JPH07111370B2 - Signal transmission / reception characteristic pattern measuring device - Google Patents

Signal transmission / reception characteristic pattern measuring device

Info

Publication number
JPH07111370B2
JPH07111370B2 JP59211683A JP21168384A JPH07111370B2 JP H07111370 B2 JPH07111370 B2 JP H07111370B2 JP 59211683 A JP59211683 A JP 59211683A JP 21168384 A JP21168384 A JP 21168384A JP H07111370 B2 JPH07111370 B2 JP H07111370B2
Authority
JP
Japan
Prior art keywords
signal
scanning
axis
characteristic pattern
scanning mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59211683A
Other languages
Japanese (ja)
Other versions
JPS6189536A (en
Inventor
家郷 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP59211683A priority Critical patent/JPH07111370B2/en
Publication of JPS6189536A publication Critical patent/JPS6189536A/en
Publication of JPH07111370B2 publication Critical patent/JPH07111370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、信号を投射し、又は信号が入射される素子又
は装置、特に光学的素子又は装置の光の投射又は入射特
性を計測し、投射ビームパターン又は入射ビームパター
ンを表示し又は/及び記録する計測装置に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a device for projecting a signal, or an element or a device on which a signal is incident, particularly an optical device or an optical device, for measuring or projecting an incident characteristic of light. A measuring device for displaying and / or recording a beam pattern or an incident beam pattern.

ここで、光学的素子又は装置とは、各種半導体発光素
子、各種レーザー素子及び各種ランプ等の発光体、各種
半導体受光素子及び各種太陽電池等の受光体、光学的レ
ンズ及び光学的フィルタ等、及びこれ等を使用した各種
機器等、光を媒体として作用する素子又は装置をいう。
Here, the optical element or device means various semiconductor light emitting elements, various light emitting elements such as laser elements and various lamps, various semiconductor light receiving elements and light receiving elements such as various solar cells, optical lenses and optical filters, and the like. It means an element or device that acts as a medium of light, such as various devices using these.

(従来技術) 従来、光学的素子又は装置(以下、光学的素子等とい
う。)のビームパターンを計測する際には一般的に第8
図に示す方法が採用される。
(Prior Art) Conventionally, when measuring a beam pattern of an optical element or a device (hereinafter, referred to as an optical element, etc.), generally, the eighth pattern is used.
The method shown in the figure is adopted.

すなわち、例えば発光ダイオード等の被測定物11から光
学的拡散板12に光を投射し、該拡散板12に写った映像13
をテレビカメラ14で撮影してモニタテレビ15で解析する
方法である。
That is, light is projected from the DUT 11 such as a light emitting diode to the optical diffuser plate 12, and an image 13 captured on the diffuser plate 12 is projected.
Is captured by the TV camera 14 and analyzed by the monitor TV 15.

この従来の方法によると、テレビカメラ14に使用される
影像管やCCD等のイメージセンサの撮影可能な影像レベ
ル範囲(ダイナミックレンジ)は通常40dB程度であるの
で、被測定物11が例えばレーザーダイオード等、発光レ
ベルのダイナミックレンジの極めて広いものである場合
には、テレビカメラ14の絞り又はフィルター等を使用す
る必要があり、これによってモニタテレビ15に写し出さ
れる像16は被測定物11の投光レベルを直接に表わす像で
はなくなるため、その像16を解析する際に上記絞り又は
フィルター等による減衰分を考慮する必要があり、計測
方法が複雑なばかりでなく、正確なビームパターンを得
ることが困難であり、更に計測値を定量的に求めること
は極めて困難である。
According to this conventional method, the image level range (dynamic range) that can be captured by the image tube or CCD image sensor used in the TV camera 14 is usually about 40 dB, so that the DUT 11 is, for example, a laser diode or the like. If the dynamic range of the light emission level is extremely wide, it is necessary to use the diaphragm or filter of the TV camera 14, and the image 16 projected on the monitor TV 15 by this is the projection level of the DUT 11. Since it is no longer an image that directly represents, it is necessary to consider the attenuation due to the diaphragm or filter when analyzing the image 16, not only the measurement method is complicated, but also it is difficult to obtain an accurate beam pattern. Therefore, it is extremely difficult to quantitatively obtain the measured value.

また、上記従来の方法の最大の欠点は、映像の撮影によ
ることから、受光素子の受光特性パターン(受光ビーム
パターン)を計測することは全く不可能なことである。
Further, the biggest drawback of the above-mentioned conventional method is that it is impossible to measure the light receiving characteristic pattern (light receiving beam pattern) of the light receiving element, because the image is taken.

(発明の目的) 本発明は、以上の従来の欠点を解決すべく、新たな機構
による信号の送・受信特性パターン計測装置、特に光学
的素子等のビームパターン計測装置を提供するもので、
被測定物が発光体である場合は言うに及ばず、受光体で
あっても正確なビームパターンが得られるような計測装
置を得ることを目的とする。
(Object of the Invention) The present invention provides a signal transmission / reception characteristic pattern measuring device by a new mechanism, particularly a beam pattern measuring device such as an optical element, in order to solve the above-mentioned conventional drawbacks.
It is an object of the present invention to provide a measuring device which can obtain an accurate beam pattern even when the object to be measured is a light emitter, not to mention when it is a light emitter.

(発明の概要) 本発明は、以上の目的のために、被測定物と、該被測定
物に投光し(被測定物が受光用光学的素子等の場合)、
又は該被測定物からの投射光を受光する(被測定物が発
光用光学的素子等の場合)ための光学的ダイナミックレ
ンジの高い光素子とを対向して配置し、被測定物又は光
素子の支持体の一方又は双方をそれら相対的位置関係が
変化するように2次元又は3次元空間で移動せしめて被
測定物のビームパターンを2次元又は3次元空間中で走
査し、データ処理装置(例えば、パーソナルコンピュー
タ等)により走査軌跡上の各測定ポイントでの受光又は
発光強度(ゲイン)を解析してこれを上記走査動作に沿
って表示し、及び/又は記録するようにしたものであ
る。
(Summary of the Invention) For the above-mentioned purpose, the present invention provides an object to be measured and a device for projecting light onto the object (when the object to be measured is an optical element for receiving light)
Alternatively, the object to be measured or the optical element is arranged so as to face an optical element having a high optical dynamic range for receiving the projection light from the object to be measured (when the object to be measured is an optical element for light emission). One or both of the supports of (1) and (2) are moved in a two-dimensional or three-dimensional space so that their relative positional relationship changes, and the beam pattern of the object to be measured is scanned in the two-dimensional or three-dimensional space. For example, the received or emitted light intensity (gain) at each measurement point on the scanning locus is analyzed by a personal computer or the like), and this is displayed and / or recorded along with the above scanning operation.

(発明の実施例) 第1図は本発明の実施例の機器構成を示す図であり、1
は被測定物又は被測定物と対向配置される光素子(以
下、被測定物を例とする。)、2は被測定物又は光素子
と対向配置される光素子又は被測定物(以下、光素子を
例とする。)、3は光素子2を被測定物1について定め
られた複数の測定ポイントに順次移動せしめる走査機
構、4は被測定物1又は光素子2のうち、発光体である
側のものに発光電力を供給する発光体駆動部、及び受光
体である側のものからの受光信号を検出する信号検出部
を有する機器(以下、駆動・検出器という。)、5はパ
ーソナルコンピュータ(以下、パソコンという。)、6
はプロッタ、プリンタ等、記録器である。
(Embodiment of the Invention) FIG. 1 is a diagram showing a device configuration of an embodiment of the present invention.
2 is an optical element or an optical element or an object to be measured (hereinafter, referred to as an example). An optical element is taken as an example.) 3 is a scanning mechanism for sequentially moving the optical element 2 to a plurality of measurement points defined for the DUT 1, and 4 is a light emitter of the DUT 1 or the optical element 2. A device (hereinafter, referred to as a drive / detector) having a light emitter drive unit that supplies light emission power to one side and a signal detection unit that detects a light reception signal from the side that is the light receiver, 5 is a personal computer Computer (hereinafter referred to as personal computer), 6
Is a recorder such as a plotter or printer.

光素子2は、被測定物1が信号を投射する物(例えば発
光用光学素子)である場合は信号受領用素子であり、ま
た被測定物1が信号を受信する物(例えば受光用光学素
子)である場合は信号投射用素子であり、この信号受領
用又は信号投射用素子は、上記被測定物の信号投射範囲
又は信号入射範囲の広さに対して点状とみなせる程度に
狭い信号入射面又は信号投射面を有している。
The optical element 2 is a signal receiving element when the DUT 1 is an object that projects a signal (for example, a light emitting optical element), and an object that the DUT 1 receives a signal (for example, a light receiving optical element). ) Is a signal projecting element, and the signal receiving or signal projecting element is such that the signal incident area is narrow enough to be regarded as a dot with respect to the signal projecting range or the signal incident range of the DUT. Surface or signal projection surface.

走査機構3は、基体31と、該基体31に設けられた溝32に
沿ってZ軸方向に移動するZ軸走査体33と、該Z軸走査
体33に設けられた溝34に沿ってX軸方向に移動するX軸
走査体35と、該X軸走査体35に設けられた溝36に沿って
Y軸方向に移動し、かつ光素子2の支持体でもあるY軸
走査体37と、基体31に固定され、被測定物1を光素子2
と対向して支持する支持体38でなり、図には示さない
が、この他に上記3個の走査体33,35及び37を駆動する
ステップモーター、及び該ステップモーターの作動を制
御する制御装置(CPU,メモリー等でなる。)等を有す
る。
The scanning mechanism 3 includes a base 31, a Z-axis scanning body 33 that moves in the Z-axis direction along a groove 32 provided in the base 31, and an X-axis along a groove 34 provided in the Z-axis scanning body 33. An X-axis scanning body 35 that moves in the axial direction, a Y-axis scanning body 37 that moves in the Y-axis direction along a groove 36 provided in the X-axis scanning body 35, and is also a support for the optical element 2, The device to be measured 1 is fixed to the base 31 and the optical device 2
Although not shown in the drawing, a stepping motor for driving the three scanning bodies 33, 35 and 37, and a control device for controlling the operation of the stepping motor (It consists of CPU, memory, etc.)

尚、光素子2を支持している側でX軸,Y軸及びZ軸の3
軸全ての方向に移動制御する代りに1軸又は2軸方向を
被測定物1を支持している側、すなわち支持体38の移動
によって走査するようにすることもできる。また、場合
によっては2軸方向の走査だけでよいこともあり、この
ような場合には不必要な軸方向を固定的に制御すればよ
い。
On the side supporting the optical element 2, the X-axis, Y-axis, and Z-axis 3
Instead of controlling the movement in all the directions of the axes, the uniaxial or biaxial directions may be scanned by the side supporting the DUT 1, that is, the movement of the support 38. Further, in some cases, scanning in only two axis directions may be sufficient, and in such a case, unnecessary axial directions may be fixedly controlled.

また、走査機構3の機能を記録器6に担わせることもで
き、この場合の機器構成を第6図に示す。
Further, the function of the scanning mechanism 3 can be assigned to the recording device 6, and the device configuration in this case is shown in FIG.

第6図に於いて、7は光素子、8は記録用ペン、9は記
録紙、10はプロッタ6を載置し、かつ被測定物1を支持
するための支持台であり、他の記号については第1図と
同じである。
In FIG. 6, reference numeral 7 is an optical element, 8 is a recording pen, 9 is a recording paper, 10 is a support table on which the plotter 6 is placed and which supports the DUT 1, and other symbols. Are the same as in FIG.

支持台10はプロッタ6を載置する台体101と、該台体101
の面に対して垂直に固定された柱体102と、該柱体102か
ら水平方向に突出して固定され、被測定物1を挟持して
支持する支持体103で構成されている。
The support base 10 includes a base 101 on which the plotter 6 is placed, and the base 101.
It is composed of a columnar body 102 that is fixed perpendicularly to the surface and a supporter 103 that projects from the columnar body 102 in the horizontal direction and is fixed, and that clamps and supports the DUT 1.

第6図に示す実施例では、記録器6として2軸方向に移
動する走査機構を有するプロッタを使用する。すなわ
ち、当該プロッタ6はペン支持体61、該ペン支持体61の
Y軸方向移動案内用のシャフト62及びペン支持体61のY
軸方向移動案内用の溝63等によるX軸,Y軸の2軸方向走
査機構を有し、ペンストッカ64に置かれた記録用ペン8
(色違いの複数個が置かれている。)を適宜に選択し、
ペン支持体61を選択された記録用ペン8の座標まで移動
させて当該ペン支持体61によって取り上げて保持し、記
録紙9に当該保持した記録用ペン8によってデータを記
録するものである。
In the embodiment shown in FIG. 6, a plotter having a scanning mechanism that moves in two axial directions is used as the recorder 6. That is, the plotter 6 includes a pen support 61, a shaft 62 for guiding movement of the pen support 61 in the Y-axis direction, and a Y of the pen support 61.
The recording pen 8 placed in the pen stocker 64 has a two-axis scanning mechanism of the X-axis and the Y-axis by the groove 63 for guiding the axial movement.
Select (A plurality of different colors are placed.) Appropriately,
The pen support 61 is moved to the coordinates of the selected recording pen 8 and picked up and held by the pen support 61, and data is recorded on the recording paper 9 by the held recording pen 8.

以上のプロッタ6の説明から解かるように、シャフ62は
溝63に沿ってX軸方向に移動し、かつペン支持体61はシ
ャフト62に沿ってY軸方向に移動するので、当該ペン支
持体61はX軸,Y軸の双方向に移動制御ができることとな
る。このプロッタ6のXY走査機構を前記走査機構3の代
わりに使用すれば本発明を実施できることとなる。尚、
測定に際して3軸方向への走査データを必要とする場合
には、支持台10の柱体102上を支持体103が上下方向に
(すなわちZ軸方向に)移動制御できるように当該支持
台10を構成すればよい。
As can be understood from the above description of the plotter 6, the shuff 62 moves in the X-axis direction along the groove 63, and the pen support 61 moves in the Y-axis direction along the shaft 62. The 61 can control movement in both directions of the X axis and the Y axis. The present invention can be implemented by using the XY scanning mechanism of the plotter 6 instead of the scanning mechanism 3. still,
When scanning data in three axis directions is required for measurement, the support base 10 is moved so that the support body 103 can be controlled to move vertically on the pillar body 102 of the support base 10 (that is, in the Z-axis direction). Just configure it.

更に、被測定物1又は光素子2の移動制御は、上記直交
2軸又は3軸座標に基いて行なう方法の他、垂直軸及び
水平軸を中心に転回制御する所謂AZ−EL転回制御による
方法がある。
Further, the movement control of the DUT 1 or the optical element 2 is performed based on the above-mentioned orthogonal two-axis or three-axis coordinates, or a so-called AZ-EL turn control for turning control about a vertical axis and a horizontal axis. There is.

すなわち、第7図に示すようなAZ−EL機構11をY軸走査
体37又は支持体38(第6図の場合103)に固定し、支持
体111をAZ軸112を中心として方位角方向に、及び/又は
EL軸113を中心として府抑角方向に転回移動させる方法
である。また、このAZ−EL転回制御と前記直交3軸方向
の移動制御を組み合せれば多彩な走査パターンが得られ
る。
That is, the AZ-EL mechanism 11 as shown in FIG. 7 is fixed to the Y-axis scanning body 37 or the support body 38 (103 in FIG. 6), and the support body 111 is azimuthally centered on the AZ axis 112. And / or
This is a method of turning around the EL axis 113 in the direction of depression. A variety of scanning patterns can be obtained by combining the AZ-EL turn control and the movement control in the directions of the three orthogonal axes.

パソコン5は、駆動・検出器4の信号検出部から送出さ
れる検出信号の受信と、走査機構3への駆動指令信号の
送出とを交互に行ない、被測定物1について定められた
各測定ポイントにおいて上記信号検出部からの検出信号
レベルを記憶する動作を上記測定ポイントの全てについ
て行ない、これによって得た計測データを記憶する信号
処理部、該信号処理部に記憶保持された上記計測データ
に基いて、被測定物1の信号送信特性パターン又は信号
受信特性パターンを立体的に表示する表示部を有し、ま
たプロッタ6は当然特性パターンを記録する記録部を構
成する。
The personal computer 5 alternately receives the detection signal sent from the signal detection unit of the drive / detector 4 and sends the drive command signal to the scanning mechanism 3 to determine each measurement point determined for the DUT 1. In which the operation of storing the detection signal level from the signal detection unit is performed for all of the measurement points, and the signal processing unit that stores the measurement data obtained thereby, based on the measurement data stored and held in the signal processing unit. In addition, the plotter 6 naturally has a display unit for stereoscopically displaying the signal transmission characteristic pattern or the signal reception characteristic pattern of the DUT 1, and the plotter 6 naturally constitutes a recording unit for recording the characteristic pattern.

(実施例の作用) 第2図はパソコン5での制御を、走査機構3の作動制御
を中心に示したフローチャート、第3図(A),(B)
は走査機構3での走査態様例を示す図、第4図(A),
(B)及び第5図(A),(B)はそれぞれ測定例と計
測パターン表示例を示す図である。
(Operation of Embodiment) FIG. 2 is a flow chart mainly showing the operation control of the scanning mechanism 3 in the control of the personal computer 5, and FIGS. 3 (A) and 3 (B).
Is a diagram showing an example of a scanning mode in the scanning mechanism 3, FIG. 4 (A),
5B and FIGS. 5A and 5B are diagrams showing a measurement example and a measurement pattern display example, respectively.

被測定物1が発光素子(例えば半導体レーザーダイオー
ド)、光素子2が受光素子(例えばフォトトランジス
タ)であって、上記発光素子1の投射光ビームパターン
を得る動作を例にして以下に実施例の作用を説明する。
尚、以下の説明では、特に断らない限り第1図の実施例
を説明し、また第7図のAZ−EL機構は用いていないもの
とする。
The device to be measured 1 is a light emitting element (for example, a semiconductor laser diode), the optical element 2 is a light receiving element (for example, a phototransistor), and the operation of obtaining the projection light beam pattern of the light emitting element 1 will be described below as an example. The operation will be described.
In the following description, the embodiment of FIG. 1 is described unless otherwise specified, and the AZ-EL mechanism of FIG. 7 is not used.

測定しようとする発光素子1を走査機構3の支持体38
に、受光素子2を走査機構3のY軸走査体37にそれぞれ
固定し、上記発光素子1を駆動検出器4の発光体駆動部
出力端子に、上記受光素子2を駆動・検出器4の信号検
出部入力端子にそれぞれ接続する(第1図ではとび越
し接続記号である。) また、パソコン5と走査機構3とは相互に接続されてい
て、パソコン5から走査機構3に移動コマンドが、走査
機構3からパソコン5に移動完了信号がそれぞれ送出さ
れ、パソコン5と駆動・検出器4とは相互に接続されて
いて駆動・検出器4での検出信号がパソコン5に読み取
られ、更にパソコン5と記録器6とは相互に接続されて
いてパソコン5から記録器6に計測データが送出され
る。
The light emitting element 1 to be measured is mounted on the support 38 of the scanning mechanism 3.
The light-receiving element 2 is fixed to the Y-axis scanning body 37 of the scanning mechanism 3, the light-emitting element 1 is the output terminal of the light-emitting body driving section of the drive detector 4, and the light-receiving element 2 is the signal of the drive / detector 4. The personal computer 5 and the scanning mechanism 3 are connected to each other, and a movement command is sent from the personal computer 5 to the scanning mechanism 3 for scanning. A movement completion signal is sent from the mechanism 3 to the personal computer 5, the personal computer 5 and the drive / detector 4 are connected to each other, the detection signal from the drive / detector 4 is read by the personal computer 5, and The recording data is sent from the personal computer 5 to the recording device 6 because it is mutually connected to the recording device 6.

第3図(A)は走査機構3の走査可能領域の全領域にわ
たって走査する場合の走査態様(以下、全領域走査とい
う。)を示しており、また、第3図(B)は走査機構3
の走査可能領域の一部の領域で走査する場合の走査態様
(以下、一部領域走査という。)を示している。すなわ
ち、点O,A,B,C,D,E,F,Gで囲まれる空間が走査可能領域
で、かつ全領域走査の走査範囲であり、点H,J,K,L,M,N,
R,Sで囲まれる空間が一部領域走査の走査範囲である。
また、点Pは一部領域走査に於ける走査範囲の中心点で
ある。尚、座標は第3図(A),(B)中に示す通りで
あるものとし、点Oを原点とする。
FIG. 3 (A) shows a scanning mode in the case where scanning is performed over the entire scannable area of the scanning mechanism 3 (hereinafter referred to as full-area scanning), and FIG. 3 (B) is shown in FIG. 3 (B).
2 shows a scanning mode (hereinafter, referred to as partial area scanning) when scanning is performed in a partial area of the scannable area. That is, the space surrounded by the points O, A, B, C, D, E, F, G is the scannable area, and is the scanning range of the entire area scan, and the points H, J, K, L, M, N ,
The space surrounded by R and S is the scanning range of partial area scanning.
The point P is the center point of the scanning range in the partial area scanning. The coordinates are as shown in FIGS. 3A and 3B, and the point O is the origin.

計測はパソコン5のキーボード51から計測開始を指令す
ることによってスタートする。
The measurement is started by instructing the measurement start from the keyboard 51 of the personal computer 5.

計測がスタートすると、まず、走査範囲をキーボード51
の走査で入力する。走査範囲の入力方法は、走査範囲境
界点(全領域走査の場合には例えば点Oと点F、一部領
域走査の場合には例えば点Hと点R)の座標を入力する
方法(但し、この方法は、第3図(B)に示す点Pを設
定してから走査範囲を設定する場合には使用できな
い。)、走査の種類(全領域走査か一部領域走査か、一
部領域走査の場合、どの範囲の種類のものか)を予め決
めておいて、当該種類を示す符号を入力する方法、又
は、X軸,Y軸及びZ軸方向の走査回数を入力する方法等
種々の方法がある。
When the measurement starts, first scan the scanning range with the keyboard 51.
Input by scanning. The scanning range is input by inputting the coordinates of the scanning range boundary points (for example, point O and point F in the case of whole area scanning, and point H and point R in the case of partial area scanning) (however, This method cannot be used when the scanning range is set after setting the point P shown in FIG. 3B.), The type of scanning (full area scanning, partial area scanning, or partial area scanning). In the case of, the range of types) is determined in advance, and a method of inputting a code indicating the type, or a method of inputting the number of scans in the X-axis, Y-axis, and Z-axis directions There is.

走査範囲が入力されると、パソコン5は入力された走査
範囲が全領域走査か一部領域走査であるかを判断し、前
者の場合は走査範囲の設定動作に進み、後者の場合には
キーボード51からの走査範囲の予測中心点の座標(第3
図(B)に示す点Pを予測した座標)の入力を待つ。予
測中心点の入力は、走査機構3の各軸走査体33,35,37を
入力した座標まで移動し、移動点の受光素子2の受光レ
ベルをパソコン5の表示面52に表示するようにすれば、
予測中心点の入力を繰り返すことによって当該予測中心
点を走査範囲中心点Pにより近ずけることができる。走
査範囲の予測中心点が入力されると走査範囲中心点Pの
検出制御に進む。
When the scanning range is input, the personal computer 5 determines whether the input scanning range is the entire area scanning or the partial area scanning. In the former case, the scanning range setting operation is performed, and in the latter case, the keyboard is operated. The coordinates of the predicted center point of the scanning range from 51 (3rd
It waits for the input of the predicted coordinates of the point P shown in FIG. The input of the predicted center point is such that each axis scanning body 33, 35, 37 of the scanning mechanism 3 is moved to the input coordinates and the light receiving level of the light receiving element 2 at the moving point is displayed on the display surface 52 of the personal computer 5. If
By repeating the input of the predicted center point, the predicted center point can be brought closer to the scanning range center point P. When the predicted center point of the scanning range is input, the process proceeds to detection control of the scanning range center point P.

走査範囲中心点Pの検出は、例えば次のようなルーチン
で行なわれる。すなわち、予測中心点の座標を中心にし
て予め設定された範囲内の複数のポイントについて受光
素子2の受光レベルを測定して記憶し、例えば受光レベ
ルの最大のポイントを点Pとする。尚、このルーチンに
於ける測定動作は、第2図に示し、後で説明する「移動
コマンドの走査機構への送付」制御以降と同様の制御で
行なわれる。
The detection of the scanning range center point P is performed by the following routine, for example. That is, the light receiving level of the light receiving element 2 is measured and stored at a plurality of points within a preset range around the coordinates of the predicted center point, and the point having the highest light receiving level is set as the point P, for example. The measurement operation in this routine is performed under the same control as that after the "sending movement command to the scanning mechanism" control which will be described later with reference to FIG.

また、場合によっては上記予測中心点をそのまま走査範
囲中心点Pとみなしてよいこともあり、このようなとき
には上記走査範囲中心点の検出ルーチンを省いてもよ
い。
In some cases, the predicted center point may be directly regarded as the scanning range center point P, and in such a case, the scanning range center point detection routine may be omitted.

次に、パソコン5の制御は走査範囲の設定に入る。この
走査範囲の設定は、全領域走査の場合には例えば第3図
(A)に示す点O(原点)の座標(0,0,0)(前から順
にX軸,Y軸及びZ軸の座標を示す。以下同じ)及び点F
の座標(l,m,n)を走査機構3の制御のために設定され
たメモリエリアに格納することにより行なわれ、一部領
域走査の場合には、第3図(B)に示す点Pの座標
(X0,Y0,Z0)がキーボード51より入力された走査範囲の
中心に来るように例えば点Hの座標(i1,j1,k1)及び点
Rの座標(i2,j2,k2)を演算して求め、当該座標(i1,j
1,k1),(i2,j2,k2)を上記メモリエリアに格納するこ
とにより行なわれる。
Next, the control of the personal computer 5 enters the scanning range setting. This scanning range is set in the case of full-area scanning, for example, the coordinates (0,0,0) of the point O (origin) shown in FIG. The coordinates are shown below. The same applies) and point F
The coordinates (l, m, n) are stored in the memory area set for the control of the scanning mechanism 3, and in the case of partial area scanning, the point P shown in FIG. So that the coordinates (X 0 , Y 0 , Z 0 ) of the point H come to the center of the scanning range input from the keyboard 51, for example, the coordinates (i 1 , j 1 , k 1 ) of the point H and the coordinates (i 2 of the point R. , j 2 , k 2 ) to obtain the coordinate (i 1 , j
This is performed by storing 1 , k 1 ) and (i 2 , j 2 , k 2 ) in the memory area.

以上の制御は、点Pが浮動点であることにより行なわれ
る制御であるが、このような点Pを必要としない場合に
は、キーボード51から座標によって走査範囲を入力し、
これをいきなり上記メモリエリアに格納して走査範囲の
設定を行なえばよい。また、走査範囲の設定に於いて、
以上の制御では全領域走査は第3図(A)に示すように
3軸全ての方向に全範囲にわたって走査するものとし、
一部領域走査は第3図(B)に示すように3軸全ての方
向に一部分の範囲を走査するものとしたが、3軸のうち
1軸又は2軸について全範囲にわたる走査をし、残余の
2軸又は1軸について一部分の範囲を走査するようにし
てもよい。
The above-mentioned control is performed by the fact that the point P is a floating point. However, when such a point P is not required, the scanning range is input by the coordinates from the keyboard 51,
This may be suddenly stored in the memory area to set the scanning range. Also, in setting the scanning range,
In the above control, the entire area scan is performed over the entire range in all three axes as shown in FIG.
As shown in FIG. 3 (B), partial area scanning is performed by scanning a partial range in all three directions, but one or two of the three axes are scanned over the entire range, and the remaining You may make it scan a partial range about 2 axes or 1 axis of.

また、2次元走査の場合には必要としない方向の軸の座
標を固定して設定すればよい。すなわち第3図(A)に
於いて、走査範囲入力操作で例えば座標(0,0,0)、
(l,m,o)を入力すれば(即ち、Z座標を0に固定すれ
ば)、走査は平面OABCについてのみ行なわれ、また第3
図(B)に於いて、走査範囲入力操作で例えば座標
(i1,j2,k1),(i1,j1,k2)を入力すれば(即ち、X座
標をi1に固定すれば)、走査は平面HLSMについてのみ行
なわれる。
Further, in the case of two-dimensional scanning, the coordinates of the axis in the direction not required may be fixed and set. That is, in FIG. 3 (A), when the scanning range input operation is performed, for example, the coordinates (0,0,0),
If you enter (l, m, o) (that is, fix the Z coordinate at 0), the scan is done only on the plane OABC, and the third
In FIG. 3B, if coordinates (i 1 , j 2 , k 1 ) and (i 1 , j 1 , k 2 ) are input in the scanning range input operation (that is, the X coordinate is fixed to i 1) . Scanning) is performed only on the plane HLSM.

走査範囲の設定が終ると、パソコン5は当該走査範囲内
で走査の始点となる座標を設定する制御、すなわち、初
期位置座標の設定を行なう。初期位置座標は全領域走査
の場合は原点O(0,0,0)を、一部領域走査の場合は原
点Oに最も近い点、第3図(B)に示す例では点H
(i1,j1,k1)を選ぶ。
When the setting of the scanning range is completed, the personal computer 5 performs control to set the coordinates that are the starting point of scanning within the scanning range, that is, the initial position coordinates. The initial position coordinate is the origin O (0,0,0) in the case of full area scanning, the point closest to the origin O in the case of partial area scanning, and the point H in the example shown in FIG. 3 (B).
Select (i 1 , j 1 , k 1 ).

次にパソコン5は移動コマンドを走査機構3に送付す
る。
Next, the personal computer 5 sends a movement command to the scanning mechanism 3.

最初の移動コマンドは初期位置座標、すなわち、全領域
走査の場合には原点Oの座標(0,0,0)であり、一部領
域走査の場合には点Hの座標(i1,j1,k1)である。この
移動コマンドを受信すると走査機構3は独自の制御動作
で各軸の走査体33,35及び37を駆動して受光素子2を原
点O又は点Hの座標と対応する位置に移動させる。パソ
コン5は走査機構3の動作中は待合せの状態となる。す
なわち、走査機構3は受光素子2の走査始点までの移動
が完了するとパソコン5に移動完了信号を送り、これを
受けてパソコン5は駆動・検出器4から、走査始点での
受光素子2の受光レベル、すなわち測定値を読み込んで
記憶する。
The first move command is the initial position coordinate, that is, the coordinate (0,0,0) of the origin O in the case of full area scanning, and the coordinate of the point H (i 1 , j 1 in the case of partial area scanning). , k 1 ). Upon receiving this movement command, the scanning mechanism 3 drives the scanning bodies 33, 35 and 37 of each axis by its own control operation to move the light receiving element 2 to a position corresponding to the coordinates of the origin O or the point H. The personal computer 5 is in a waiting state while the scanning mechanism 3 is operating. That is, when the scanning mechanism 3 completes the movement of the light receiving element 2 to the scanning start point, it sends a movement completion signal to the personal computer 5, and in response to this, the personal computer 5 receives light from the light receiving element 2 at the scanning start point from the drive / detector 4. The level, that is, the measured value is read and stored.

測定値の記憶が完了すると、パソコン5は未送付の移動
コマンドの有無を判断し、今の場合、原点O又は点H
(走査始点)での測定が終っただけであるので、未送付
の移動コマンドが有り、新たな移動コマンドを走査機構
3に送付する。新たな移動コマンドは(前の測定ポイン
ト)(今の場合、走査始点)の次の測定ポイントを示す
座標で、例えばX軸方向の走査では(1,0,0)又は(i1
1,j1,k1)である。新たな移動コマンドを受けると、
走査機構3は各軸の走査体33,35及び37を再び駆動して
受光素子2を当該移動コマンドに対応する新たな測定ポ
イントに移動させる。以下、上記と同様にして測定値の
読込み及び記憶、未送付移動コマンドの有無の判断及び
移動コマンドの走査機構3への送付、移動完了信号の受
信及びそれまでの待合せを繰り返し、キーボード51より
入力された走査範囲内の全測定ポイントについて測定動
作を繰り返す。
When the storage of the measured values is completed, the personal computer 5 determines whether or not there is a movement command that has not been sent, and in this case, the origin O or the point H.
Since the measurement at the (scanning start point) has just ended, there is a move command that has not been sent, and a new move command is sent to the scanning mechanism 3. The new movement command is a coordinate indicating the next measurement point of the (previous measurement point) (in this case, the scanning start point), for example, (1,0,0) or (i 1 for scanning in the X-axis direction.
+ 1 , j 1 , k 1 ). When you receive a new move command,
The scanning mechanism 3 drives the scanning bodies 33, 35 and 37 of the respective axes again to move the light receiving element 2 to a new measurement point corresponding to the movement command. Thereafter, in the same manner as described above, reading and storage of measured values, determination of presence / absence of unsent movement command, transmission of movement command to scanning mechanism 3, reception of movement completion signal, and waiting until then are repeated and input from keyboard 51. The measurement operation is repeated for all measurement points within the scanned range.

受光素子2は、被測定物である発光素子1の信号投射範
囲(発光ビーム巾)の広さに対して点状とみなせる程度
に狭い信号入射面を有するので、各測定ポイントにおい
て当該受光素子2が受光した信号の受光レベル(測定
値)は、上記発光素子1から投射されている信号の、そ
のときの測定ポイント方向への投射成分のレベルとな
る。
Since the light receiving element 2 has a signal incident surface that is narrow enough to be regarded as a dot with respect to the width of the signal projection range (light emitting beam width) of the light emitting element 1 as the DUT, the light receiving element 2 at each measurement point. The light reception level (measurement value) of the signal received by the light source is the level of the component of the signal projected from the light emitting element 1 in the direction of the measurement point at that time.

未送付移動コマンドの有無の判断から新たな移動コマン
ドの送付までの制御は、例えば次のようにして行なわれ
る。
The control from the determination of the presence or absence of the unsent movement command to the transmission of a new movement command is performed as follows, for example.

すなわち、パソコン5は入力された走査範囲から各軸方
向の測定ポイント数を算出して例えば各軸方向に設定さ
れたカウンタ(通常、ソフトウェアにより設定され
る。)の値を上記測定ポイント数にプリセットし、測定
値の記憶毎に上記カウンタの値を1ずつ減算していき、
当該カウンタの値が全て0になるまで測定を繰返すよう
にしていく。また、これと同時に走査する方向の座標の
値に1ずつ加算していくことにより移動コマンドの更新
を行って更新後の移動コマンドを走査機構3に送付して
いくようにする。
That is, the personal computer 5 calculates the number of measurement points in each axis direction from the input scanning range, and presets the value of a counter (normally set by software) set in each axis direction to the number of measurement points. Then, the value of the counter is decremented by 1 each time the measured value is stored,
The measurement is repeated until the counter values are all zero. At the same time, the movement command is updated by adding 1 to the coordinate value in the scanning direction, and the updated movement command is sent to the scanning mechanism 3.

移動コマンドが全て送出され、走査範囲中の全ての測定
ポイントについて測定が完了すると、パソコン5は各測
定点での測定値を計測データとして記憶保持し、次のル
ーチンに進む。ここで次のルーチンとは、上記計測デー
タを表示面52に表示するルーチン及び/又は上記計測デ
ータを記録器6に送付して記録する記録ルーチン等であ
り、これ等のルーチンは適宜公知の制御方法で行うこと
ができる。
When all the movement commands are transmitted and the measurement is completed at all the measurement points in the scanning range, the personal computer 5 stores and holds the measurement values at each measurement point as measurement data, and proceeds to the next routine. Here, the next routine is a routine for displaying the measurement data on the display surface 52 and / or a recording routine for sending the measurement data to the recorder 6 for recording, and these routines are appropriately known control. Can be done in any way.

次に、第6図に示す実施例の作用を説明する。Next, the operation of the embodiment shown in FIG. 6 will be described.

第6図に示す実施例では、光素子2及び7は、一方が発
光素子、他方が受光素子である。この光素子2又は7の
選択は、被測定物1が発光素子であれば受光素子側が、
被測定物1が受光素子であれば発光素子側がそれぞれ選
択されるように制御される。そして、ペン支持体61を経
た光素子2の外部への接続は、例えばプロッタ6自体の
制御装置で当該光素子2が発光素子であれば駆動・検出
器4に、受光素子であればパソコン5にそれぞれ設定さ
れる。
In the embodiment shown in FIG. 6, one of the optical elements 2 and 7 is a light emitting element and the other is a light receiving element. When the DUT 1 is a light emitting element, the light receiving element side is selected as the optical element 2 or 7.
If the DUT 1 is a light receiving element, the light emitting element side is controlled to be selected. The optical element 2 is connected to the outside via the pen support 61 by, for example, the control device of the plotter 6 if the optical element 2 is a light emitting element, the drive / detector 4 is used, and if it is a light receiving element, the personal computer 5 is used. Is set to each.

この実施例では、計測をスタートさせ、キーボード51に
よってまず、記録作動か計測作動かを指令するデータ、
及び計測作動を指令した場合には上記光素子2又は7の
選択データを走査範囲データの入力とともに入力する。
In this embodiment, the measurement is started, and first, the keyboard 51 is used to instruct the recording operation or the measurement operation,
When the measurement operation is instructed, the selection data of the optical element 2 or 7 is input together with the input of the scanning range data.

計測作動のとき、プロッタ6は上記入力されたデータに
基いて光素子2又は7(受光素子又は発光素子)を選択
して、ペン支持体61をペンストッカ64の当該選択した光
素子2又は7の位置に移動制御してペン支持体61に選択
した光素子2又は7を取り上げ保持する。
At the time of measurement operation, the plotter 6 selects the optical element 2 or 7 (light receiving element or light emitting element) based on the above-mentioned input data, and the pen support 61 is moved to the selected optical element 2 or 7 of the pen stocker 64. The pen support 61 is controlled to move to the position and the selected optical element 2 or 7 is picked up and held.

上記制御の後、パソコン5とプロッタ6との間で第2図
に示すのと同様の制御で測定動作が行なわれる。
After the above control, the measurement operation is performed between the personal computer 5 and the plotter 6 under the same control as shown in FIG.

測定動作が終了し、記録作動(記録ルーチン)に入る
と、ペン支持体61は光素子2に代えて記録用ペン8を適
宜選択して保持し、パソコン5に記憶された測定値を順
次読み出して記録紙9上に記録する。
When the measurement operation is completed and the recording operation (recording routine) is started, the pen support 61 appropriately selects and holds the recording pen 8 instead of the optical element 2, and sequentially reads the measured values stored in the personal computer 5. And records on the recording paper 9.

第4図(B)は、第4図(A)に示すように被測定物を
発光素子1とレンズ12との組み合せ体とし、走査方向を
X軸,Y軸の2軸方向(2次元走査)として計測データを
立体的に示し、又は記録した例を示しており、また、第
5図(B)は、第5図(A)に示すように上記と同様の
組み合せ体をX軸,Y軸及びZ軸の3軸方向(3次元走
査)で測定して得た計測データを立体的に表示し、又は
記録した例を示している。このようにして表示し、又は
記録した計測データから、レンズ12を通った光の放射ビ
ーム特性、受光面と投光点との間の距離と受光強度(レ
ベル)の関係等が正確に把握できる。
As shown in FIG. 4 (A), FIG. 4 (B) shows the object to be measured as a combination of the light emitting element 1 and the lens 12, and the scanning direction is the biaxial direction of the X axis and the Y axis (two-dimensional scanning). 3) shows an example in which the measurement data is three-dimensionally shown or recorded, and FIG. 5B shows a combination body similar to the above as shown in FIG. An example is shown in which the measurement data obtained by measurement in the three axis directions of the Z axis and the Z axis (three-dimensional scanning) are three-dimensionally displayed or recorded. From the measurement data displayed or recorded in this way, the radiation beam characteristics of the light passing through the lens 12, the relationship between the distance between the light receiving surface and the light projecting point and the light receiving intensity (level), etc. can be accurately grasped. .

また、第7図に示すAZ−EL機構11を用いた場合には、プ
ログラムを若干変更し、移動コマンドを直交座標に代
え、又は直交座標と同時に極座標で投入できるようにす
れば上記実施例と同様にして方位角及び府抑角方向の走
査による計測データが得られる。
Further, when the AZ-EL mechanism 11 shown in FIG. 7 is used, if the program is slightly changed and the movement command is replaced with rectangular coordinates, or the polar coordinates can be input at the same time as the rectangular coordinates, the above-mentioned embodiment can be obtained. In the same manner, measurement data obtained by scanning in the azimuth angle and the tilt angle direction can be obtained.

以上の実施例は本発明を光学的素子又は装置の特性の計
測に実施した例であるが、例えば、電磁誘導結合によっ
て情報を授受する機器の送信コイルと受信コイル間の結
合特性を計測する場合、スピーカ、マイクロホン等の音
声機器の例えば指向特性を計測する場合に於いても本発
明を実施することができ、被測定物の違いが本発明の要
旨を変更するものではない。
The above embodiment is an example in which the present invention is applied to the measurement of the characteristics of the optical element or device. For example, in the case of measuring the coupling characteristics between the transmission coil and the reception coil of the device that exchanges information by electromagnetic inductive coupling. The present invention can be implemented even when measuring, for example, directional characteristics of a voice device such as a speaker, a microphone, etc., and the difference of the object to be measured does not change the gist of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明は被測定物又はこ
れと対向の素子を2次元又は3次元空間で走査して各測
定ポイントの測定値を記憶保持するようにしたものであ
り、被測定物が発光体であるか受光体であるかにかかわ
らず計測データが得られ、しかも計測データを定量的に
正確に把握することができ、計測に必要な時間も極めて
短かくて良いという効果が得られる。
(Effects of the Invention) As described above in detail, according to the present invention, the object to be measured or the element facing the object is scanned in the two-dimensional or three-dimensional space to store and hold the measured values at the respective measurement points. The measurement data can be obtained regardless of whether the DUT is a light emitter or a light receiver, and the measurement data can be grasped quantitatively and accurately, and the time required for measurement is extremely short. This has the effect of being good.

また、記録器(プロッタ)のXY走査機構を利用するよう
にすれば、ソフトウェアの設定で本発明が実施でき、ハ
ードウェアとしては、被測定物を支持するための簡単な
構造のものを用いるだけでよいという効果も得られる。
Further, if the XY scanning mechanism of the recorder (plotter) is used, the present invention can be carried out by setting software, and as the hardware, a simple structure for supporting the object to be measured is used. The effect of being good is also obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の機器構成を示す斜視図、第2
図は第1図に示す実施例の動作を説明するフローチャー
ト、第3図(A),(B)は走査態様例を示す図、第4
図(A),(B)及び第5図(A),(B)は測定形態
と計測パターン表示例を示す図、第6図及び第7図は他
の実施例について要部を示す斜視図、第8図は従来の計
測方法例を示す斜視図である。 (主な記号) 1:被測定物(発光素子)、 2:光素子(受光素子)、 3:走査機構、31:基体、 33:Z軸走査体、35:X軸走査体、 37:Y軸走査体、4:駆動・検出器、 5:パソコン、6:記録器、 61:ペン支持体、 62:Y軸移動案内用シャフト、 63:X軸移動案内用溝、 7:光素子、10:支持台、 11:AZ−EL機構。
FIG. 1 is a perspective view showing a device configuration of an embodiment of the present invention, and FIG.
FIG. 4 is a flow chart for explaining the operation of the embodiment shown in FIG. 1, FIGS. 3 (A) and 3 (B) are diagrams showing examples of scanning modes, and FIG.
Figures (A) and (B) and Figures 5 (A) and (B) are diagrams showing a measurement form and a measurement pattern display example, and Figures 6 and 7 are perspective views showing essential parts of other examples. FIG. 8 is a perspective view showing an example of a conventional measuring method. (Main symbols) 1: Object to be measured (light emitting element), 2: Optical element (light receiving element), 3: Scanning mechanism, 31: Base, 33: Z-axis scanning body, 35: X-axis scanning body, 37: Y Axial scanning body, 4: Drive / detector, 5: PC, 6: Recorder, 61: Pen support, 62: Y-axis movement guide shaft, 63: X-axis movement guide groove, 7: Optical element, 10 : Support, 11: AZ-EL mechanism.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被測定物の信号投射範囲又は信号入射範囲
の広さに対して点状とみなさせる程度に狭い信号入射面
又は信号投射面を有する信号受領用素子又は信号投射用
素子と、 被測定物と上記素子とを、それぞれの信号入射面と信号
投射面とが互に対向するように配置支持する一対の支持
体と、 上記被測定物と上記素子との相対位置関係が2次元又は
3次元空間中に定められた複数の各測定ポイントに移動
するように上記一対の支持体の一方又は双方を駆動せし
める走査機構と、 上記被測定物又は上記素子のうち信号の入射側となる物
からの入射信号を検出する信号検出部と、 該信号検出部からの検出信号の受信と上記走査機構への
駆動指令信号の送出とを交互に行なって上記各測定ポイ
ントにおける上記信号検出部からの検出信号レベルを記
憶する動作を、上記全ての測定ポイントについて行な
い、これによって得た計測データを記憶保持する信号処
理部と、 該信号処理部に記憶保持された上記計測データに基いて
被測定物の信号送信特性パターン又は信号受信特性パタ
ーンを立体的に表示し、及び/又は記録する表示記録部
とで構成される信号の送・受信特性パターン計測装置。
1. A signal receiving element or a signal projecting element having a signal incident surface or a signal projecting surface that is narrow enough to be regarded as a dot with respect to the width of the signal projecting area or the signal incident area of the device under test, A pair of supports for arranging and supporting the DUT and the element such that their signal incident surfaces and signal projection surfaces face each other, and the relative positional relationship between the DUT and the element are two-dimensional. Alternatively, a scanning mechanism for driving one or both of the pair of supports so as to move to a plurality of measurement points defined in a three-dimensional space, and a scanning side of the DUT or the element. From the signal detection unit at each measurement point by alternately performing a signal detection unit that detects an incident signal from an object, reception of the detection signal from the signal detection unit, and transmission of a drive command signal to the scanning mechanism. Detection signal level of Is performed for all the above measurement points, and the signal processing unit that stores and holds the measurement data obtained thereby, and the signal transmission of the measured object based on the above measurement data that is stored and held in the signal processing unit. A signal transmission / reception characteristic pattern measuring device configured with a display recording unit that stereoscopically displays and / or records a characteristic pattern or a signal reception characteristic pattern.
【請求項2】一対の支持体の一方を固定し、他方を直交
座標の2軸又は3軸方向に移動せしめるように走査機構
を構成した特許請求の範囲第1項に記載の送・受信特性
パターン計測装置。
2. The transmission / reception characteristics according to claim 1, wherein the scanning mechanism is configured so that one of the pair of supports is fixed and the other is moved in the biaxial or triaxial directions of orthogonal coordinates. Pattern measuring device.
【請求項3】一対の支持体の一方を直交座標の1軸又は
2軸方向に移動せしめ、他方を上記一方の支持体の移動
方向と異った方向の1軸又は2軸方向に移動せしめるよ
うに走査機構を構成した特許請求の範囲第1項に記載の
信号の送・受信特性パターン計測装置。
3. One of the pair of supports is moved in the uniaxial or biaxial directions of the orthogonal coordinates, and the other is moved in the uniaxial or biaxial direction different from the moving direction of the one of the supports. The signal transmission / reception characteristic pattern measuring device according to claim 1, wherein the scanning mechanism is configured as described above.
【請求項4】一対の支持体の一方を固定し、他方をAZ軸
及びEL軸を中心に転回移動せしめるように走査機構を構
成した特許請求の範囲第1項に記載の信号の送受信特性
パターン計測装置。
4. A signal transmission / reception characteristic pattern according to claim 1, wherein the scanning mechanism is configured so that one of the pair of supports is fixed and the other is rotatably moved about the AZ axis and the EL axis. Measuring device.
【請求項5】一対の支持体の一方をAZ軸及び/又はEL軸
を中心に転回移動せしめ、いずれか一方を直交座標の少
なくとも1軸方向に移動せしめるように走査機構を構成
した特許請求の範囲第1項に記載の信号の送・受信特性
パターン計測装置。
5. The scanning mechanism is configured so that one of the pair of supports is rotated around the AZ axis and / or the EL axis, and either one of them is moved in the direction of at least one of the orthogonal coordinates. A signal transmission / reception characteristic pattern measurement device according to the first section.
【請求項6】信号処理部の記録部として2軸方向に走査
するプロッタを使用し、該プロッタの走査機構により被
測定物又は該被測定物と対向配置される素子を走査駆動
するようにした特許請求の範囲第1項に記載の信号の送
・受信特性パターン計測装置。
6. A plotter that scans in two axial directions is used as a recording unit of a signal processing unit, and a scanning mechanism of the plotter scans and drives an object to be measured or an element arranged opposite to the object to be measured. A signal transmission / reception characteristic pattern measuring device according to claim 1.
JP59211683A 1984-10-09 1984-10-09 Signal transmission / reception characteristic pattern measuring device Expired - Lifetime JPH07111370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211683A JPH07111370B2 (en) 1984-10-09 1984-10-09 Signal transmission / reception characteristic pattern measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211683A JPH07111370B2 (en) 1984-10-09 1984-10-09 Signal transmission / reception characteristic pattern measuring device

Publications (2)

Publication Number Publication Date
JPS6189536A JPS6189536A (en) 1986-05-07
JPH07111370B2 true JPH07111370B2 (en) 1995-11-29

Family

ID=16609853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211683A Expired - Lifetime JPH07111370B2 (en) 1984-10-09 1984-10-09 Signal transmission / reception characteristic pattern measuring device

Country Status (1)

Country Link
JP (1) JPH07111370B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338175A (en) * 1986-08-04 1988-02-18 Meisei Electric Co Ltd Measuring instrument for light emission characteristic of semiconductor light emitting element
CN103675715B (en) * 2013-12-06 2016-06-29 深圳市清华环科检测技术有限公司 Illuminator energy conservation test module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147023A (en) * 1980-04-18 1981-11-14 Hitachi Ltd Method and device for measurement of laser beam

Also Published As

Publication number Publication date
JPS6189536A (en) 1986-05-07

Similar Documents

Publication Publication Date Title
US4879664A (en) Three-dimensional position sensor and three-dimensional position setting system
US5251156A (en) Method and apparatus for non-contact measurement of object surfaces
JP3612068B2 (en) Coordinate measurement method for workpiece
US6798527B2 (en) Three-dimensional shape-measuring system
EP0573661A1 (en) Method and apparatus for measuring three-dimensional position and posture of object
US20050105076A1 (en) Three-dimensional location measurement sensor
CN110044293B (en) Three-dimensional reconstruction system and three-dimensional reconstruction method
TWI451062B (en) Three dimensional shape measuring apparatus
JP2020201245A (en) Position detector and method for 3d position determination
JP7448397B2 (en) Surveying equipment and surveying systems
JPH06186025A (en) Three dimensional measuring device
CN108931236B (en) Industrial robot tail end repeated positioning precision measuring device and method
KR20090062027A (en) Apparatus and method for 3-dimensional position and orientation measurements of reflection mirror package
JPH07111370B2 (en) Signal transmission / reception characteristic pattern measuring device
JPH07325623A (en) Method and device for controlling xy stage
JPS61259170A (en) Apparatus for adjusting inclination of specimen
CN111397574A (en) Indoor visual axis azimuth angle measuring device and method utilizing laser projection transmission
JP2001012942A (en) Three-dimensional scanner
JPH11344330A (en) Three dimensional shape measuring device
EP0296252A1 (en) Optical measuring instrument
JPS62287107A (en) Center position measuring instrument
US12013230B2 (en) Three-dimensional shape measuring apparatus
JP3003453B2 (en) Optical device module assembly equipment
JP2553352Y2 (en) Automatic dimension measuring device
JP2529526Y2 (en) Alignment device for optical components

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term