, JP 61-173781, JP 63-4.
No. 4899, JP-A-1-128790, etc., and specific examples of substance production include streptokinase (JP-A-6-62).
2-296881), TNF (Japanese Patent Laid-Open No. 63-1648).
91), HIV 24kDA gag protein (JP-A-2-20286), human IL-2 (JP-A-2-104).
292), hepatitis B preS2 protein (JP-A-2-
No. 84176, JP-A-2-27990) and the like are known. The present inventors have completed the present invention as a result of earnest research on a high-yield expression method of recombinant BAL using BAL cDNA using Pichia yeast as a host based on these findings.

【0007】すなわち、本発明者らは、BAL蛋白質の
C末端領域に存在する16回の繰り返し構造が組換えB
AL蛋白質の発現と関連するものと考え、繰り返し構造
を削除して発現を調べたところ、繰り返し構造が一部又
は全部削除されたBAL(以下、欠損BALということ
がある)が16回の繰り返し構造を有するBALと比較
して約10〜100倍も効率よく発現されることを見出
した。しかもこの繰り返し構造が一部又は全部削除され
た、すなわち、C末端の繰り返し構造が0〜15回であ
るBALは、pH安定性、温度安定性、ヘパリンへの結
合能、各種の脂肪酸トリグリセライドの分解速度、乳児
用粉ミルクの分解等、各種の性質において、天然のBA
Lと違いはないことから、天然のBALと同様に使用で
きる有用なものであることも見出した。
That is, the present inventors have found that the 16-fold repeating structure existing in the C-terminal region of BAL protein is a recombinant B
When the expression was examined by deleting the repetitive structure, which was considered to be related to the expression of AL protein, BAL in which a part or all of the repetitive structure was deleted (hereinafter sometimes referred to as defective BAL) has a repetitive structure of 16 times. It was found that the expression was about 10 to 100 times more efficiently than that of BAL having Moreover, BAL in which this repeating structure is partially or wholly deleted, that is, the C-terminal repeating structure is 0 to 15 times, BAL has pH stability, temperature stability, heparin binding ability, and decomposition of various fatty acid triglycerides. Natural BA in various properties such as speed, decomposition of infant formula, etc.
Since it is not different from L, it was also found to be useful, which can be used similarly to natural BAL.

【0008】また、本発明者らは、組換えBALの発現
に上記ピキア・パストリスの系を用いる場合、ピキア酵
母染色体由来のアルコール酸化酵素遺伝子のプロモータ
ー及びターミネーターを含む発現ベクター(プラスミド
pHIL301)に、上記繰り返し構造が一部又は全部
欠損したBAL遺伝子を組込んで、ピキア酵母を形質転
換し、当該形質転換体を用いて組み換えBALを発現さ
せるに際し、形質転換体を十分に増殖させた後、メタノ
ールによるBALの誘導発現を行うが、BALを高収率
で発現させるためには、増殖段階の培養条件と誘導段階
の培養条件とは異なり、増殖段階では、培養温度が約3
0℃、溶存酸素量が約30〜50%が適当であるが、誘
導段階では培養温度が15〜25℃、溶存酸素量が20
%以下が適当であり、このようにすると高収率の発現量
が得られることを見出した。
[0008] Further, when the above-mentioned Pichia pastoris system is used for the expression of recombinant BAL, the present inventors have added an expression vector (plasmid pHIL301) containing a promoter and a terminator of the alcohol oxidase gene derived from the Pichia yeast chromosome. Incorporating the BAL gene in which the above-mentioned repetitive structure is partially or wholly deleted, Pichia yeast is transformed, and when expressing the recombinant BAL using the transformant, after sufficiently transforming the transformant, methanol is used. Inducing BAL by inducing BAL in a high yield, in order to express BAL in a high yield, the culture temperature at the growth stage is about 3%, which is different from the culture conditions at the growth stage and the induction stage.
It is appropriate that the temperature is 0 ° C and the amount of dissolved oxygen is about 30 to 50%, but the culture temperature is 15 to 25 ° C and the amount of dissolved oxygen is 20 at the induction stage.
% Or less is suitable, and it has been found that a high yield of expression amount can be obtained in this way.

【0009】すなわち、本発明は、胆汁酸塩活性化リパ
ーゼをコードする遺伝子配列から、そのカルボキシ末端
領域に存在する11個のアミノ酸残基からなるペプチド
を単位とした16回の繰り返し構造のアミノ酸配列をコ
ードする遺伝子の一部又は全部を欠失させた欠損遺伝子
断片と分泌シグナルをコードする遺伝子とを連結した遺
伝子を、プラスミドpHIL301のEcoRI部位に
組み込んでなる組換えプラスミドにより形質転換したピ
キア・パストリス(Pichia pastoris)
GS115株の形質転換体を用い、当該形質転換体を約
30℃、溶存酸素30〜50%の条件下で増殖させた
後、メタノールを含有する培地で15〜25℃、溶存酸
素20%以下の条件下で培養して培地中に胆汁酸塩活性
化リパーゼを誘導発現させることを特徴とする組換え胆
汁酸塩活性化リパーゼの高収率発現方法を提供するもの
である。
That is, the present invention provides an amino acid sequence having a 16-fold repeating structure in which a peptide consisting of 11 amino acid residues existing in the carboxy-terminal region of the gene sequence encoding bile salt-activated lipase is used as a unit. Pichia pastoris transformed with a recombinant plasmid in which a defective gene fragment obtained by deleting a part or all of the gene encoding the gene and a gene encoding a secretory signal are ligated into the EcoRI site of the plasmid pHIL301. (Pichia pastoris)
Using a transformant of the GS115 strain, the transformant was grown under conditions of about 30 ° C. and dissolved oxygen of 30 to 50%, and then grown in a medium containing methanol at 15 to 25 ° C. and dissolved oxygen of 20% or less. The present invention provides a method for high-yield expression of recombinant bile salt-activated lipase, which comprises culturing under conditions to induce bile salt-activated lipase inducible expression in a medium.

【0010】上記組換え胆汁酸塩活性化リパーゼは、そ
のN末端に特定の5個のアミノ酸配列を有していても天
然BALと同様の活性を有している。
The above recombinant bile salt-activated lipase has the same activity as natural BAL even if it has a specific 5 amino acid sequence at its N-terminus.

【0011】本発明の組換えBALは配列番号1記載の
アミノ酸配列、当該アミノ酸配列のC末端に配列番号2
記載のアミノ酸配列(1)〜(7)から選ばれたアミノ
酸配列が1〜15個結合してなるアミノ酸配列、当該ア
ミノ酸配列のN末端に配列番号3記載のアミノ酸配列が
結合してなるアミノ酸配列、又は当該アミノ酸配列のC
末端に配列番号2記載のアミノ酸配列(1)〜(7)か
ら選ばれたアミノ酸配列が1〜15個結合し、N末端に
配列番号3記載のアミノ酸配列が結合してなるアミノ酸
配列を有していてもよい。
The recombinant BAL of the present invention has the amino acid sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 2 at the C-terminus.
An amino acid sequence formed by binding 1 to 15 amino acid sequences selected from the written amino acid sequences (1) to (7), and an amino acid sequence formed by binding the amino acid sequence set forth in SEQ ID NO: 3 to the N-terminus of the amino acid sequence. Or C of the amino acid sequence
1 to 15 amino acid sequences selected from the amino acid sequences (1) to (7) described in SEQ ID NO: 2 are bound to the ends, and the amino acid sequence described in SEQ ID NO: 3 is bound to the N-terminus. May be.

【0012】本発明に用いるcDNAは、泌乳している
ヒト乳房組織から作製したcDNAライブラリー(Cl
ontech社製)から、WO91/15234号記載
の方法に従ってcDNAをクローニングしてもよく、W
O91/15234号記載の配列から化学合成してもよ
い。
The cDNA used in the present invention is a cDNA library prepared from lactating human breast tissue (Cl
ontech) to clone cDNA according to the method described in WO91 / 15234.
It may be chemically synthesized from the sequence described in O91 / 15234.

【0013】欠損遺伝子断片は、前記の如く、BALの
全長cDNAからBAL蛋白質のC末端領域の16回の
繰り返し構造のうち、1〜16回分をコードする部分を
取り除いた遺伝子断片を用いる。また、N末端に配列番
号3記載のアミノ酸配列が結合したBALに相当する遺
伝子は、BALの全長cDNAの5′側に当該アミノ酸
配列をコードする塩基配列を結合させてもよい。このよ
うな欠損遺伝子断片は、WO91/15234号記載の
方法に従ってBALcDNAを調製し、これから1〜1
6回分の繰り返し構造を除去してもよく、あるいは化学
合成してもよく、また該cDNAを含むプラスミドベク
ターを宿主内で増殖させるうちに自然に生じた欠損cD
NAを用いてもよい。なお、組換えBALのC末端領域
の1〜15個の繰り返し構造は、配列番号2の(1)〜
(7)の配列が任意の順序で結合していてもよい。
As described above, the defective gene fragment is a gene fragment obtained by removing the portion encoding the 1 to 16 times of the 16-fold repeating structure of the C-terminal region of the BAL protein from the full-length BAL cDNA. In addition, in the gene corresponding to BAL in which the amino acid sequence of SEQ ID NO: 3 is bound to the N-terminus, the base sequence encoding the amino acid sequence may be bound to the 5'side of the full-length cDNA of BAL. For such a defective gene fragment, BAL cDNA was prepared according to the method described in WO91 / 15234,
The repeated structure for 6 times may be removed, or it may be chemically synthesized, and the defective cD naturally generated during the growth of the plasmid vector containing the cDNA in the host.
NA may be used. In addition, 1 to 15 repeating structures of the C-terminal region of recombinant BAL are (1) to SEQ ID NO: 2 to
The sequences of (7) may be combined in any order.

【0014】本発明の組換えBALの発現に用いる宿主
・ベクター系としては、上記の特開昭61−10838
3号、特開昭61−173781号、特開昭63−44
899号及び特開平1−128790号等に記載されて
いる、ヒスチジノール脱水素酵素活性が欠如しているピ
キア酵母であるピキアGS115(寄託番号NRRLY
−15851)を宿主として用い、pA0804(寄託
番号NRRL B−18114の大腸菌株より抽出・調
製する)にカナマイシン耐性遺伝子を導入したpHIL
301(特開平2−104292号参照)を発現ベクタ
ーとして用いるのが好ましい。
The host-vector system used for the expression of the recombinant BAL of the present invention is described in the above-mentioned JP-A-61-183838.
3, JP-A-61-173781, JP-A-63-44.
Pichia GS115 (deposition number NRRLY), which is a Pichia yeast lacking histidinol dehydrogenase activity, described in Japanese Patent Application Laid-Open No. 899 and JP-A-1-128790.
PHIL in which a kanamycin resistance gene was introduced into pA0804 (extracted and prepared from an Escherichia coli strain with deposit number NRRL B-18114) using -15851) as a host.
It is preferable to use 301 (see JP-A-2-104292) as an expression vector.

【0015】これらを用いて本発明に用いる組換えBA
Lを製造するには、前記欠損遺伝子断片と分泌シグナル
遺伝子とを連結した遺伝子を、前記発現ベクターpHI
L301のユニークサイトであるEcoRIに挿入した
組換え発現ベクターを調製する(図1)。ここで分泌シ
グナル遺伝子としては、BAL自身のものを用いてもよ
いが、パン酵母(Saccharomyces cer
evisiae)インベルターゼの分泌シグナル(SU
C2)をコードするDNAが好ましい。
Recombinant BA used in the present invention using these
In order to produce L, a gene in which the defective gene fragment and the secretion signal gene are ligated is added to the expression vector pHI.
A recombinant expression vector inserted into EcoRI, which is the unique site of L301, is prepared (FIG. 1). As the secretion signal gene, BAL itself may be used, but baker's yeast (Saccharomyces cer)
evisiae) invertase secretion signal (SU
DNA encoding C2) is preferred.

【0016】ピキア酵母を形質転換するには、細胞壁を
酵素で消化してスフェロプラストとした後、カルシウム
イオンとポリエチレングリコールの存在下で、前記組換
え発現ベクターと混合する。さらにヒスチジンが欠損し
た選択培地でスフェロプラストを再生させ、カナマイシ
ンを含有する培地で培養して生育するコロニーを選択す
る。
To transform Pichia yeast, the cell wall is digested with an enzyme to give spheroplasts, which are then mixed with the recombinant expression vector in the presence of calcium ions and polyethylene glycol. Furthermore, spheroplasts are regenerated in a selection medium lacking histidine, and cultured in a medium containing kanamycin to select colonies that grow.

【0017】組換えBAL蛋白質の発現においては、形
質転換したピキア酵母株を約30℃でかつ溶存酸素30
〜50%の条件で十分に増殖させた後、メタノールを含
む発現培地で温度を約15〜25℃に下げ、溶存酸素量
を20%以下とし、メタノールで組換えBAL蛋白質の
発現を誘導する。なお、発現培地にはメタノールに加え
て蛋白質、例えばペプトンを添加するのが好ましい。
In expressing the recombinant BAL protein, the transformed Pichia yeast strain was treated at about 30.degree.
After sufficiently proliferating under a condition of -50%, the temperature is lowered to about 15-25 ° C in an expression medium containing methanol to adjust the dissolved oxygen amount to 20% or less, and the expression of recombinant BAL protein is induced with methanol. It is preferable to add a protein such as peptone to the expression medium in addition to methanol.

【0018】かかる培養条件を用いれば、C末端の繰り
返し構造を欠失したBALのみならず、WO91/15
234号記載の全長BAL(天然BAL)の発現量も増
大する。
Using such culture conditions, not only BAL lacking the C-terminal repeating structure but also WO91 / 15
The expression level of full-length BAL (natural BAL) described in No. 234 also increases.

【0019】[0019]

【発明の効果】本発明によれば、天然のBALと同等の
活性を有する遺伝子組換えによるBALを高効率で発現
せしめることができる。
INDUSTRIAL APPLICABILITY According to the present invention, BAL by gene recombination having an activity equivalent to that of natural BAL can be expressed with high efficiency.

【0020】[0020]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0021】実施例1(組換えBALの製造) (1)BAL発現ベクターの構築 BALの全長cDNAはWO91/15234号記載の
方法に従って調製し、これをプラスミドpBR322の
PstI部位に挿入して組換えプラスミドを得た。これ
を大腸菌MC1061に導入して増殖させ、プラスミド
をBirnboimらの方法(Birnboim an
d Doby,Nucleic Acids Rese
arch,7,1513(1979))により単離し
た。一方、BALのcDNAからBAL蛋白質のC末端
領域の繰り返し構造の一部が取り除かれたcDNAは、
BALのcDNAを含むプラスミドを大腸菌内で増殖さ
せることによって自発的に生じた、16回の繰り返し構
造のうち9回分が欠損しているBAL cDNAを選択
して得た。このようにして得られたBAL cDNAか
らBAL自身の分泌シグナルをコードする部分とその
5′上流の非翻訳領域を取り除き、代わりにパン酵母
(Saccharomyces cerevisiu
e)のインベルターゼの分泌シグナル(SUC2)をコ
ードするDNAを連結した。このBAL cDNAを発
現ベクターpHIL301のEcoRI部位に組込んで
組換え発現ベクターを得た(図1)。すなわち、pHI
L301をEcoRIで消化し、アルカリ性フォスファ
ターゼで処理して脱燐酸化し、このベクターにBALc
DNAを挿入した。
Example 1 (Production of Recombinant BAL) (1) Construction of BAL Expression Vector Full-length BAL cDNA was prepared according to the method described in WO91 / 15234, and was inserted into the PstI site of plasmid pBR322 for recombination. A plasmid was obtained. This was introduced into Escherichia coli MC1061 and propagated, and the plasmid was prepared by the method of Birnboim et al.
d Doby, Nucleic Acids Rese
arch, 7, 1513 (1979)). On the other hand, a cDNA obtained by removing a part of the repeating structure of the C-terminal region of BAL protein from BAL cDNA is
A BAL cDNA lacking 9 out of 16 repeat structures spontaneously generated by growing a plasmid containing BAL cDNA in E. coli was obtained. From the BAL cDNA thus obtained, the portion encoding the secretory signal of BAL itself and the untranslated region 5'upstream thereof were removed, and instead, baker's yeast (Saccharomyces cerevisiae) was obtained.
DNA encoding the invertase secretion signal (SUC2) in e) was ligated. This BAL cDNA was incorporated into the EcoRI site of the expression vector pHIL301 to obtain a recombinant expression vector (Fig. 1). That is, pHI
L301 was digested with EcoRI, treated with alkaline phosphatase and dephosphorylated, and BALc was added to this vector.
The DNA was inserted.

【0022】(2)細胞増殖 GS115のコロニーを10mlのYPD培地(1Lの
組成:イースト・エキス10g、ペプトン20g及び2
0gのグルコース)に接種し、30℃で飽和になるまで
振盪培養して種培養を得た。500mlの培養フラスコ
に200mlのYPD培地を入れ、これに前記種培養を
10μl加え、撹拌しつつ培養液の600nmにおける
吸光度が0.2〜0.3になるまで30℃で培養した。
培養終了後1500×gで5分間室温で遠心して細胞を
集菌した。この細胞を以下の形質転換に用いた。
(2) Cell Proliferation GS115 colonies were mixed with 10 ml of YPD medium (1 L composition: yeast extract 10 g, peptone 20 g and 2).
0 g of glucose) and inoculated with shaking at 30 ° C. until saturated to obtain a seed culture. 200 ml of YPD medium was put into a 500 ml culture flask, 10 μl of the seed culture was added thereto, and the mixture was cultivated at 30 ° C. with stirring until the absorbance of the culture solution at 600 nm was 0.2 to 0.3.
After completion of the culture, the cells were collected by centrifugation at 1500 xg for 5 minutes at room temperature. This cell was used for the following transformation.

【0023】(3)スフェロプラストの調製 集菌した細胞を10mlの滅菌水で一度洗い、1500
×gで5分間室温で遠心して上清を捨てた。続いて10
mlの新鮮なSED(1Mのソルビトール、25mMの
EDTA及び50mMのDTT)で一度洗い、1500
×gで5分間室温で遠心して上清を捨てた。さらに10
mlの1Mのソルビトールで一度洗い、1500×gで
5分間室温で遠心して上清を捨てた。10mlのSCE
緩衝液(9.1gのソルビトール、1.47gのクエン
酸ナトリウム及び0.168gのEDTAを50mlの
水に溶かし、塩酸でpHを5.8としたもの)に細胞を
懸濁した。続いて3mg/mlのチモリアーゼ60,0
00溶液(Zymolyase.Miles Labo
ratories社製)7.5μlを加え、ゆっくりか
き混ぜて30℃に10分間保って細胞壁を消化した。形
成されたスフェロプラストを集菌し、10mlの1Mの
ソルビトールを加えて1,000×gで5分間遠心し
た。上清を捨て、10mlのCaS(1Mのソルビトー
ル、10mMのCaCl及び10mMのトリス塩酸
(pH7.5))で1回1洗い、0.6mlのCaSに
懸濁した。
(3) Preparation of spheroplast The collected cells were washed once with 10 ml of sterilized water, and 1500
The supernatant was discarded by centrifugation at × g for 5 minutes at room temperature. Then 10
Wash once with ml fresh SED (1 M sorbitol, 25 mM EDTA and 50 mM DTT), 1500
The supernatant was discarded by centrifugation at × g for 5 minutes at room temperature. 10 more
It was washed once with 1 ml of 1 M sorbitol and centrifuged at 1500 xg for 5 minutes at room temperature and the supernatant was discarded. 10 ml SCE
The cells were suspended in a buffer solution (9.1 g of sorbitol, 1.47 g of sodium citrate and 0.168 g of EDTA dissolved in 50 ml of water and adjusted to pH 5.8 with hydrochloric acid). Then 3 mg / ml of thymolyase 60,0
00 solution (Zymolyase. Miles Labo
7.5 μl) (manufactured by Ratories Co., Ltd.) was added, and the mixture was slowly stirred and kept at 30 ° C. for 10 minutes to digest the cell wall. The formed spheroplasts were collected, 10 ml of 1 M sorbitol was added, and the mixture was centrifuged at 1,000 × g for 5 minutes. The supernatant was discarded, washed once with 10 ml of CaS (1 M sorbitol, 10 mM CaCl 2 and 10 mM Tris-HCl (pH 7.5)), and suspended in 0.6 ml of CaS.

【0024】(4)形質転換 BAL cDNAを含む組換え発現ベクター10μgを
BglIIで完全消化して線状とし、これをTE緩衝液
[1.0mMのEDTAを含む0.01M(pH7.
4)のトリス緩衝液]10μlに懸濁して12×75m
m滅菌ポリプロピレン管に入れ、スフェロプラスト10
0μlを加えて室温で約20分間インキュベートした。
次いでPEG溶液[20%ポリエチレングリコール33
50、10mM CaCl及び10mMトリス塩酸
(pH7.4)]1mlを加えて室温で約15分インキ
ュベーションし、700×gで5分間遠心して上清を捨
てた。SOS溶液(1Mソルビトール、10mM Ca
Cl及び33.3%YPD培地)を加え、室温で30
分間インキュベートした後、850μlの1Mソルビト
ール溶液を加えた。
(4) Transformation 10 μg of the recombinant expression vector containing BAL cDNA was completely digested with BglII to give a linear form, and this was made into TE buffer [0.01 M containing 1.0 mM EDTA (pH 7.
4) Tris buffer solution] suspended in 10 μl and 12 × 75 m
Steroplast 10 in a sterile polypropylene tube
0 μl was added and incubated at room temperature for about 20 minutes.
Then PEG solution [20% polyethylene glycol 33
50 ml of 10 mM CaCl 2 and 10 mM Tris-hydrochloric acid (pH 7.4)] was added, and the mixture was incubated at room temperature for about 15 minutes, centrifuged at 700 × g for 5 minutes, and the supernatant was discarded. SOS solution (1M sorbitol, 10 mM Ca
Cl 2 and 33.3% YPD medium) and added at room temperature to 30
After incubation for min, 850 μl of 1M sorbitol solution was added.

【0025】(5)スフェロプラストの再生 再生寒天培地[1Lの組成:yeast nitrog
en base with ammonium sul
fate 6.7g、ビオチン400μg、、ソルビト
ール182g、デキストロース10g、寒天10g、グ
ルタミン、メチオニン、リジン、ロイシン及びイソロイ
シン各々50mg、ヒスチジンアッセイ培地(Difc
o)2g]10mlをオートクレーブにて溶解し、プレ
ートに流し込んで固化しておいた。一方で、再生寒天1
0mlをオートクレーブにて溶解し、45℃に保った状
態で10又は990μlの形質転換サンプルを加え、前
記の固化させておいた再生寒天の上に流し込んだ。この
プレートを30℃で、3〜5日間インキュベートした。
(5) Regeneration of spheroplast Regenerated agar medium [1L composition: yeast nitrog
en base with ammonium sul
Fate 6.7 g, biotin 400 μg, sorbitol 182 g, dextrose 10 g, agar 10 g, glutamine, methionine, lysine, leucine and isoleucine 50 mg each, histidine assay medium (Difc).
o) 2 g] 10 ml was dissolved in an autoclave and poured into a plate to be solidified. On the other hand, regenerated agar 1
0 ml was dissolved in an autoclave, 10 or 990 μl of the transformation sample was added while keeping it at 45 ° C., and the mixture was poured onto the solidified regenerated agar. The plate was incubated at 30 ° C for 3-5 days.

【0026】(6)BAL産生クローンの同定 再生寒天培地(ヒスチジンを含んでいない)で生育して
きたコロニーを採取することにより、His+形質転換
株を得た。形質転換株をBMGY培地[1Lの組成:1
Mリン酸カリウム緩衝液(pH6.0)100ml、y
east nitrogen base with a
mmonium sulfate13.4g、ビオチン
400μg、酵母エキス10g、グリセロール10m
l、ペプトン20g]で2日間培養後、培地をBMMY
培地(BMGY培地においてグリセリンの代わりにメタ
ノール5mlを加えたもの)で2日間培養した。遠心し
て10μlの培養上清を取り、SDS−ポリアクリルア
ミドゲル電気泳動(SDS−PAGE)にかけ、抗BA
L抗体によるウェスタンブロットハイプリダイゼーショ
ンを行った。この結果から、全長BALのcDNAを導
入した形質転換株は全長のBALに対応する約110k
dのBALを、繰り返し構造が9回分欠損したBALの
cDNAを導入した形質転換株は繰り返し構造が9回分
欠損したBALに対応する約85kdのBALを産生し
ていることが認められた。また、繰り返し構造が9回分
欠損したBALの方が全長BALよりも約10〜100
倍多く分泌発現されていることも明らかになった。残り
の培養上清を全て回収し、ヘパリンを担体としたアフィ
ニティーカラムクロマトグラフィーにかけて欠損BAL
を精製し、N末端のアミノ酸分析を行ったところ、蛋白
質のN末端側にSer−Met−Thr−Gly−Se
rという5個のアミノ酸が付加されていることが判明し
た。
(6) Identification of BAL-producing clones His + transformants were obtained by collecting colonies that had grown on a regenerated agar medium (without histidine). The transformant was transformed into BMGY medium [1 L composition: 1
100 ml of M potassium phosphate buffer solution (pH 6.0), y
east nitrogen base with a
mmonium sulphate 13.4 g, biotin 400 μg, yeast extract 10 g, glycerol 10 m
1, peptone 20 g] for 2 days, the medium was BMMY
The cells were cultured for 2 days in a medium (BMGY medium supplemented with 5 ml of methanol in place of glycerin). After centrifugation, 10 μl of the culture supernatant was collected and subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) to obtain anti-BA.
Western blot hybridization with L antibody was performed. From this result, the transformant into which the full-length BAL cDNA was introduced was approximately 110 k corresponding to the full-length BAL.
It was confirmed that the transformant into which the BAL of d had been deleted for 9 repeats was introduced into the transformant, which produced a BAL of about 85 kd corresponding to the BAL for which 9 repeats were deleted. In addition, BAL in which the repeating structure was deleted 9 times was about 10 to 100 more than full-length BAL.
It was also revealed that the secretory expression was doubled. All the remaining culture supernatant was collected and subjected to affinity column chromatography using heparin as a carrier to remove defective BAL.
Was purified and subjected to N-terminal amino acid analysis. Ser-Met-Thr-Gly-Se was found on the N-terminal side of the protein.
It was found that 5 amino acids, r, were added.

【0027】実施例2(N末端が成熟BALと同じであ
る欠損BALの製造)
Example 2 (Production of defective BAL whose N-terminus is the same as mature BAL)

【0028】この5個のアミノ酸のない天然のBALと
同じアミノ酸配列を有するBALを産生させるため、酵
母インベルターゼ遺伝子SUC2の分泌シグナル(表
1)、
In order to produce BAL having the same amino acid sequence as the natural BAL lacking these 5 amino acids, the secretion signal of the yeast invertase gene SUC2 (Table 1),

【0029】[0029]

【表1】 [Table 1]

【0030】の矢印の切断部位の直上流の2個のアミノ
酸配列を変えずに、塩基配列のみを表2のように制限酵
素Aor51HIの認識部位(AGCGCT)に変え
た。
As shown in Table 2, only the base sequence was changed to the recognition site (AGCGCT) of the restriction enzyme Aor51HI without changing the two amino acid sequences immediately upstream of the cleavage site of arrow.

【0031】[0031]

【表2】 [Table 2]

【0032】さらにこの制限酵素部位をN末端に持ち、
かつC末端の9回分の繰り返し構造を欠損したBAL遺
伝子を構築し、上記のようにSUC2の分泌シグナルと
つないだ。
Furthermore, having this restriction enzyme site at the N-terminus,
In addition, a BAL gene lacking the C-terminal 9-fold repeating structure was constructed and ligated with the SUC2 secretion signal as described above.

【0033】この塩基配列を前述と同じ方法で発現ベク
ターpHIL301に挿入し、得られた組換え発現ベク
ターを用いてGS115株を形質転換した。得られた形
質転換株にBALを発現させ、培養上清をそのままSD
S−PAGEにかけたところ、予想される分子量の位置
に分泌される蛋白質が検出された。また、エステラーゼ
活性の測定によりタウロコール酸で活性化される蛋白質
の存在が確認された。さらに、培養上清からヘパリンを
担体としたアフィニティーカラムクロマトグラフィーに
かけてBALを精製し、N末端のアミノ酸分析を行った
ところ、N末端から10アミノ酸まで、成熟BALのc
DNA配列から予想される配列と一致していた。従っ
て、この組換えBALは配列番号7記載の成熟BALの
アミノ酸配列からC末端の9回の繰り返し構造か欠損し
たアミノ酸配列(1−615)を有し、実施例1で得ら
れた組換えBALとはN末端に配列番号3記載の5個の
アミノ酸が存在しない点でのみ異なる。
This base sequence was inserted into the expression vector pHIL301 by the same method as described above, and the GS115 strain was transformed with the obtained recombinant expression vector. BAL is expressed in the obtained transformant, and the culture supernatant is used as it is for SD.
When subjected to S-PAGE, a protein secreted at the position of the expected molecular weight was detected. The presence of a protein activated by taurocholate was confirmed by measuring the esterase activity. Furthermore, BAL was purified from the culture supernatant by affinity column chromatography using heparin as a carrier, and N-terminal amino acid analysis was carried out. From N-terminal to 10 amino acids, mature BAL c
It was in agreement with the sequence expected from the DNA sequence. Therefore, this recombinant BAL has the amino acid sequence of mature BAL shown in SEQ ID NO: 7 with a C-terminal 9-fold repeating structure or a deleted amino acid sequence (1-615), and the recombinant BAL obtained in Example 1 was obtained. Differs from that in the absence of the 5 amino acids set forth in SEQ ID NO: 3 at the N-terminus.

【0034】実施例3(ファーメンター培養による高効
率発現) (1)BAL発現ベクターのコピー数の増大 上記で得られた繰り返し構造が9回分欠損した107個
のBAL産生株の中から、GS115の染色体に多くの
BAL遺伝子が導入された株を得るために、カナマイシ
ン耐性(1.5mg/ml)で選択したところ、2つの
耐性株(#53及び#57)が得られた。これらの耐性
株からゲノムDNAを抽出し、サザンブロットハイブリ
ダイゼーションにより挿入されたBAL遺伝子のコピー
数を検討したところ、#53には6コピー、#57には
14コピーの挿入が確認された。#53を上記と同じ方
法でBALを発現させ、培養上清を直接SDS−PAG
EにかけてBALの発現量を調べたところ、BAL遺伝
子が1コピーしか導入されていない株と比べて約10倍
の発現が見られた。この#53を以下のファーメンター
でのBAL発現に用いた。
Example 3 (High-efficiency expression by fermenter culture) (1) Increase in copy number of BAL expression vector From the 107 BAL-producing strains in which the repeated structure was deleted 9 times, GS115 was selected. In order to obtain a strain in which many BAL genes were introduced into the chromosome, kanamycin resistance (1.5 mg / ml) was selected, and two resistant strains (# 53 and # 57) were obtained. Genomic DNA was extracted from these resistant strains and the copy number of the inserted BAL gene was examined by Southern blot hybridization. As a result, it was confirmed that 6 copies were inserted in # 53 and 14 copies were inserted in # 57. BAL was expressed in # 53 in the same manner as above, and the culture supernatant was directly subjected to SDS-PAG.
When the expression level of BAL was examined over E, about 10-fold expression was observed as compared with the strain in which only one copy of BAL gene was introduced. This # 53 was used for BAL expression in the following fermenters.

【0035】(2)ファーメンター培養における高効率
発現 10L容のジャー3基にそれぞれ5Lの培地[1L当た
りの組成は、グリセロール50.0g、HPO(8
5%)21ml、CaSO・2HO 0.9g、K
SO 14.28g、MgSO・7HO 1
1.7g、KOH3.9gペプトン10.0g、酵母エ
キス5.0g、微量金属及び無機質溶液(1L当たりの
組成は、FeSO・7HO 65.0g、CuSO
・5HO 6.0g、ZnSO・7HO 20
g、MnSO 3.0g、HSO 5.0ml)
1.0ml]を入れ、YPD培地で培養した#53の前
培養液150mlを加えて培養を開始した。培養条件は
以下の通りであった。 温度:30℃ 撹拌:500rpm(但し溶存酸素(DO)コントロー
ル時は999rpmまで上昇させた) 送気:3L空気/分 DOコントロール:30〜50% pHコントロール:5.6〜6.2 以上の条件で25時間培養した後、40〜50g/時間
の割合でグリセロールを培地に添加しつつ、さらに18
時間培養した(合計で873.4gのグリセロールを添
加した)。次いで、3基のジャーのそれぞれについて、
メタノールを添加してBAL蛋白質の誘導を行い、表3
に示す条件で7日間培養した。
(2) High-efficiency expression in fermentor culture 5 liters of medium for 3 liters of 10 liters each [composition per liter is 50.0 g of glycerol, H 3 PO 4 (8
5%) 21 ml, CaSO 4 .2H 2 O 0.9 g, K
2 SO 4 14.28g, MgSO 4 · 7H 2 O 1
1.7g, KOH3.9g peptone 10.0 g, yeast extract 5.0 g, composition per trace metals and minerals solution (1L is, FeSO 4 · 7H 2 O 65.0g , CuSO
4 · 5H 2 O 6.0g, ZnSO 4 · 7H 2 O 20
g, MnSO 4 3.0 g, H 2 SO 4 5.0 ml)
1.0 ml] was added, and 150 ml of the preculture liquid # 53 cultured in YPD medium was added to start the culture. The culture conditions were as follows. Temperature: 30 ° C. Stirring: 500 rpm (however, it was raised to 999 rpm during dissolved oxygen (DO) control) Air supply: 3 L air / min DO control: 30 to 50% pH control: 5.6 to 6.2 or higher conditions After culturing at 25% for 25 hours, glycerol was added to the medium at a rate of 40 to 50 g / hour for 18 hours.
Incubated for a period of time (a total of 873.4 g of glycerol was added). Then for each of the three jars
Induction of BAL protein was performed by adding methanol, and
Culture was performed for 7 days under the conditions shown in.

【0036】[0036]

【表3】 [Table 3]

【0037】ジャー1〜ジャー3のそれぞれの条件で発
現誘導を行ったときのBALの発現量の推移を図2に示
す。図2に示されるように、ジャー1、ジャー2及びジ
ャー3の条件におけるBALの発現量はそれぞれ、約1
00mg/L、約250mg/L及び約170mg/L
であった。なお、培地にペプトン及び酵母抽出物を加え
ず、温度を30℃、DOコントロールを30〜50%と
した他は上記と同じ条件でファーメンターにて発現誘導
を行ったときのBALの発現量は約30mg/Lであ
り、低い温度或いは溶存酸素量を制限した環境で培地に
蛋白質を添加して培養することにより、BALの発現量
が多くなることが示された。なお、BALの発現量は培
養上清のエステラーゼ活性から逆算した(組換えBAL
の精製品の比活性は111unit/mg)。なおエス
テラーゼ活性は、2mMタウロコール酸及び2mMパラ
ニトロフェニール酢酸(PANA)を含む0.1M燐酸
緩衝液(pH7.5)を反応溶液として、培養上清によ
るPANAの分解能を測定した。測定に当たっては1m
lの反応溶液に1μlの培養上清を加え、25℃で10
分間反応させて、400nmにおける吸光度を見た。P
ANAを1分間に1nmole分解する活性を1mun
itとした。
FIG. 2 shows the transition of the expression level of BAL when the expression induction was performed under the respective conditions of jar 1 to jar 3. As shown in FIG. 2, the expression level of BAL under the conditions of jar 1, jar 2 and jar 3 was about 1 each.
00 mg / L, about 250 mg / L and about 170 mg / L
Met. The expression level of BAL when expression was induced in a fermenter under the same conditions as above except that peptone and yeast extract were not added to the medium, the temperature was 30 ° C., and the DO control was 30 to 50%. It was about 30 mg / L, and it was shown that the expression level of BAL was increased by adding the protein to the medium and culturing at a low temperature or in an environment in which the amount of dissolved oxygen was limited. The expression level of BAL was calculated back from the esterase activity of the culture supernatant (recombinant BAL
The specific activity of the purified product is 111 unit / mg). The esterase activity was determined by measuring the PANA decomposing ability of the culture supernatant using 0.1 M phosphate buffer (pH 7.5) containing 2 mM taurocholic acid and 2 mM paranitrophenylacetic acid (PANA) as a reaction solution. 1m for measurement
1 μl of culture supernatant was added to 1 l of reaction solution, and
After reacting for minutes, the absorbance at 400 nm was observed. P
The activity to decompose 1 nmole of ANA in 1 minute
It was set.

【0038】実施例4(天然BALとの比較) 本発明で得られた組換えBALとヒト母乳中のBAL
(以下母乳BALという)との性質を比較した。以下の
試験結果が示すように、 (1)免疫学的性質 (2)タウロコール酸の濃度、NaCl濃度、基質濃
度、反応pH及び反応温度のリパーゼ活性に対する影響 (3)pH安定性 (4)温度安定性 (5)各種阻害剤による酵素活性の阻害の程度 (6)ヘパリンへの結合能 (7)各種脂肪酸のトリグリセリドの分解速度 において、組換えBALと母乳BALとでは殆ど相違は
なかった。
Example 4 (Comparison with natural BAL) Recombinant BAL obtained in the present invention and BAL in human breast milk
(Hereinafter, referred to as breast milk BAL) As shown in the following test results, (1) immunological properties (2) effects of taurocholic acid concentration, NaCl concentration, substrate concentration, reaction pH and reaction temperature on lipase activity (3) pH stability (4) temperature Stability (5) Degree of inhibition of enzyme activity by various inhibitors (6) Binding ability to heparin (7) Degradation rate of triglycerides of various fatty acids, there was almost no difference between recombinant BAL and breast milk BAL.

【0039】組換えBAL及び母乳BALは、それぞれ
BAL発現ピキア酵母(#53)の発現培養上清及び母
乳から、Wangの方法(Anal.Biochem.
105,398−402(1980)、Anal.Bi
ochem.133,457−461(1983))及
びBlaeckbergらの方法(Eur.J.Bio
chem.116,221−225(1981))に準
じて、コール酸セファロースカラムとヘパリンセファロ
ースカラムを用いて調製した。
Recombinant BAL and human milk BAL were obtained from the expression culture supernatant of BAL-expressing Pichia yeast (# 53) and human milk, respectively, by the method of Wang (Anal. Biochem.
105, 398-402 (1980), Anal. Bi
ochem. 133, 457-461 (1983)) and the method of Bläckberg et al. (Eur. J. Bio).
chem. 116, 221-225 (1981)), using a cholate sepharose column and a heparin sepharose column.

【0040】リパーゼ活性は、エマルジョンにしたオリ
ーブオイルのトリグリセリド(脂肪酸の約80%はオレ
イン酸)の分解をラジオメーター社製のpHスタット装
置を用いて測定した。反応液には5%オリーブオイル、
30mM NaCl及び20mMのタウロコール酸を含
み、反応温度は37℃、pHは8.2であった。
The lipase activity was measured by decomposing triglycerides (about 80% of fatty acids were oleic acid) of olive oil emulsified using a pH meter apparatus manufactured by Radiometer. 5% olive oil in the reaction mixture,
It contained 30 mM NaCl and 20 mM taurocholic acid, the reaction temperature was 37 ° C., and the pH was 8.2.

【0041】イ.免疫学的性質 母乳BALで免疫したウサギ血清の部分精製IgG、ヒ
トスキムミルク、組換えBAL及び母乳BALを用い
て、二重拡散法により組換えBALと母乳BALの抗原
性を調べたところ、組換えBALと母乳BALの沈降線
は部分融合型を示した。このことから、組換えBALは
母乳BALと共通抗原性も有しているが、母乳BALの
一部の抗原性を欠いていることが判明した。また、上記
部分精製IgGと母乳BAL或いは組換えBALとを混
合して室温で1時間沈降させた後、上清に残るリパーゼ
活性を測定したところ、組換えBALは母乳BALより
も残存リパーゼ活性が10〜20%高かった。
A. Immunological properties Using partially purified IgG of rabbit serum immunized with breast milk BAL, human skim milk, recombinant BAL and breast milk BAL, the antigenicity of recombinant BAL and breast milk BAL was examined by the double diffusion method. The sedimentation lines of BAL and breast milk BAL showed a partial fusion type. From this, it was revealed that recombinant BAL also has a common antigenicity with breast milk BAL, but lacks part of the antigenicity of breast milk BAL. In addition, after the partially purified IgG was mixed with breast milk BAL or recombinant BAL and allowed to settle at room temperature for 1 hour, the lipase activity remaining in the supernatant was measured. As a result, recombinant BAL had a residual lipase activity higher than that of breast milk BAL. It was 10-20% higher.

【0042】ロ.酵素化学的性質 タウロコール酸の濃度、NaCl濃度、基質濃度、反応
pH及び反応温度のリパーゼ活性に対する影響を調べた
ところ、これらの全てにおいて組換えBALと母乳BA
Lとの間に顕著な差は見られなかった。37℃で各種p
Hで1時間処理したときのpH安定性は、pH4〜9に
おいていずれも残存活性が80%以上であった。また、
pH8.2における各種温度で1時間処理したときの温
度安定性(40℃以下で残存活性80%以上)において
も、組換えBALと母乳BALとの間には殆ど差が見ら
れなかった。また、各種の阻害物質に対する効果は、コ
リンエステラーゼ阻害剤であるエセリン、セリンプロテ
アーゼ阻害剤であるDFP及びPMSF、基質と競合す
る可能性のあるフェニル硼酸、及び特異的阻害剤ではな
いと思われるプロタミンで調べたところ、表4の通りで
あった。
B. Enzymatic chemistry The effects of taurocholic acid concentration, NaCl concentration, substrate concentration, reaction pH and reaction temperature on lipase activity were investigated.
No significant difference with L was seen. Various p at 37 ℃
Regarding the pH stability when treated with H for 1 hour, the residual activity was 80% or more at pH 4 to 9. Also,
Regarding the temperature stability (80% or more of residual activity at 40 ° C or lower) when treated at various temperatures for 1 hour at pH 8.2, almost no difference was observed between the recombinant BAL and the breast milk BAL. In addition, the effects on various inhibitors were as follows: cholinesterase inhibitor eserine, serine protease inhibitors DFP and PMSF, phenylboric acid that may compete with the substrate, and protamine that is not a specific inhibitor. When examined, it was as shown in Table 4.

【0043】[0043]

【表4】 [Table 4]

【0044】なお、DFP及びPMSFについては両B
ALと25℃で30分間前処理した。また、フェニル硼
酸及び硫酸プロタミンは、反応液に加えた。表4に示さ
れるように、これらの阻害物質の特定濃度における活性
阻害の程度は、組換えBALと母乳BALとで殆ど同じ
であった。
Regarding DFP and PMSF, both B
Pre-treatment with AL at 25 ° C. for 30 minutes. Further, phenylboric acid and protamine sulfate were added to the reaction solution. As shown in Table 4, the degree of activity inhibition of these inhibitors at specific concentrations was almost the same in recombinant BAL and breast milk BAL.

【0045】ニ.ヘパリンへの結合能 BALは小腸の表面のヘパリン様物質に吸着して存在し
ており、そこでコレステロールエステルを分解し、さら
にコレステロールと脂肪酸の細胞内への輸送にも貢献し
ていると言われている。従ってBALがヘパリンに結合
することは、BALの機能発現にとって有用であると思
われる。組換えBAL及び母乳BALそれぞれをヘパリ
ンカラム(Tosoh Heparin−5PW(φ
7.5mm×7.5cm)に吸着させて緩衝液で洗った
後、0〜1MのNaClの直線的濃度勾配で280nm
の吸光度でモニターしつつ溶出させた。溶出位置を組換
えBALと母乳BALとで比較したところ、両者とも殆
ど同じ位置(直線的勾配濃のほぼ中間)であった。これ
から組換えBALと母乳BALとはヘパリンへの結合能
は同一であると判断された。
D. Ability to bind to heparin BAL is present by adsorbing to a heparin-like substance on the surface of the small intestine, where it degrades cholesterol ester and further contributes to the intracellular transport of cholesterol and fatty acids. There is. Therefore, the binding of BAL to heparin seems to be useful for the functional expression of BAL. Recombinant BAL and breast milk BAL were each treated with a heparin column (Tosoh Heparin-5PW (φ
(7.5 mm × 7.5 cm) and washed with a buffer solution, and then a linear concentration gradient of 0-1 nm NaCl of 280 nm
Elution was carried out while monitoring the absorbance. When the elution position was compared between the recombinant BAL and the breast milk BAL, they were almost at the same position (almost in the middle of the linear gradient). From this, it was determined that the recombinant BAL and the breast milk BAL have the same binding ability to heparin.

【0046】ホ.各種脂肪酸のトリグリセリドの分解速
度 トリパルミトレイン酸グリセリド、トリオレイン酸グリ
セリド、トリリノール酸グリセリド、トリリノレン酸グ
リセリド及びトリドコサヘキサエン酸グリセリドの組換
えBAL及び母乳BALによる分解速度を測定した。母
乳BALによるトリオレイン酸グリセリドの分解速度を
100%として表5に結果を示す。
E. Decomposition rate of triglycerides of various fatty acids The decomposition rates of tripalmitoleic acid glyceride, trioleic acid glyceride, trilinoleic acid glyceride, trilinolenic acid glyceride and tridocosahexaenoic acid glyceride by recombinant BAL and breast milk BAL were measured. The results are shown in Table 5 assuming that the decomposition rate of trioleic acid glyceride by breast milk BAL is 100%.

【0047】[0047]

【表5】 [Table 5]

【0048】この表から組換えBALの各種脂肪酸のト
リグリセリドの分解速度は母乳BALとほぼ同じであっ
た。
From this table, the rate of triglyceride decomposition of various fatty acids of recombinant BAL was almost the same as that of breast milk BAL.

【0049】[0049]

【配列表】 [Sequence list]

【0050】 [0050]

【0051】 [0051]

【0052】 [0052]

【0053】 [0053]

【0054】 [0054]

【0055】 [0055]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明組換えペプチドの1例を示す図である。FIG. 1 is a view showing an example of the recombinant peptide of the present invention.

【図2】ファーメンター培養の条件によるBALの発現
量の変化を示す図である。
FIG. 2 is a diagram showing changes in the expression level of BAL depending on the conditions of fermenter culture.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:84) (C12N 1/19 C12R 1:84) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C12R 1:84) (C12N 1/19 C12R 1:84)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1記載のアミノ酸配列、当該ア
ミノ酸配列のC末端に配列番号2記載のアミノ酸配列
(1)〜(7)から選ばれたアミノ酸配列が1〜15個
結合してなるアミノ酸配列、当該アミノ酸配列のN末端
に配列番号3記載のアミノ酸配列が結合してなるアミノ
酸配列、又は当該アミノ酸配列のC末端に配列番号2記
載のアミノ酸配列(1)〜(7)から選ばれたアミノ酸
配列が1〜15個結合し、N末端に配列番号3記載のア
ミノ酸配列が結合してなるアミノ酸配列で表わされる組
換え胆汁酸塩活性化リパーゼ。
1. An amino acid sequence as set forth in SEQ ID NO: 1 and an amino acid in which 1 to 15 amino acid sequences selected from the amino acid sequences (1) to (7) as set forth in SEQ ID NO: 2 are bound to the C-terminal of the amino acid sequence. A sequence, an amino acid sequence obtained by binding the amino acid sequence of SEQ ID NO: 3 to the N-terminal of the amino acid sequence, or an amino acid sequence (1) to (7) described in SEQ ID NO: 2 at the C-terminal of the amino acid sequence. A recombinant bile salt-activated lipase represented by the amino acid sequence having 1 to 15 amino acid sequences bound to each other and the amino acid sequence of SEQ ID NO: 3 bound to the N-terminus.
【請求項2】 請求項1記載のアミノ酸配列をコードす
る組換え胆汁酸塩活性化リパーゼ遺伝子。
2. A recombinant bile salt-activating lipase gene encoding the amino acid sequence according to claim 1.
【請求項3】 配列番号4記載の塩基配列、当該塩基配
列の5′末端に配列番号5記載の塩基配列(1)〜
(8)から選ばれた塩基配列が1〜15個結合してなる
塩基配列、当該塩基配列の3′末端に配列番号6記載の
塩基配列が結合してなる塩基配列、又は当該塩基配列の
5′末端に配列番号5記載の塩基配列(1)〜(8)か
ら選ばれた塩基配列が1〜15個結合し、3′末端に配
列番号6記載の塩基配列が結合してなる塩基配列で表わ
されるものである請求項2記載の組換え胆汁酸塩活性化
リパーゼ遺伝子。
3. The base sequence of SEQ ID NO: 4, and the base sequence (1) to the base sequence of SEQ ID NO: 5 at the 5'end of the base sequence.
A base sequence formed by combining 1 to 15 base sequences selected from (8), a base sequence formed by connecting the base sequence of SEQ ID NO: 6 to the 3'end of the base sequence, or 5 of the base sequence. A base sequence in which 1 to 15 base sequences selected from the base sequences (1) to (8) described in SEQ ID NO: 5 are bound to the 3 ′ end and the base sequence described in SEQ ID NO: 6 is bound to the 3 ′ end The recombinant bile salt-activated lipase gene according to claim 2, which is represented.
【請求項4】 請求項2記載の遺伝子を有する組換えプ
ラスミド。
4. A recombinant plasmid having the gene according to claim 2.
【請求項5】 請求項2記載の遺伝子を有する組換えプ
ラスミドを保持する形質転換体。
5. A transformant carrying a recombinant plasmid having the gene according to claim 2.
【請求項6】 請求項2記載の遺伝子を有する組換えプ
ラスミドを保持する形質転換体を培養し、その培養物か
ら採取することを特徴とする請求項1記載の組換え胆汁
酸塩活性化リパーゼの製造法。
6. The recombinant bile salt-activated lipase according to claim 1, wherein the transformant carrying the recombinant plasmid having the gene according to claim 2 is cultured and collected from the culture. Manufacturing method.
【請求項7】 プラスミドpHIL301のEcoRI
部位に分泌シグナルをコードするDNAを連結した胆汁
酸塩活性化リパーゼの構造遺伝子を組込んでなる組換え
プラスミドにより形質転換したピキア・パストリス(Pi
chia pastoris)GS115株を用い、ファーメンター
培養により胆汁酸塩活性化リパーゼを発現させる方法に
おいて、培養温度を15〜25℃、かつ溶存酸素量を2
0%以下とすることを特徴とする胆汁酸塩活性化リパー
ゼの高効率発現方法。
7. EcoRI of plasmid pHIL301
Pichia pastoris (Pi) transformed with a recombinant plasmid incorporating a structural gene for bile salt-activated lipase in which a DNA encoding a secretory signal is ligated to the site.
chia pastoris) GS115 strain is used to express bile salt-activated lipase by fermenter culture, the culture temperature is 15 to 25 ° C, and the dissolved oxygen content is 2
A highly efficient expression method of bile salt-activated lipase, which is characterized in that it is 0% or less.
JP5245079A 1993-09-30 1993-09-30 Expression of recombinant bile salt activated lipase in high yield Pending JPH07111891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5245079A JPH07111891A (en) 1993-09-30 1993-09-30 Expression of recombinant bile salt activated lipase in high yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5245079A JPH07111891A (en) 1993-09-30 1993-09-30 Expression of recombinant bile salt activated lipase in high yield

Publications (1)

Publication Number Publication Date
JPH07111891A true JPH07111891A (en) 1995-05-02

Family

ID=17128290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5245079A Pending JPH07111891A (en) 1993-09-30 1993-09-30 Expression of recombinant bile salt activated lipase in high yield

Country Status (1)

Country Link
JP (1) JPH07111891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2299085A (en) * 1995-03-23 1996-09-25 Astra Ab Expression of a lipase in Pichia species
CN105132301A (en) * 2015-10-16 2015-12-09 义马煤业集团煤生化高科技工程有限公司 Pichia pastoris for producing methanol protein and lipase at same time and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2299085A (en) * 1995-03-23 1996-09-25 Astra Ab Expression of a lipase in Pichia species
GB2299085B (en) * 1995-03-23 1999-03-17 Astra Ab Expression of bile salt-stimulated lipase in the yeast Pichia
CN105132301A (en) * 2015-10-16 2015-12-09 义马煤业集团煤生化高科技工程有限公司 Pichia pastoris for producing methanol protein and lipase at same time and application thereof

Similar Documents

Publication Publication Date Title
KR930001117B1 (en) Method for production of polypeptide
Haas et al. Cloning, expression and characterization of a cDNA encoding a lipase from Rhizopus delemar
AU768697B2 (en) Methods for recovering polypeptides from plants and portions thereof
CN111378585B (en) Pichia pastoris mutant strain for expressing exogenous gene
JP3845101B2 (en) Pharmaceutical composition containing human apolipoprotein AI and AI-Milan
JPH02476A (en) Kluyveromyces as host cell
JPH0795881A (en) Method of producing chymosin
JP2614314B2 (en) Expression of hepatitis B S and preS (lower 2) proteins in methylotrophic yeast
PL183228B1 (en) Production of anzymatically active recombinative carboxypeptidase b
WO2002018570A1 (en) Yeast transformant producing recombinant human parathyroid hormone and method for producing the hormone
JPH07111891A (en) Expression of recombinant bile salt activated lipase in high yield
CA1300534C (en) Human pancreatic elastase
JP2905230B2 (en) Method for producing human lysozyme
JPS63296689A (en) Urokinase type plasminogen activating factor and its production
RU2157847C2 (en) Dna molecule for expression of bile salt-stimulated lipase
EP0157604A2 (en) Porcine pancreatic elastase
CN1040053A (en) S before the expression hepatitis B in methylotrophic yeast 2Albumen
KR20220097451A (en) Fungal strains comprising an improved protein productivity phenotype and methods thereof
JPH08228779A (en) Expression of recombinant bile acid salt-activated lipase in high yield
JP2938352B2 (en) Method for producing recombinant human matrilysin
JP2591713B2 (en) DNA sequences, recombinant DNA molecules and methods for the production of the enzyme mutarotase from Acinetobacter calcoaceticus
JP4191479B2 (en) Shrimp Alkaline Phosphatase
JPH09505989A (en) .ALPHA.-1,4-Glucan lyase from fungi, its purification, gene cloning and microbial expression
KR101713885B1 (en) Lipase with sn-1 specificity and method for production thereof
CN117230046A (en) Alkali-resistant streptomyces fradiae trypsin mutant