JPH07111289B2 - Ice making equipment - Google Patents

Ice making equipment

Info

Publication number
JPH07111289B2
JPH07111289B2 JP2158093A JP15809390A JPH07111289B2 JP H07111289 B2 JPH07111289 B2 JP H07111289B2 JP 2158093 A JP2158093 A JP 2158093A JP 15809390 A JP15809390 A JP 15809390A JP H07111289 B2 JPH07111289 B2 JP H07111289B2
Authority
JP
Japan
Prior art keywords
water
heat
aqueous solution
circulation path
water circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2158093A
Other languages
Japanese (ja)
Other versions
JPH0448175A (en
Inventor
功 近藤
弘二 松岡
伸二 松浦
優司 仲沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2158093A priority Critical patent/JPH07111289B2/en
Publication of JPH0448175A publication Critical patent/JPH0448175A/en
Publication of JPH07111289B2 publication Critical patent/JPH07111289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水又は水溶液を水循環路で過冷却してスラリ
ー状の氷化物を生成させ、蓄氷槽に貯溜するようにした
製氷装置に係り、特に性能の向上対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an ice-making device that supercools water or an aqueous solution in a water circulation path to generate a slurry-like frozen product and stores it in an ice storage tank. In particular, it relates to measures for improving performance.

(従来の技術) 従来より、例えば実開平1-144722号公報に開示される如
く、冷媒回路に介設される熱交換器と蓄氷槽との間で蓄
氷槽の水を循環させる水循環路を設け、冷媒回路の冷媒
との熱交換により蓄氷槽の水等をスラリー状の氷にする
ようにした製氷装置において、水循環路の出口側を開放
して、過冷却状態にある水を蓄氷槽の水面より一定高さ
に設置された傾斜樋に落下させ、この傾斜樋を通過する
間に水をスラリー状に氷化させて、下方の蓄氷槽に氷化
物を貯溜しようとするものは公知の技術である。
(Prior Art) Conventionally, for example, as disclosed in Japanese Utility Model Laid-Open No. 1-144722, a water circulation path for circulating water in an ice storage tank between a heat exchanger and an ice storage tank provided in a refrigerant circuit. In the ice making device in which the water in the ice storage tank is turned into slurry-like ice by heat exchange with the refrigerant in the refrigerant circuit, the outlet side of the water circulation path is opened to store the supercooled water. A device that drops an ice gutter on a slant gutter installed at a certain height above the water surface of the ice tank, ices the water into a slurry while passing through this gutter, and stores iced products in the ice storage tank below. Is a known technique.

また、同公報において、上記冷媒回路の冷媒等を利用し
て水をさらに過冷却する過冷却ゾーンを上記傾斜樋の途
中に設けることにより、水の過冷却状態を解消させて氷
化を生ずるようにすることも開示されている。
Further, in the same publication, by providing a supercooling zone for further subcooling water by using the refrigerant or the like of the refrigerant circuit in the middle of the inclined trough, the supercooled state of water is eliminated and ice formation is caused. It is also disclosed.

(発明が解決しようとする課題) しかしながら、上記従来のもののように、水の過冷却状
態を解消する過冷却解消部を蓄氷槽の上方に設けると、
そのためのスペースが必要となり設計上の制約が大きく
なるとともに、いったん空気中に水を晒すことで、空気
中に冷熱が放出され、熱損失が大きいという問題があ
る。
(Problems to be Solved by the Invention) However, when a supercooling elimination section for eliminating a supercooled state of water is provided above the ice storage tank as in the conventional one,
There is a problem in that a space for that is required, design constraints become large, and once the water is exposed to the air, cold heat is released into the air, resulting in a large heat loss.

そこで、水循環路を閉回路とし、水循環路の中で水に過
冷却状態を生ぜしめ、かつその過冷却状態を解消させて
スラリー状の氷化物を生成し、蓄氷槽に循環させること
により、設計上の制約や熱損失を回避することが考えら
れる。
Therefore, by setting the water circulation path as a closed circuit, a supercooled state is produced in the water in the water circulation path, and the supercooled state is eliminated to generate a slurry-like iced substance, which is circulated in the ice storage tank. It is possible to avoid design restrictions and heat loss.

しかるに、上記従来のもののように、水の過冷却状態を
解消する手段として冷媒回路の冷媒を利用して水を再冷
却するようにした場合、冷媒回路の冷媒状態が変化する
と、それにつれて過冷却状態の解消のための再冷却量も
変化することになり、安定した製氷を行うことができな
くなる虞れがある。
However, like the above-mentioned conventional one, when the water in the refrigerant circuit is recooled by using the refrigerant in the refrigerant circuit as a means for eliminating the supercooled state of the water, when the refrigerant state in the refrigerant circuit changes, the supercooling occurs accordingly. The amount of recooling for eliminating the state also changes, and there is a possibility that stable ice making cannot be performed.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、冷媒回路の冷媒の状態に関係なく再冷却量を調節
しうる手段を講ずることにより、安定した製氷を可能に
することにある。
The present invention has been made in view of such points, and an object thereof is to enable stable ice making by providing a means capable of adjusting the recooling amount regardless of the state of the refrigerant in the refrigerant circuit. is there.

(課題を解決するための手段) 上記目的を達成するため本発明の第1の解決手段は、第
1図に示すように、製氷装置に、水又は水溶液のスラリ
ー状の氷化物を貯溜するための蓄氷槽(5)と、管部材
で構成され上記蓄氷槽(5)に対して閉ループを形成す
るように接続されて水又は水溶液を強制循環させるため
の水循環路(51)と、上記水循環路(51)に介設されか
つ冷却装置に接続されて、上記水循環路(51)を流れる
水又は水溶液を低温状態まで過冷却するための熱交換器
(22)と、印加電圧の極性に応じて吸熱部又は放熱部と
なる2つの熱交換部を有し、該2つの熱交換部のうち少
なくとも吸熱部となる熱交換部が上記水循環路(51)の
管部材内に配置されて、水又は水溶液の過冷却状態を解
消させるよう上記水又は水溶液を再冷却するサーモモジ
ュール(8)とを設ける構成としたものである。
(Means for Solving the Problem) In order to achieve the above object, the first means for solving the problems is to store a slurry of iced water or an aqueous solution in an ice making device as shown in FIG. An ice storage tank (5), a water circulation path (51) configured by a pipe member and connected to form a closed loop with the ice storage tank (5) for forcedly circulating water or an aqueous solution, A heat exchanger (22), which is interposed in the water circulation path (51) and is connected to a cooling device, for supercooling the water or aqueous solution flowing through the water circulation path (51) to a low temperature state, and the polarity of the applied voltage. Accordingly, the heat exchange part has two heat exchange parts which are heat absorption parts or heat dissipation parts, and at least the heat exchange part which is the heat absorption part of the two heat exchange parts is arranged in the pipe member of the water circulation path (51), Re-cool the water or aqueous solution to eliminate the supercooled state of the water or aqueous solution. Is obtained by a configuration in which the chromatography mode module (8).

第2の解決手段は、製氷装置に、水又は水溶液のスラリ
ー状の氷化物を貯溜するための蓄氷槽(5)と、管部材
で構成され上記蓄氷槽(5)に対して閉ループを形成す
るように接続されて水又は水溶液を強制循環させるため
の水循環路(51)と、上記水循環路(51)に介設されか
つ冷却装置に接続されて、上記水循環路(51)を流れる
水又は水溶液を低温状態まで過冷却するための熱交換器
(22)と、印加電圧の極性に応じて吸熱部−放熱部に変
化する2つの熱交換部を有し、該2つの熱交換部のうち
の1つの熱交換部が上記水循環路(51)の水又は水溶液
との熱交換が可能に配置されかつ印加電圧の極性が所定
時間毎に切換えられて、吸熱部となる期間には水又は水
溶液の過冷却状態を解消させるよう上記水又は水溶液を
再冷却する一方、放熱部となる期間には氷化物の管部材
の内壁への付着を介離させるよう加熱するサーモモジュ
ール(8)とを設ける構成としたものである。
A second solving means is an ice storage device (5) for storing a slurry of iced water or an aqueous solution in an ice making device, and a closed loop with respect to the ice storage tank (5) formed of a pipe member. A water circulation passageway (51) connected to form the water or aqueous solution for forced circulation, and water flowing through the water circulation passageway (51) interposed in the water circulation passageway (51) and connected to a cooling device. Alternatively, it has a heat exchanger (22) for supercooling the aqueous solution to a low temperature state, and two heat exchange sections that change from a heat absorbing section to a heat radiating section according to the polarity of the applied voltage. One of the heat exchange parts is arranged so as to be able to exchange heat with water or an aqueous solution in the water circulation path (51), and the polarity of the applied voltage is switched at predetermined intervals, and water or Re-cool the water or aqueous solution to eliminate the supercooled state of the aqueous solution, while releasing heat A thermo module (8) for heating so as to separate the adhesion of the iced substance to the inner wall of the tube member during the partial period is provided.

第3の解決手段は、上記第2の解決手段において、上記
サーモモジュール(8)を複数個設け、各サーモモジュ
ール(8)の吸熱部となる期間同士がオーバーラップす
るように構成したものである。
A third solving means is the same as the second solving means, wherein a plurality of the thermomodules (8) are provided, and the periods serving as the heat absorbing portions of the thermomodules (8) overlap each other. .

第4の解決手段は、製氷装置に、水又は水溶液のスラリ
ー状の氷化物を貯溜するための蓄氷槽(5)と、管部材
で構成され上記蓄氷槽(5)に対して閉ループを形成す
るように接続されて水又は水溶液を強制循環させるため
の水循環路(51)と、上記水循環路(51)に介設されか
つ冷却装置に接続されて、上記水循環路(51)を流れる
水又は水溶液を低温状態まで過冷却するための熱交換器
(22)と、常時一定の印加電圧の極性に応じて常時吸熱
部又は常時放熱部となる2つの熱交換部を有し、該2つ
の熱交換部が上記水循環路(51)の水又は水溶液との熱
交換が可能に配置されて、上記常時吸熱部となる熱交換
部で水又は水溶液の過冷却状態を解消させるよう上記水
又は水溶液を再冷却する一方、上記常時放熱部となる熱
交換部で上記熱交換器側への凍結の進展を防止するよう
加熱するサーモモジュール(8)とを設ける構成とした
ものである。
A fourth means for solving the problem is that an ice making device is provided with an ice storage tank (5) for storing a glaze in the form of a slurry of water or an aqueous solution, and a closed loop for the ice storage tank (5) formed of a pipe member. A water circulation passageway (51) connected to form the water or aqueous solution for forced circulation, and water flowing through the water circulation passageway (51) interposed in the water circulation passageway (51) and connected to a cooling device. Alternatively, it has a heat exchanger (22) for supercooling the aqueous solution to a low temperature state, and two heat exchange parts which are always heat absorbing parts or heat radiating parts depending on the polarity of a constant applied voltage. The water or aqueous solution is arranged so that the heat exchange section is capable of exchanging heat with the water or aqueous solution in the water circulation path (51), and the supercooled state of the water or aqueous solution is eliminated by the heat exchange section which is always the endothermic section. While re-cooling the heat exchanger, A thermo module (8) for heating so as to prevent the freezing to the side is provided.

第5の解決手段は、上記第2,第3又は第4の解決手段に
おいて、上記サーモモジュール(8)の熱交換部を上記
水循環路(51)の管部材内に配置したものである。
A fifth solution means is that, in the second, third or fourth solution means, the heat exchange part of the thermo module (8) is arranged in the pipe member of the water circulation path (51).

(作用) 以上の構成により、請求項(1)の発明では、熱交換器
(22)下流の水循環路(51)において、サーモモジュー
ル(8)の吸熱部により水又は水溶液が再冷却され、熱
交換器(22)で過冷却された水等の過冷却状態が解消さ
れ、スラリー状の氷化物が生成される。
(Operation) With the above configuration, in the invention of claim (1), in the water circulation path (51) downstream of the heat exchanger (22), water or an aqueous solution is recooled by the heat absorption section of the thermomodule (8), The supercooled state of water or the like supercooled in the exchanger (22) is eliminated, and a slurry-like iced substance is produced.

その場合、水循環路(51)が蓄氷槽(5)との間で閉ル
ープを形成しており、この水循環路(51)内で水又は水
溶液が強制循環されるように構成されているので、単に
蓄氷槽の上方から氷を落下させるものに比べ、生成され
たスラリー状の氷が効率よく蓄氷槽(5)内に詰め込ま
れる。すなわち、いわゆるI.P.F.(Ice Packing Facto
r)(蓄氷率)が大幅に向上することになる。
In that case, the water circulation path (51) forms a closed loop with the ice storage tank (5), and the water or the aqueous solution is forcedly circulated in the water circulation path (51). The generated slurry-like ice is efficiently packed in the ice storage tank (5) as compared with a case where the ice is simply dropped from above the ice storage tank. That is, the so-called IPF (Ice Packing Facto
r) (Ice storage rate) will be greatly improved.

しかも、再冷却器としてサーモモジュール(8)が配設
されているので、冷媒回路の冷媒を利用した再冷却器の
ように冷媒の状態により冷却量が変化することはなく、
冷却量の調節が容易である。したがって、安定した過冷
却状態の解消作用が得られるとともに、サーモモジュー
ル(8)の熱交換部が管部材内に配置されているので、
過冷却水の流れの障害物として作用し、流れが乱流とな
ることで過冷却の解消効果が顕著になる。
Moreover, since the thermo module (8) is arranged as a recooler, the cooling amount does not change depending on the state of the refrigerant unlike the recooler using the refrigerant in the refrigerant circuit.
It is easy to adjust the cooling rate. Therefore, a stable effect of eliminating the supercooled state is obtained, and the heat exchange section of the thermomodule (8) is arranged in the pipe member.
It acts as an obstacle to the flow of supercooled water, and the flow becomes turbulent, so that the effect of eliminating supercooling becomes remarkable.

請求項(2)の発明では、請求項(1)の作用に加え、
サーモモジュール(8)の印加電圧の極性が所定時間毎
に切換えられるので、サーモモジュール(8)の熱交換
部が吸熱部となる期間には氷化物が生成される一方、放
熱部となる期間には氷化物の管壁への付着の解離により
凍結が阻止されて、単一の熱交換部で製氷と凍結防止と
が行われることになる。
In the invention of claim (2), in addition to the function of claim (1),
Since the polarity of the voltage applied to the thermo module (8) is switched at predetermined time intervals, ice is generated in the period in which the heat exchanging portion of the thermo module (8) serves as a heat absorbing portion, while that in the period serving as a heat radiating portion. Freezing is prevented by dissociation of adhesion of iced substances to the tube wall, and ice making and freeze prevention are performed in a single heat exchange section.

請求項(3)の発明では、上記請求項(2)の発明にお
いて、サーモモジュール(8)が複数個設けられ、各サ
ーモモジュール(8),…の熱交換部が吸熱部となる期
間がオーバーラップするようその印加電圧の極性が切換
えられるので、サーモモジュール(8),…のいずれか
の熱交換部で常時製氷が行われ、連続的な氷化物の生成
により製氷能力が向上することになる。
According to the invention of claim (3), in the invention of claim (2), a plurality of thermomodules (8) are provided, and the period in which the heat exchange parts of the thermomodules (8), ... Since the polarity of the applied voltage is switched so as to wrap, ice making is always performed in the heat exchange part of any of the thermo modules (8), ... .

請求項(4)の発明では、請求項(1)の作用に加え、
サーモモジュール(8)の吸熱部で水等が再冷却される
一方、放熱部で管壁への氷化物の付着が解離されるの
で、別途凍結進展防止のための部材を設けることなく、
熱交換器への凍結の進展が防止され、構成が簡素化され
ることになる。
In the invention of claim (4), in addition to the operation of claim (1),
Water and the like are re-cooled in the heat absorbing part of the thermo module (8), while adhesion of the iced substance to the pipe wall is dissociated in the heat radiating part, so there is no need to provide a separate member for preventing freezing progress.
Freezing to the heat exchanger is prevented from progressing and the structure is simplified.

請求項(5)の発明では、上記請求項(2),(3)又
は(4)の発明において、サーモモジュール(8)の熱
交換部が管部材内に配置されているので、各請求項
(2),(3)又は(4)の作用に加え、請求項1の作
用が奏されることになる。
According to the invention of claim (5), in the invention of claim (2), (3) or (4), the heat exchange part of the thermomodule (8) is arranged in the pipe member. In addition to the action of (2), (3) or (4), the action of claim 1 is achieved.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は第1実施例の空気調和装置の冷媒回路(1)の
構成を示し、(11)は第1圧縮機、(12)は該第1圧縮
機(11)の吐出側に配置され、冷媒と室外空気との熱交
換を行う室外熱交換器、(13)は該室外熱交換器(12)
の冷媒流量を調節し、又は減圧を行う室外電動膨張弁で
あって、上記各機器(11)〜(13)は第1管路(14)中
で直列に接続されている。
FIG. 2 shows the configuration of the refrigerant circuit (1) of the air conditioner of the first embodiment, where (11) is the first compressor and (12) is the discharge side of the first compressor (11). , An outdoor heat exchanger for exchanging heat between the refrigerant and the outdoor air, (13) is the outdoor heat exchanger (12)
Is an outdoor electric expansion valve that adjusts the refrigerant flow rate or reduces the pressure, and the above-mentioned devices (11) to (13) are connected in series in the first conduit (14).

また、(21)は第2圧縮機、(22)は該第2圧縮機(2
1)の吐出側に配置され、後述の蓄氷槽(5)の水又は
水溶液を過冷却するための水熱交換器、(23)は該水熱
交換器(22)が凝縮器として機能するときには冷媒流量
を調節し、蒸発器として機能するときには冷媒の減圧を
行う水側電動膨張弁であって、上記各機器(21)〜(2
3)は第2管路(24)中で直列に接続されている。
Further, (21) is the second compressor, (22) is the second compressor (2
A water heat exchanger arranged on the discharge side of 1) for supercooling water or an aqueous solution in an ice storage tank (5) described later, and (23) the water heat exchanger (22) functions as a condenser. It is a water-side electric expansion valve that adjusts the flow rate of the refrigerant at times and reduces the pressure of the refrigerant when it functions as an evaporator.
3) is connected in series in the second conduit (24).

なお、(SD1),(SD2)はそれぞれ各圧縮機(11),(21)
の吐出管に設けられた油分離器、(C1),(C2)は該各油分
離器(SD1),(SD2)から各圧縮機(11),(21)の吸入側
にそれぞれ設けられた油戻し管(RT1),(RT2)にそれぞれ
介設された減圧用キャピラリチューブである。
Note that (SD 1 ) and (SD 2 ) are the compressors (11) and (21), respectively.
The oil separators (C 1 ), (C 2 ) provided in the discharge pipe of each of the oil separators (SD 1 ), (SD 2 ) are connected to the suction side of each compressor (11), (21). These are capillary tubes for pressure reduction, which are respectively interposed in the oil return pipes (RT 1 ) and (RT 2 ) provided.

さらに、(32),(32)は各室内に配置される室内熱交
換器、(33),(33)は冷媒を減圧する減圧弁としての
室内電動膨張弁であって、上記各機器(32),(33)は
各々直列に接続され、かつその各組が第3管路(34)中
で並列に接続されている。
Further, (32) and (32) are indoor heat exchangers arranged in each room, and (33) and (33) are indoor electric expansion valves as pressure reducing valves for reducing the pressure of the refrigerant, and the above-mentioned devices (32). ) And (33) are connected in series, and each set is connected in parallel in the third conduit (34).

そして、上記第1管路(14)及び第2管路(24)は第3
管路(34)に対して並列に接続され、冷媒の循環可能な
閉回路を構成している。なお、(Ac)は各圧縮機(1
1),(21)の吸入側となる第3管路(34)に設けられ
たアキュムレータである。
The first pipeline (14) and the second pipeline (24) are the third
It is connected in parallel to the pipe line (34) and constitutes a closed circuit in which the refrigerant can circulate. Note that (Ac) is for each compressor (1
It is an accumulator provided in the third conduit (34) on the suction side of 1) and (21).

また、(2)は室外熱交換器(12)のガス管と室内熱交
換器(32),(32)のガス管とを各圧縮機(11),(2
1)の吐出側又は吸入側に交互に連通させるよう切換え
る四路切換弁(2)であって、該四路切換弁(2)が図
中実線側に切換わったときには室外熱交換器(12)が凝
縮器、室内熱交換器(32),(32)が蒸発器として機能
して室内で冷房運転を行う一方、四路切換弁(2)が図
中破線側に切換わったときには室外熱交換器(12)が蒸
発器、室内熱交換器(32),(32)が凝縮器として機能
して室内で暖房運転を行うようになされている。
Further, (2) includes a gas pipe of the outdoor heat exchanger (12) and gas pipes of the indoor heat exchangers (32) and (32) in the compressors (11) and (2
A four-way switching valve (2) which is switched so as to alternately communicate with the discharge side or the suction side of 1), and when the four-way switching valve (2) is switched to the solid line side in the figure, the outdoor heat exchanger (12 ) Functions as a condenser and the indoor heat exchangers (32) and (32) function as evaporators to perform indoor cooling operation, while the four-way switching valve (2) switches to the side of the broken line in the figure, the outdoor heat The exchanger (12) functions as an evaporator, and the indoor heat exchangers (32), (32) function as condensers to perform indoor heating operation.

さらに、該水熱交換器(22)のガス管と各圧縮機(1
1),(21)の吸入管とをバイパス接続する分岐路(2
5)と、水熱交換器(22)のガス管を上記第2圧縮機(2
1)の吐出管と分岐路(25)とに交互に連通させる水側
切換弁(26)とが設けられている。該水側切換弁(26)
は四路切換弁のうちの3つのポートを利用しており、水
側切換弁(26)が図中実線側に切換わったときには水熱
交換器(22)のガス管が分岐路(25)側つまり各圧縮機
(11),(21)の吸入側に連通し、水熱交換器(22)が
蒸発器として機能する一方、水側切換弁(26)が図中破
線側に切換わったときには水熱交換器(22)のガス管が
第2圧縮機(21)の吐出管に連通し、水熱交換器(22)
が凝縮器として機能するようになされている。なお、
(C3)は水側切換弁(26)のデッドポート側の配管に介
設されたキャピラリチューブである。
Further, the gas pipe of the water heat exchanger (22) and each compressor (1
Branch path (2) that bypass-connects the suction pipes of 1) and (21)
5) and the gas pipe of the water heat exchanger (22) to the second compressor (2
A water side switching valve (26) for alternately communicating with the discharge pipe of 1) and the branch passage (25) is provided. The water side switching valve (26)
Uses three ports of the four-way switching valve, and when the water side switching valve (26) is switched to the solid line side in the figure, the gas pipe of the water heat exchanger (22) has a branch path (25). Side, that is, communicating with the suction side of each compressor (11), (21), the water heat exchanger (22) functions as an evaporator, while the water side switching valve (26) is switched to the broken line side in the figure. Sometimes the gas pipe of the water heat exchanger (22) communicates with the discharge pipe of the second compressor (21), and the water heat exchanger (22)
Is designed to function as a condenser. In addition,
(C 3 ) is a capillary tube provided in the pipe on the dead port side of the water side switching valve (26).

さらに、第1圧縮機(11)及び第2圧縮機(21)の吐出
管同士を接続するバイパス路(3)が設けられていて、
該バイパス路(3)には第2圧縮機(21)の吐出管側か
ら第1圧縮機(11)の吐出管側への冷媒流通のみを許容
する逆止弁(4)が介設されている。
Furthermore, a bypass passage (3) for connecting the discharge pipes of the first compressor (11) and the second compressor (21) is provided,
A check valve (4) which allows only refrigerant flow from the discharge pipe side of the second compressor (21) to the discharge pipe side of the first compressor (11) is provided in the bypass passage (3). There is.

すなわち、室外熱交換器(12)及び水熱交換器(22)が
凝縮器として機能する際、水熱交換器(22)における凝
縮温度が高く圧力が高くなった場合、第2圧縮機(21)
の吐出ガスを室外熱交換器(12)側に逃がすことによ
り、放熱量を分配しうるようになされている。
That is, when the outdoor heat exchanger (12) and the water heat exchanger (22) function as condensers, when the condensation temperature in the water heat exchanger (22) is high and the pressure is high, the second compressor (21 )
The discharged gas is discharged to the outdoor heat exchanger (12) side so that the heat radiation amount can be distributed.

ここで、空気調和装置には、蓄熱媒体としての水又は水
溶液のスラリー状の氷化物を貯溜するための蓄氷槽
(5)が配置されていて、該蓄氷槽(5)と水熱交換器
(22)との間は、水循環路(51)により水又は水溶液の
循環可能に接続されている。該水循環路(51)は、蓄氷
槽(5)の底部から水熱交換器(22)に水等を供給する
往管路(51A)と、水熱交換器(22)から蓄氷槽(5)
の上部に水等のスラリー状の氷化物を戻す復管路(51
B)とからなっており、往管路(51A)に介設されたポン
プ(52)により、水循環路(51)内で蓄氷槽(5)の水
又は水溶液を強制循環させるようになされている。
Here, the air conditioner is provided with an ice storage tank (5) for storing a slurry iced product of water or an aqueous solution as a heat storage medium, and exchanges heat with the ice storage tank (5). A water circulation path (51) is connected to the container (22) so that water or an aqueous solution can circulate. The water circulation path (51) includes a forward path (51A) for supplying water and the like from the bottom of the ice storage tank (5) to the water heat exchanger (22), and an ice storage tank (22) from the water heat exchanger (22). 5)
Return conduit (51
B) and the pump (52) interposed in the outward path (51A) forcibly circulates the water or aqueous solution in the ice storage tank (5) in the water circulation path (51). There is.

そして、水循環路(51)の往管路(51A)のポンプ(5
2)の下流側には、水循環路(51)の水又は水溶液中の
氷結物やゴミ等の固体物を除去するストレーナ(53)が
介設され、さらに、該ストレーナ(53)の下流側には、
水熱交換器(22)に供給される水等を予熱する予熱熱交
換器(6)が介設されている。一方、冷媒回路(1)の
液ラインには、液冷媒の一部を水側電動膨張弁(23)を
バイパスさせて予熱熱交換器(6)に流通させる予熱バ
イパス路(61)が設けられていて、該予熱バイパス路
(61)の予熱熱交換器(6)の下流側には、冷媒の減圧
機能及び流量制御機能を有する予熱電動膨張弁(62)が
介設されている。該予熱電動膨張弁(62)と水側電動膨
張弁(23)とにより、予熱バイパス路(61)の冷媒流量
を調節するとともに、水熱交換器(22)の製氷運転時に
おける冷媒の減圧をも行うようになされている。
Then, the pump (5) of the forward path (51A) of the water circulation path (51)
On the downstream side of 2), a strainer (53) for removing solid matters such as iced matter and dust in the water or aqueous solution of the water circulation path (51) is provided, and further on the downstream side of the strainer (53). Is
A preheat heat exchanger (6) for preheating water supplied to the water heat exchanger (22) is provided. On the other hand, the liquid line of the refrigerant circuit (1) is provided with a preheating bypass passage (61) for flowing a part of the liquid refrigerant to the preheat heat exchanger (6) by bypassing the water side electric expansion valve (23). On the downstream side of the preheat heat exchanger (6) in the preheat bypass passage (61), a preheat electric expansion valve (62) having a refrigerant decompression function and a flow rate control function is provided. The preheat electric expansion valve (62) and the water side electric expansion valve (23) adjust the refrigerant flow rate of the preheat bypass passage (61) and reduce the pressure of the refrigerant during the ice making operation of the water heat exchanger (22). Is also supposed to do.

さらに、本発明の特徴として、上記水循環路(51)の復
管路(51B)において、水熱交換器(22)の下流側に
は、復管路(51B)の水等を冷却して水熱交換器(22)
で過冷却された水等の過冷却状態を解消させるためのサ
ーモモジュール(8)が設けられている。
Further, as a feature of the present invention, in the return conduit (51B) of the water circulation path (51), the water or the like in the return conduit (51B) is cooled on the downstream side of the water heat exchanger (22). Heat exchanger (22)
A thermo module (8) is provided for eliminating a supercooled state of water or the like supercooled in.

第3図及び第4図に示すように、該サーモモジュール
(8)は、定電圧電源(Es)により印加される電圧の極
性に応じて冷却面(吸熱部)と加熱面(放熱部)とを切
換える2つの熱交換部として機能する第1熱極(8a)及
び第2熱極(8b)とを有しており、ここでは、常時冷却
面となる第1熱極(8a)を復管路(51B)の配管の外壁
に密着させて取付けられている。すなわち、復管路(51
B)の管壁を介して水等を再冷却し、水熱交換器(7)
で過冷却された水等の過冷却状態を解消させてスラリー
状の氷化物を生成するようになされている。
As shown in FIGS. 3 and 4, the thermo module (8) has a cooling surface (heat absorbing portion) and a heating surface (heat radiating portion) depending on the polarity of the voltage applied by the constant voltage power source (Es). It has a first heat electrode (8a) and a second heat electrode (8b) that function as two heat exchange parts for switching between the two, and here, the first heat electrode (8a), which is always the cooling surface, is returned to the return pipe. It is attached in close contact with the outer wall of the pipe of the road (51B). That is, the return conduit (51
Water etc. is recooled through the pipe wall of B), and the water heat exchanger (7)
The supercooled state of water or the like supercooled in (1) is eliminated to produce a slurry-like frozen product.

なお、上記サーモモジュール(8)と水熱交換器(22)
との間には、復管路(51B)の凍結が水熱交換器(22)
まで進展するのを阻止するための凍結進展防止部として
の保温熱交換器(7)が設けられ、さらに、上記冷媒回
路(1)の液ラインからこの保温熱交換器(7)に液冷
媒をバイパスして流通させて液ラインに戻すようにした
保温バイパス路(71)が設けられていて、保温熱交換器
(7)において、液ラインの液冷媒との熱交換により復
管路(51B)を加熱して、上記再冷却器(8)や復管路
(51B)で水等の過冷却解消により生じた氷化物が復管
路(51B)の管壁に付着して凍結が水熱交換器(22)ま
で進展するのを防止するようになされている。
The thermo module (8) and the water heat exchanger (22)
Between the return pipe (51B) freezing and water heat exchanger (22)
A heat retention heat exchanger (7) is provided as a freezing progress prevention unit for preventing the heat transfer from reaching the heat retention heat exchanger (7) from the liquid line of the refrigerant circuit (1). A heat insulation bypass passage (71) is provided so as to bypass and flow back to the liquid line, and in the heat insulation heat exchanger (7), a return conduit (51B) by heat exchange with the liquid refrigerant in the liquid line. Is heated, and the frozen product produced by eliminating the supercooling of water in the re-cooler (8) and the return pipe (51B) adheres to the pipe wall of the return pipe (51B) to freeze the water heat exchange. It is designed to prevent it from reaching the vessel (22).

上記水熱交換器(22)、サーモモジュール(8)及び保
温熱交換器(7)により、スラリー状の氷化物を生成す
る製氷部(10)が構成されている。
The water heat exchanger (22), the thermo module (8), and the heat retention heat exchanger (7) constitute an ice making unit (10) that produces a slurry-like frozen product.

空気調和装置の運転時、室内で冷房運転を行うときに
は、四路切換弁(2)が図中実線側に切換えられる。そ
して、水側切換弁(26)が図中実線側に切換えられてい
るときには、各圧縮機(11),(21)からの吐出冷媒が
いずれも室外熱交換器(12)で凝縮された後、各室内熱
交換器(32),(32)で蒸発することにより、室内の冷
房を行う。また、水側切換弁(26)が図中破線側に切換
えられているときには、第1圧縮機(11)の吐出冷媒が
室外熱交換器(12)に流れる一方、第2圧縮機(21)の
吐出冷媒は水熱交換器(22)に流れ、それぞれ凝縮され
た後各室内熱交換器(32),(32)で蒸発するように循
環する。
The four-way switching valve (2) is switched to the solid line side in the figure when the air-conditioning apparatus is operating and the indoor cooling operation is performed. When the water side switching valve (26) is switched to the solid line side in the figure, after the refrigerant discharged from each of the compressors (11) and (21) has been condensed in the outdoor heat exchanger (12). , The indoor heat exchangers (32) and (32) evaporate to cool the room. When the water side switching valve (26) is switched to the broken line side in the figure, the refrigerant discharged from the first compressor (11) flows to the outdoor heat exchanger (12), while the second compressor (21). The discharged refrigerant flows into the water heat exchanger (22), is condensed, and then circulates so as to be evaporated in the indoor heat exchangers (32) and (32).

また、夜間等の電力が安価なときには、蓄氷槽(5)に
冷熱を蓄える蓄冷熱運転が行われる。すなわち、四路切
換弁(2)及び水側切換弁(26)を図中実線側に切換
え、各室内電動膨張弁(33),(33)を閉じて、各圧縮
機(11),(21)の吐出冷媒を室外熱交換器(12)で凝
縮させた後水側電動膨張弁(23)(又は予熱電動膨張弁
(62))で減圧して水熱交換器(22)で蒸発させること
により、蓄氷槽(5)の水又は水溶液を過冷却して氷化
し、蓄氷槽(5)に冷熱を蓄えるようになされている。
Further, when electric power is cheap at night or the like, a cold storage operation for storing cold heat in the ice storage tank (5) is performed. That is, the four-way switching valve (2) and the water side switching valve (26) are switched to the solid line side in the figure, the indoor electric expansion valves (33) and (33) are closed, and the compressors (11) and (21) are closed. ) Is condensed in the outdoor heat exchanger (12) and then decompressed by the water side electric expansion valve (23) (or preheat electric expansion valve (62)) to be evaporated by the water heat exchanger (22). Thus, the water or the aqueous solution in the ice storage tank (5) is supercooled to be iced, and cold heat is stored in the ice storage tank (5).

したがって、本実施例では、製氷運転時、水熱交換器
(22)下流側の復管路(51B)において、水熱交換器(2
2)で過冷却された水等がサーモモジュール(8)で再
冷却される。
Therefore, in this embodiment, during the ice making operation, the water heat exchanger (2) is provided in the return pipe (51B) on the downstream side of the water heat exchanger (22).
The water etc. supercooled in 2) is recooled in the thermo module (8).

その場合、水熱交換器(22)により過冷却された水等の
過冷却状態を再冷却により解消させてスラリー状の氷化
物を生成するためには、所定の冷却量が必要となる。こ
こで、本発明では、サーモモジュール(8)による冷却
量が印加電圧の値によって容易に調節されるので、冷媒
回路(1)からの冷媒を利用して水等を再冷却するもの
に比べて、冷媒の状態による冷却量のバラツキを生じる
ことがなく、よって、安定した製氷を行うことができる
のである。
In that case, a predetermined amount of cooling is required in order to eliminate the supercooled state of water or the like supercooled by the water heat exchanger (22) by recooling to generate a slurry-like iced substance. Here, in the present invention, since the cooling amount by the thermo module (8) is easily adjusted by the value of the applied voltage, compared with the case where the refrigerant from the refrigerant circuit (1) is used to recool water or the like. Therefore, the amount of cooling does not vary depending on the state of the refrigerant, and thus stable ice making can be performed.

次に、第2実施例について説明する。第5図は第2実施
例における製氷部(10)付近の構成を示し、冷媒回路
(10)の構成は上記第1実施例と同様である。本実施例
では、上記サーモモジュール(8)は水熱交換器(22)
下流の復管路(51B)の配管内に第1熱極(8a)が下面
に、第2熱極(8b)が上面となるよう水平に配置されて
いて、第1熱極(8a)及び第2熱極(8b)のいずれもが
水等に直接接触するようになされている。そして、第6
図に示すように、上記第1熱極(8a)及び第2熱極(8
b)に印加される電圧Vの極性は、一定時間(例えば5
〜10分間程度の時間)毎に正逆反転するようになされて
いて、この反転により、各極(8a),(8b)が冷却面と
加熱面とに切換えられるようになされている。
Next, a second embodiment will be described. FIG. 5 shows the structure in the vicinity of the ice making section (10) in the second embodiment, and the structure of the refrigerant circuit (10) is the same as in the first embodiment. In this embodiment, the thermo module (8) is a water heat exchanger (22).
The first heat electrode (8a) is horizontally arranged in the pipe of the downstream return conduit (51B) so that the first heat electrode (8a) is on the lower surface and the second heat electrode (8b) is on the upper surface, and the first heat electrode (8a) and All of the second hot electrodes (8b) are designed to come into direct contact with water or the like. And the sixth
As shown in the figure, the first hot electrode (8a) and the second hot electrode (8a)
The polarity of the voltage V applied to b) is fixed for a certain time (for example, 5 V).
It is designed so as to be reversible every time (about 10 minutes), and by this reversal, each pole (8a), (8b) is switched to the cooling surface and the heating surface.

したがって、本実施例では、サーモモジュール(8)に
印加される電圧の極性が所定時間毎に切換えられるの
で、復管路(51B)の加熱、冷却が切換えられる。すな
わち、サーモモジュール(8)が冷却器として機能する
ときには、水熱交換器(22)で過冷却された水等の過冷
却状態を解消させてスラリー状の氷化物を生成する一
方、サーモモジュール(8)が加熱器として機能すると
きには、生成した氷化物の復管路(51B)の管壁への付
着を解離させ、管壁付近の凍結を防止することができ
る。よって、製氷効率の低下を有効に防止することがで
きることになる。
Therefore, in the present embodiment, since the polarity of the voltage applied to the thermo module (8) is switched every predetermined time, heating and cooling of the return conduit (51B) are switched. That is, when the thermomodule (8) functions as a cooler, the supercooled state of water or the like supercooled by the water heat exchanger (22) is eliminated to generate a glaze in the form of a slurry, while the thermomodule ( When 8) functions as a heater, it is possible to dissociate the produced iced substance from adhering to the tube wall of the return conduit (51B) and prevent freezing near the tube wall. Therefore, it is possible to effectively prevent a decrease in ice making efficiency.

なお、上記実施例ではサーモモジュール(8)を復管路
(51B)の配管内に配置したが、第1熱極(8a)及び第
2熱極(8b)がいずれも復管路(51B)の配管に接触す
るような状態で配管外壁に取付けるようにしてもよい。
Although the thermomodule (8) is arranged in the pipe of the return conduit (51B) in the above embodiment, both the first heat electrode (8a) and the second heat electrode (8b) are in the return conduit (51B). It may be attached to the outer wall of the pipe so as to be in contact with the pipe.

上記実施例のように、サーモモジュール(8)を復管路
(51B)の配管内に配置したので、サーモモジュール
(8)の両面を形成する第1熱極(8a)又は第2熱極
(8b)のいずれか一方が冷却面となるときには他方が加
熱面となる。したがって、所定時間毎に印加電圧の特性
が切換えられることにより、両面を利用して、氷化物の
生成とその管壁への付着の解離とを単一の部材で行うこ
とができる。
Since the thermomodule (8) is arranged in the pipe of the return conduit (51B) as in the above embodiment, the first heat electrode (8a) or the second heat electrode (8a) that forms both surfaces of the thermomodule (8) ( When either one of 8b) is the cooling surface, the other is the heating surface. Therefore, by switching the characteristics of the applied voltage at every predetermined time, it is possible to use both surfaces to generate the iced substance and dissociate the adherence to the tube wall with a single member.

また、配管にこのような水等の流れの障害物となるもの
を配置することにより、流れが乱されて渦が発生するの
で、その渦エネルギにより過冷却状態の解消を促進する
ことができる利点をも有する。
In addition, by arranging such an obstacle for the flow of water or the like in the pipe, the flow is disturbed and a vortex is generated, so that the vortex energy can accelerate the elimination of the supercooled state. Also has.

次に、第3実施例について説明する。第7図は第3実施
例における製氷部(10)付近の構成を示し、冷媒回路
(1)の構成は上記第1実施例と同様である。本実施例
では、上記第2実施例に対し、複数個(三個)の第1〜
第3サーモモジュール(8A),(8B),(8C)が復管路
(51B)の配管内で水等の流れに沿って並ぶように配置
されていて、各サーモモジュール(8A)〜(8C)の吸熱
サイクルがラップするようになされている。すなわち、
第8図に示すように、第1サーモモジュール(8A)の印
加電圧が所定時間t0毎に正逆反転する(図中の実線)
のに対して、第2サーモモジュール(8B)の印加電圧が
同じ変化パターンでその位相だけが(1/3)t0だけずれ
(図中の破線)、第3サーモモジュール(8C)の印加
電圧は上記第2サーモモジュール(8B)と同じパターン
で位相が(1/3)t0だけずれる(図中の破線)ように
なされており、各サーモモジュール(8A)〜(8C)には
冷却器として機能する熱交換部が常にどこかに存在する
ことになり、上述のようなスラリー状の氷化物の生成を
連続的に行うことができ、よって、製氷能力の向上を図
ることができる。
Next, a third embodiment will be described. FIG. 7 shows the structure in the vicinity of the ice making section (10) in the third embodiment, and the structure of the refrigerant circuit (1) is the same as in the first embodiment. In the present embodiment, a plurality (three) of the first to third embodiments are provided in comparison with the second embodiment.
The third thermomodules (8A), (8B), (8C) are arranged along the flow of water or the like in the pipe of the return conduit (51B), and the thermomodules (8A) to (8C) are arranged. ) The endothermic cycle is designed to wrap. That is,
As shown in FIG. 8, the applied voltage of the first thermomodule (8A) is inverted every time a predetermined time t 0 (solid line in the figure).
On the other hand, the applied voltage of the second thermo module (8B) has the same change pattern, and only the phase thereof is shifted by (1/3) t 0 (broken line in the figure), and the applied voltage of the third thermo module (8C) Has the same pattern as the second thermo module (8B) and has a phase shift of (1/3) t 0 (broken line in the figure). Each thermo module (8A) to (8C) has a cooler. The heat exchanging portion functioning as is always present somewhere, and it is possible to continuously generate the above-mentioned slurry-like iced product, and thus to improve the ice making capacity.

特に、上記第3実施例のように、復管路(51B)の配管
内に各サーモモジュール(8A)〜(8C)を配置した場
合、吸熱部と放熱部とが各サーモモジュール(8A)〜
(8C)の両面でその機能を切換えて得られるので、著効
を発揮するものである。
In particular, when the thermomodules (8A) to (8C) are arranged in the pipe of the return conduit (51B) as in the third embodiment, the heat absorbing section and the heat radiating section include the thermomodules (8A) to (8A).
Since it can be obtained by switching the function on both sides of (8C), it is extremely effective.

次に、第4実施例について説明する。第9図は第4実施
例に係る空気調和装置の冷媒回路(1)の構成を示し、
上記各実施例とは異なり、本実施例では保温熱交換器
(7)及び保温バイス路(71)は設けられていない。そ
の他の構成は上記第1実施例の構成と同じである。第10
図は第4実施例における製氷部(10)付近の構成を示
し、水熱交換器(22)直下流の復管路(51B)には、単
一のサーモモジュール(8)が配管内に配置されてい
る。該サーモモジュール(8)は、各極(8a),(8b)
間に長い熱分極生成用の棒材を備え、冷却面となる第1
熱極(8a)が下流側に、加熱面となる第2熱極(8b)が
上流側に向くように配置されていて、下流側の第1熱極
(8a)で水等を再冷却してスラリー状の氷化物を生成す
る一方、上流側の第2熱極(8b)で氷化物等の復管路
(51B)への付着を解離させるようになされている。
Next, a fourth embodiment will be described. FIG. 9 shows the configuration of the refrigerant circuit (1) of the air conditioner according to the fourth embodiment,
Unlike the above embodiments, the heat retaining heat exchanger (7) and the heat retaining vice path (71) are not provided in this embodiment. The other structure is the same as that of the first embodiment. 10th
The figure shows the configuration near the ice making part (10) in the fourth embodiment, and a single thermo module (8) is arranged in the pipe in the return pipe (51B) immediately downstream of the water heat exchanger (22). Has been done. The thermo module (8) has poles (8a), (8b)
A long rod for generating thermal polarization is provided between
The hot electrode (8a) is placed on the downstream side and the second hot electrode (8b), which is the heating surface, is placed on the upstream side, and the first hot electrode (8a) on the downstream side recools water and the like. The second hot electrode (8b) on the upstream side dissociates the adhesion of the iced matter or the like to the return conduit (51B) while the slurry-like iced matter is generated.

したがって、本実施例では、サーモモジュール(8)の
第1熱極(吸熱部)(8a)で水等を再冷却してその過冷
却状態を解消させてスラリー状の氷化物を生成する一
方、第2熱極(放熱部)(8b)で氷化物の管壁への付着
が解離され、水熱交換器(22)への凍結の進展が防止さ
れるので、水熱交換器(22)の熱交換率が低下するのを
有効に防止することができる。よって、上記第1実施例
における保温熱交換器(7)のような凍結進展防止のた
めの部材を別途設ける必要がなくなり、構成の簡素化を
図ることができる。
Therefore, in the present embodiment, while water or the like is re-cooled by the first heat electrode (heat absorption part) (8a) of the thermo module (8) to eliminate the supercooled state and produce a slurry-like iced product, Since the adhesion of the iced substance to the tube wall is dissociated by the second heat electrode (heat dissipation part) (8b) and the progress of freezing to the water heat exchanger (22) is prevented, the water heat exchanger (22) It is possible to effectively prevent the heat exchange rate from decreasing. Therefore, it is not necessary to separately provide a member for preventing the freezing progress such as the heat retention heat exchanger (7) in the first embodiment, and the configuration can be simplified.

なお、上記第4実施例では、サーモモジュール(8)を
単一のもので構成したが、例えば板状のもの(規格品)
を複数枚重ね合わせることにより、吸熱部と放熱部との
距離を確保して、放熱部を凍結進展防止部として利用す
ることも可能であり、また、サーモモジュール(8)が
配管の外壁に取付けられていてもよい。
In the fourth embodiment, the thermo module (8) is composed of a single one, but it is, for example, a plate-shaped one (standard product).
It is also possible to secure the distance between the heat absorbing part and the heat radiating part by stacking a plurality of them, and to use the heat radiating part as a freezing progress preventing part. Moreover, the thermo module (8) is attached to the outer wall of the pipe. It may be.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、蓄
氷槽に対して閉ループを形成するように接続される水循
環路を設け、蓄氷槽の水等を水循環路に強制循環させ、
熱交換器で過冷却した後、下流側の管部材内に配置され
たサーモモジュールの吸熱部となる熱交換部により水等
を再冷却するようにしたので、冷却量の調節の容易化に
よるスラリー状の氷化物の生成の安定化と、障害物効果
の付加による過冷却解消効果の向上とを図りつつ、高い
製氷効率を発揮することができる。
(Effect of the invention) As described above, according to the invention of claim (1), the water circulation path connected to the ice storage tank so as to form a closed loop is provided, and the water in the ice storage tank is circulated. Force circulation to the road,
After supercooling with a heat exchanger, water etc. is re-cooled by the heat exchange part which is the heat absorption part of the thermomodule arranged in the downstream pipe member, so the slurry can be adjusted easily by adjusting the cooling amount. It is possible to achieve high ice making efficiency while stabilizing the production of iced ice-like products and improving the effect of eliminating supercooling by adding the obstacle effect.

請求項(2)の発明によれば、蓄氷槽に対して閉ループ
を形成するように接続される水循環路を設け、蓄氷槽の
水等を水循環路に強制循環させ、熱交換器で過冷却した
後、下流側の管部材内に配置されたサーモモジュールの
熱交換部で再冷却するとともに、サーモモジュールの印
加電圧の特性を所定時間毎に切換えるようにしたので、
熱交換部が吸熱部となる期間には氷化物を生成する一
方、放熱部となる期間には氷化物の管壁への付着による
凍結を防止することができ、よって、請求項(1)の効
果に加え、単一のサーモモジュールによって製氷と凍結
防止とを行うことができる。
According to the invention of claim (2), a water circulation path connected to the ice storage tank so as to form a closed loop is provided, and water or the like in the ice storage tank is forcedly circulated in the water circulation path, and the water is passed through the heat exchanger. After cooling, the heat exchange section of the thermo module arranged in the pipe member on the downstream side is re-cooled, and the characteristic of the applied voltage of the thermo module is switched every predetermined time.
During the period when the heat exchanging portion functions as the heat absorbing portion, the iced matter is generated, while during the period when the heat exchanging portion functions as the heat radiating portion, it is possible to prevent freezing due to the adhesion of the iced matter to the pipe wall. In addition to the effects, a single thermo-module can be used for ice making and freeze protection.

請求項(3)の発明によれば、上記請求項(2)の発明
において、サーモモジュールを複数個配置し、各サーモ
モジュールの熱交換部が吸熱部となる期間をオーバーラ
ップするよう各サーモモジュールの印加電圧の極性を切
換えるようにしたので、各サーモモジュールのいずれか
の熱交換部で必ず過冷却の解消を行って連続的に製氷を
行うことができ、よって、蓄氷能力の向上を図ることが
できる。
According to the invention of claim (3), in the invention of claim (2), a plurality of thermomodules are arranged, and each thermomodule is arranged so that the heat exchange section of each thermomodule overlaps a period of being a heat absorbing section. Since the polarity of the applied voltage is switched, the supercooling must be eliminated at any heat exchange part of each thermomodule and continuous ice making can be performed, thus improving the ice storage capacity. be able to.

請求項(4)の発明によれば、蓄氷槽に対して閉ループ
を形成するように接続される水循環路を設け、蓄氷槽の
水等を水循環路に強制循環させ、熱交換器で過冷却した
後、熱交換器下流の復管路に配置されたサーモモジュー
ルの吸熱部で水等を再冷却して過冷却状態を解消させる
とともに、放熱部で復管路管壁への氷化物の付着を解離
させて熱交換器への凍結の進展を防止するようにしたの
で、請求項(1)の効果に加え、別途凍結進展防止のた
めの部材を設ける必要がなくなり、構成の簡素化を図る
ことができる。
According to the invention of claim (4), the water circulation path connected to the ice storage tank so as to form a closed loop is provided, and the water etc. in the ice storage tank is forcedly circulated in the water circulation path. After cooling, the heat absorption part of the thermomodule placed in the return pipe downstream of the heat exchanger recools water etc. to eliminate the supercooled state, and at the heat dissipation part, it is possible to prevent the formation of ice on the return pipe wall. Since the adhesion is dissociated to prevent the freezing progress to the heat exchanger, in addition to the effect of claim (1), it is not necessary to provide a separate member for preventing the freezing progress, and the structure is simplified. Can be planned.

請求項(5)の発明によれば、上記請求項(2),
(3)又は(4)の発明において、サーモモジュールを
復管路の配管内に配置するようにしたので、サーモモジ
ュールの熱交換部による障害物効果を利用して、水等の
過冷却状態の解消を促進させることができる。
According to the invention of claim (5), the above-mentioned claim (2),
In the invention of (3) or (4), since the thermomodule is arranged in the pipe of the return conduit, the obstruction effect of the heat exchange section of the thermomodule is used to prevent the supercooling of water or the like. The solution can be promoted.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の基本的な構成を示すブロック図であ
る。第2図〜第4図は第1実施例を示し、第2図は空気
調和装置の冷媒回路の構成を示す冷媒配管系統図、第3
図は製氷部付近の構成を一部を縦断面で示す側面図、第
4図はサーモモジュールの構造を概略的に示す側面図、
第5図及び第6図は第2実施例を示し、第5図は空気調
和装置の冷媒回路の構成を示す冷媒配管系統図、第6図
はサーモモジュールの印加電圧の極性の時間変化を示す
特性図、第7図及び第8図は第3実施例を示し、第7図
は製氷部付近の構成を一部を縦断面で示す側面図、第8
図は各サーモモジュールの極性変化を示す特性図、第9
図及び第10図は第4実施例を示し、第9図は空気調和装
置の冷媒回路の構成を示す冷媒配管系統図、第10図は製
氷部付近の構成を一部を縦断面で示す側面図である。 5……蓄氷槽 8……サーモモジュール 8a……第1熱極 8b……第2熱極 22……水熱交換器 51……水循環路
FIG. 1 is a block diagram showing the basic configuration of the present invention. 2 to 4 show the first embodiment, and FIG. 2 shows the refrigerant piping system diagram showing the configuration of the refrigerant circuit of the air conditioner, and FIG.
The figure is a side view showing a part of the structure near the ice making section in a longitudinal section, and Fig. 4 is a side view schematically showing the structure of the thermomodule,
5 and 6 show the second embodiment, FIG. 5 is a refrigerant piping system diagram showing the configuration of the refrigerant circuit of the air conditioner, and FIG. 6 is a time change of the polarity of the voltage applied to the thermomodule. FIG. 7 is a characteristic view, FIG. 7 and FIG. 8 show a third embodiment, and FIG. 7 is a side view showing a part of the structure in the vicinity of the ice making section in a longitudinal section.
The figure is the characteristic diagram showing the polarity change of each thermo module, 9th
Drawing and Drawing 10 show a 4th example, Drawing 9 is a refrigerant piping system diagram showing composition of a refrigerant circuit of an air harmony device, and Drawing 10 is a side view which shows a part of composition near an ice making part in a longitudinal section. It is a figure. 5: Ice storage tank 8: Thermo module 8a: First heat pole 8b: Second heat pole 22: Water heat exchanger 51: Water circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲沢 優司 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Nakazawa 1304 Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industries, Ltd. Sakai Factory Kanaoka Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水又は水溶液のスラリー状の氷化物を貯溜
するための蓄氷槽(5)と、管部材で構成され上記蓄氷
槽(5)に対して閉ループを形成するように接続されて
水又は水溶液を強制循環させるための水循環路(51)
と、 上記水循環路(51)に介設されかつ冷却装置に接続され
て、上記水循環路(51)を流れる水又は水溶液を低温状
態まで過冷却するための熱交換器(22)と、 印加電圧の極性に応じて吸熱部又は放熱部となる2つの
熱交換部を有し、該2つの熱交換部のうち少なくとも吸
熱部となる熱交換部が上記水循環路(51)の管部材内に
配置されて、水又は水溶液の過冷却状態を解消させるよ
う上記水又は水溶液を再冷却するサーモモジュール
(8)と を備えたことを特徴とする製氷装置。
1. An ice storage tank (5) for storing iced substances in the form of a slurry of water or an aqueous solution, and a pipe member connected to the ice storage tank (5) so as to form a closed loop. Water circulation path for forced circulation of water or aqueous solution (51)
A heat exchanger (22) installed in the water circulation path (51) and connected to a cooling device for supercooling the water or aqueous solution flowing in the water circulation path (51) to a low temperature state; Has two heat exchanging parts which are heat absorbing parts or heat radiating parts depending on the polarity of the heat exchanging part, and at least the heat exchanging part which is the heat absorbing part of the two heat exchanging parts is arranged in the pipe member of the water circulation path (51). And a thermomodule (8) for recooling the water or the aqueous solution so as to eliminate the supercooled state of the water or the aqueous solution.
【請求項2】水又は水溶液のスラリー状の氷化物を貯溜
するための蓄氷槽(5)と、管部材で構成され上記蓄氷
槽(5)に対して閉ループを形成するように接続されて
水又は水溶液を強制循環させるための水循環路(51)
と、 上記水循環路(51)に介設されかつ冷却装置に接続され
て、上記水循環路(51)を流れる水又は水溶液を低温状
態まで過冷却するための熱交換器(22)と、 印加電圧の極性に応じて吸熱部−放熱部に変化する2つ
の熱交換部を有し、該2つの熱交換部のうちの1つの熱
交換部が上記水循環路(51)の水又は水溶液との熱交換
が可能に配置されかつ印加電圧の極性が所定時間毎に切
換えられて、吸熱部となる期間には水又は水溶液の過冷
却状態を解消させるよう上記水又は水溶液を再冷却する
一方、放熱部となる期間には氷化物の管部材の内壁への
付着を介離させるよう加熱するサーモモジュール(8)
と を備えたことを特徴とする製氷装置。
2. An ice storage tank (5) for storing iced substances in the form of a slurry of water or an aqueous solution, and a pipe member connected to the ice storage tank (5) so as to form a closed loop. Water circulation path for forced circulation of water or aqueous solution (51)
A heat exchanger (22) installed in the water circulation path (51) and connected to a cooling device for supercooling the water or aqueous solution flowing in the water circulation path (51) to a low temperature state; Has two heat exchange parts that change from a heat absorption part to a heat dissipation part according to the polarity of the heat exchange part, and one heat exchange part of the two heat exchange parts heats the water or aqueous solution in the water circulation path (51). It is arranged so that it can be exchanged, and the polarity of the applied voltage is switched every predetermined time, while the water or aqueous solution is recooled so as to eliminate the supercooled state of the water or aqueous solution during the period when it becomes the heat absorbing section, while the heat radiating section is used. (8) that heats so as to separate the adhesion of the iced substance to the inner wall of the tube member during the period
And an ice-making device.
【請求項3】請求項(2)記載の製氷装置において、 上記サーモモジュール(8)は複数個設けられ、各サー
モモジュール(8)の吸熱部となる期間同士がオーバー
ラップするように構成されていることを特徴とする製氷
装置。
3. The ice making device according to claim 2, wherein a plurality of the thermomodules (8) are provided, and the periods serving as the heat absorbing parts of the thermomodules (8) overlap each other. An ice making device characterized in that
【請求項4】水又は水溶液のスラリー状の氷化物を貯溜
するための蓄氷槽(5)と、管部材で構成され上記蓄氷
槽(5)に対して閉ループを形成するように接続されて
水又は水溶液を強制循環させるための水循環路(51)
と、 上記水循環路(51)に介設されかつ冷却装置に接続され
て、上記水循環路(51)を流れる水又は水溶液を低温状
態まで過冷却するための熱交換器(22)と、 常時一定の印加電圧の極性に応じて常時吸熱部又は常時
放熱部となる2つの熱交換部を有し、該2つの熱交換部
が上記水循環路(51)の水又は水溶液との熱交換が可能
に配置されて、上記常時吸熱部となる熱交換部で水又は
水溶液の過冷却状態を解消させるよう上記水又は水溶液
を再冷却する一方、上記常時放熱部となる熱交換部で上
記熱交換器側への凍結の進展を防止するよう加熱するサ
ーモモジュール(8)と を備えたことを特徴とする製氷装置。
4. An ice storage tank (5) for storing iced material in the form of a slurry of water or an aqueous solution, and a pipe member connected to the ice storage tank (5) so as to form a closed loop. Water circulation path for forced circulation of water or aqueous solution (51)
And a heat exchanger (22) that is interposed in the water circulation path (51) and is connected to a cooling device to supercool water or aqueous solution flowing through the water circulation path (51) to a low temperature state, Has two heat exchanging parts which are always heat absorbing parts or constantly radiating parts depending on the polarity of the applied voltage, and the two heat exchanging parts enable heat exchange with the water or aqueous solution in the water circulation path (51). The water or aqueous solution is arranged so as to recool the water or the aqueous solution so as to eliminate the supercooled state of the water or the aqueous solution in the heat exchanging section which is always the heat absorbing section, and the heat exchanger side is the heat exchanging section which is always the heat radiating section. Ice making device comprising a thermo module (8) for heating so as to prevent the progress of freezing to the ice.
【請求項5】請求項(2),(3)又は(4)記載の製
氷装置において、 上記サーモモジュール(8)の熱交換部が上記水循環路
(51)の管部材内に配置されていることを特徴とする製
氷装置。
5. The ice making device according to claim (2), (3) or (4), wherein the heat exchange section of the thermomodule (8) is arranged in the pipe member of the water circulation path (51). An ice making device characterized in that
JP2158093A 1990-06-15 1990-06-15 Ice making equipment Expired - Fee Related JPH07111289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158093A JPH07111289B2 (en) 1990-06-15 1990-06-15 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158093A JPH07111289B2 (en) 1990-06-15 1990-06-15 Ice making equipment

Publications (2)

Publication Number Publication Date
JPH0448175A JPH0448175A (en) 1992-02-18
JPH07111289B2 true JPH07111289B2 (en) 1995-11-29

Family

ID=15664151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158093A Expired - Fee Related JPH07111289B2 (en) 1990-06-15 1990-06-15 Ice making equipment

Country Status (1)

Country Link
JP (1) JPH07111289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029661A (en) * 2004-07-15 2006-02-02 Miura Co Ltd Ice storage type water cooler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195769A (en) * 1982-05-11 1983-11-15 エドウイン・ジエイムス・フリ−バ−ン Cooling device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065536Y2 (en) * 1988-03-28 1994-02-09 高砂熱学工業株式会社 Device for releasing supercooled water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195769A (en) * 1982-05-11 1983-11-15 エドウイン・ジエイムス・フリ−バ−ン Cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029661A (en) * 2004-07-15 2006-02-02 Miura Co Ltd Ice storage type water cooler
JP4507274B2 (en) * 2004-07-15 2010-07-21 三浦工業株式会社 Ice storage type cold water system

Also Published As

Publication number Publication date
JPH0448175A (en) 1992-02-18

Similar Documents

Publication Publication Date Title
CN203323456U (en) Heat pump device
US6170270B1 (en) Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
WO2013046720A1 (en) Hot-water-supplying, air-conditioning system
US20070209380A1 (en) Thermal superconductor refrigeration system
JPH06508199A (en) Combined multi-mode air conditioner and negative energy storage system
US4712387A (en) Cold plate refrigeration method and apparatus
US5860287A (en) Coolness storage for fixed capacity refrigeration system
JP2001330280A (en) Ice thermal storage unit
JPH07111289B2 (en) Ice making equipment
JPH0828932A (en) Thermal storage type air conditioner
JP3360637B2 (en) Refrigeration air conditioner
JP3408022B2 (en) Refrigeration equipment
JPH04356677A (en) Cold accumulating type refrigerator
JP2727754B2 (en) Ice making equipment
JP4270803B2 (en) Cold generation system
JP2982742B2 (en) Ice making equipment
JP2789852B2 (en) Ice making equipment
JP3197051B2 (en) Load storage water return method for ice storage system
JP2551817B2 (en) Refrigeration system using ice heat storage
JP2761610B2 (en) Ice making equipment
JPH0561539B2 (en)
JPH0799303B2 (en) Ice making equipment
JP2924460B2 (en) Air conditioner
JPH0810099B2 (en) Ice making equipment
JP3788391B2 (en) Ice heat storage device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees