JPH07110999B2 - Circulating water system anticorrosion equipment using seawater - Google Patents

Circulating water system anticorrosion equipment using seawater

Info

Publication number
JPH07110999B2
JPH07110999B2 JP63006717A JP671788A JPH07110999B2 JP H07110999 B2 JPH07110999 B2 JP H07110999B2 JP 63006717 A JP63006717 A JP 63006717A JP 671788 A JP671788 A JP 671788A JP H07110999 B2 JPH07110999 B2 JP H07110999B2
Authority
JP
Japan
Prior art keywords
circulating water
water pipe
seawater
sacrificial anode
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63006717A
Other languages
Japanese (ja)
Other versions
JPH01184290A (en
Inventor
勝也 大井
克明 田中
修一 稲垣
素直 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63006717A priority Critical patent/JPH07110999B2/en
Priority to DE8989100352T priority patent/DE68901269D1/en
Priority to EP89100352A priority patent/EP0324440B1/en
Priority to KR1019890000359A priority patent/KR920004508B1/en
Priority to CN 89100284 priority patent/CN1014806B/en
Publication of JPH01184290A publication Critical patent/JPH01184290A/en
Publication of JPH07110999B2 publication Critical patent/JPH07110999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/004Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using protective electric currents, voltages, cathodes, anodes, electric short-circuits

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、冷却に海水を使用する発電プラントのチタン
熱交換器およびこの熱交換器に接続される循環水系の防
食装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a titanium heat exchanger of a power plant that uses seawater for cooling, and a circulating water system anticorrosion device connected to the heat exchanger. It is about.

(従来の技術) 従来の発電プラントの熱交換器の冷却には海水を使用す
るものが種々ある。最近の発電プラントでは、信頼性向
上を重要視する観点から海水に対する耐食性に極めて優
れたチタンの特性に着目して伝熱管および管板等の熱交
換部にチタンを用いたいわゆるチタン熱交換器が多く利
用されている。このチタン熱交換器の水室は、一般に炭
素鋼より形成されているが、耐海水腐蝕性を向上するた
めに信頼性の高いライニング(例えばゴムライニング)
をその内面に施している。
(Prior Art) There are various types that use seawater for cooling a heat exchanger of a conventional power generation plant. In recent power plants, so-called titanium heat exchangers that use titanium for heat exchange parts such as heat transfer tubes and tube sheets have been developed by focusing on the characteristics of titanium, which has extremely excellent corrosion resistance to seawater, from the viewpoint of improving reliability. Many are used. The water chamber of this titanium heat exchanger is generally made of carbon steel, but has a highly reliable lining (for example, rubber lining) to improve seawater corrosion resistance.
Is applied to the inside.

一方、循環水管の材質は、炭素鋼からなりその内面にコ
ーテング(例えばタールエポキシコーテイング)が施さ
れている。この循環水管内面に信頼性の高いライニング
を施すことも可能ではあるが、一般に、その循環水管は
その全長が長く、また口径も大なのでその全長にわたり
信頼性の高いライニングをすることは経済的に得策でな
いため、循環水管の内面にライニングを施すことは一般
的に行われていない。そのため、従来、熱交換器とその
循環水管系の海水に対する防食は次のようになされてい
る。すなわち、熱交換器の伝熱管および管板はチタン、
水室は炭素鋼により形成し、水室の内面には信頼性の高
いライニングを施してガルバニック腐食を防いでおり、
一方循環水管にはコーテングを施している。そして、こ
の循環水管には、コーテングが損傷した場合を考慮して
信頼性向上の観点から、最近では防食装置が設けられる
ことが多い。
On the other hand, the material of the circulating water pipe is made of carbon steel, and the inner surface thereof is coated (for example, tar epoxy coating). Although it is possible to apply a highly reliable lining to the inner surface of this circulating water pipe, it is generally economical to make a reliable lining over the entire length because the circulating water pipe has a long overall length and a large diameter. Since it is not a good idea, the inner surface of the circulating water pipe is not generally lined. Therefore, conventionally, the heat exchanger and its circulating water pipe system are protected against corrosion by seawater as follows. That is, the heat transfer tubes and tube plates of the heat exchanger are titanium,
The water chamber is made of carbon steel, and the inner surface of the water chamber has a highly reliable lining to prevent galvanic corrosion.
On the other hand, the circulating water pipe is coated. Then, from the viewpoint of improving reliability in consideration of the case where the coating is damaged, the circulating water pipe is often provided with an anticorrosion device these days.

(発明が解決しようとする課題) ところが、このような従来の海水系配管は、機器の防食
の観点から見た場合、次のような問題点がある。すなわ
ち、チタンは、−600mv・SCE(飽和甘汞(こう)電位)
以下の電位では、水素脆化を起す特性があるため、チタ
ンを用いる場合にはこれ以上の電位にチタンの電位を保
つ必要がある。
(Problems to be Solved by the Invention) However, such a conventional seawater piping has the following problems from the viewpoint of corrosion protection of equipment. That is, titanium is -600mv SCE (saturated sweetpotential).
The potentials below cause hydrogen embrittlement, so that when titanium is used, it is necessary to maintain the potential of titanium at a potential higher than that.

一方、炭素鋼製の循環水管においては、その内面に施し
たコーテングが損傷した場合、チタンと炭素鋼との自然
電位の差(すなわち前者が−150〜+50mv・SCE、後者が
−460〜−720mv・SCE)により炭素鋼がガルバニック腐
蝕を受け損傷する危険性があるため、循環水管は、その
電位を−770mv・SCE以下にする必要がある。
On the other hand, in a carbon steel circulating water pipe, when the coating applied to its inner surface is damaged, the difference in spontaneous potential between titanium and carbon steel (that is, the former is -150 to +50 mv SCE, the latter is -460 to -720 mv・ Since carbon steel may be damaged by galvanic corrosion due to (SCE), the potential of the circulating water pipe must be below -770 mv · SCE.

このように、チタンおよび炭素鋼からなる循環水管の両
者の使用条件を満足しようとすると、熱交換器と循環水
管との接続部近傍に制御不能な電位域(−600〜−770mv
・SCEの間)が出現し、防食設計上の問題あるいは実プ
ラントの信頼性上の問題が生じる。
In this way, if it is attempted to satisfy the usage conditions of both the circulating water pipe made of titanium and carbon steel, an uncontrollable potential range (-600 to -770mv) is generated near the connection between the heat exchanger and the circulating water pipe.
・ During the SCE), a problem in anticorrosion design or a problem in reliability of the actual plant will occur.

本発明は上記の点に鑑みてなされたもので、熱交換器か
ら適切な距離をもって循環水管内に犠牲陽極を取付け、
かつ熱交換器に近接するある区間に電気的に絶縁性の高
いライニングを施すか、或いはライニングに代えて絶縁
配管にすることにより熱交換器およびその配管系の完全
な防食を達成することを目的としている。
The present invention has been made in view of the above points, and mounts the sacrificial anode in the circulating water pipe at an appropriate distance from the heat exchanger,
In addition, the objective is to achieve complete corrosion protection of the heat exchanger and its piping system by applying a lining with high electrical insulation to a section close to the heat exchanger, or by replacing the lining with insulating piping. I am trying.

すなわち、本発明は、犠牲陽極の取付位置を、犠牲陽極
の電位、電流、海水の伝導率および配管内径の諸元から
チタンの水素脆化を防止しうる位置に置くように決定す
るとともに、熱交換器に近接する配管には絶縁性の高い
ものを用い、その範囲と前記犠牲陽極の取付位置との関
係を、従来のように犠牲陽極から流れる電流、海水の伝
導率および配管内径によらず、一義的に決定する。
That is, according to the present invention, the mounting position of the sacrificial anode is determined so as to be located at a position where hydrogen embrittlement of titanium can be prevented, based on the specifications of the sacrificial anode potential, current, conductivity of seawater, and pipe inner diameter. Use a highly insulating pipe in the vicinity of the exchanger, and set the relationship between the range and the mounting position of the sacrificial anode regardless of the current flowing from the sacrificial anode, the conductivity of seawater and the pipe inner diameter as in the past. , Make a unique decision.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明は、熱交換部にチタン材からなる伝熱管を用いた
熱交換器の各水室にチタン材よりも電気的に卑な金属材
料から構成される循環水管を各々接続し、これらの循環
水管内には該循環水管の構成材料より電気的に卑な金属
材料で構成される犠牲陽極をそれぞれ設けてなる海水を
用いる循環水系において、前記各犠牲陽極の循環水管内
の設置領域は、前記水室の底部から前記犠牲陽極までの
距離をl1、前記循環水管の内径寸法をDcmとしたとき、 l1≧0.003D2(cm)の範囲に、 かつ、前記循環水管内に電気的絶縁材料を施す領域ある
いは前記循環水管自体を電気的絶縁材料で構成する領域
は前記水室の底部を基準として施工長さをl2としたと
き、 l2≧0.4l1(cm)の範囲に、 それぞれ定めたことを特徴とする。
(Means for Solving the Problems) The present invention is a circulation system that is made of a metal material that is electrically baser than titanium material in each water chamber of a heat exchanger that uses a heat transfer tube made of titanium material for a heat exchange part. In a circulating water system using seawater, each of which is connected to a water pipe, and a sacrificial anode made of a metal material electrically less than the constituent material of the circulating water pipe is provided in each of the circulating water pipes, The installation area in the circulating water pipe is within a range of l 1 ≧ 0.003D 2 (cm), where the distance from the bottom of the water chamber to the sacrificial anode is l 1 and the inner diameter of the circulating water pipe is Dcm, and , The region where the electrically insulating material is applied to the circulating water pipe or the region where the circulating water pipe itself is made of the electrically insulating material is l 2 ≧ 0.4 when the construction length is l 2 with reference to the bottom of the water chamber. It is characterized in that it is set within the range of l 1 (cm).

(作 用) 本発明の海水を用いる循環水系の防食装置の作用を第1
図および第2図により説明する。
(Operation) The first function of the circulating water system anticorrosion device using seawater of the present invention
This will be described with reference to the drawings and FIG.

すなわち、犠牲陽極9から出る電流は、循環水管1、水
室2を通過して管板4、伝熱管3へと流れる。この場
合、循環水管1の軸方向電位分布は、実験および解析に
よると第2図に示すようになる。すなわち、第2図は循
環水管1及び水室2内における等電位分布を示すととも
に電位変化を示す図であって、電位は犠牲陽極9からの
循環水管1の軸方向距離に比例し犠牲陽極9から離れる
につれて電位の絶対値が減少することが確認できた。こ
のことは循環水管1内の軸方向電位にはオームの法則が
適用できることを意味する。よって次の式が成り立つ。
ここで循環水管1の内径をDとする。
That is, the electric current emitted from the sacrificial anode 9 passes through the circulating water pipe 1 and the water chamber 2 and flows to the tube plate 4 and the heat transfer pipe 3. In this case, the axial potential distribution of the circulating water pipe 1 is as shown in FIG. 2 according to the experiment and analysis. That is, FIG. 2 is a diagram showing the equipotential distribution in the circulating water pipe 1 and the water chamber 2 and showing the potential change, wherein the potential is proportional to the axial distance of the circulating water pipe 1 from the sacrificial anode 9 and the sacrificial anode 9 It was confirmed that the absolute value of the electric potential decreased with increasing distance from. This means that Ohm's law can be applied to the axial potential in the circulating water pipe 1. Therefore, the following equation holds.
Here, the inner diameter of the circulating water pipe 1 is D.

ここにΦT:チタンの防食電位(v・SCE) ΦA:犠牲陽極の電位(v・SCE) I:防食電流(A) σ:海水の伝導率(/cm) D:循環水管の内径(cm) 上式に基づいて犠牲陽極にアルミニウムを用いた場合の
l1の算出を行なう。ここでI、σについては従来明確に
されていなかったが、発明者の実験および解析の結果、
次の値の範囲であることが確認された。すなわち 1.0≦I≦3.0(A) 0.03≦σ≦0.05(/cm) したがって、犠牲陽極(9)の取付位置の最少値は、次
の値となる。
Where Φ T : Anticorrosion potential of titanium (v ・ SCE) Φ A : Potential of sacrificial anode (v ・ SCE) I: Anticorrosion current (A) σ: Seawater conductivity (/ cm) D: Inner diameter of circulating water pipe ( cm) When aluminum is used for the sacrificial anode based on the above formula,
Calculate l 1 . Here, I and σ have not been clarified in the past, but as a result of experiments and analysis by the inventor,
It was confirmed to be in the following range of values. That is, 1.0 ≦ I ≦ 3.0 (A) 0.03 ≦ σ ≦ 0.05 (/ cm) Therefore, the minimum value of the mounting position of the sacrificial anode (9) is as follows.

Φ≧−0.6(V・SCE) Φ=−1.0(V・SCE) とすると、 よって犠牲陽極9の取付位置をl1≧0.003D2(cm)とす
れば管板4と伝熱管3に用いるチタンの水素脆化を防止
できる。
If Φ T ≧ −0.6 (V · SCE) and Φ A = −1.0 (V · SCE), Therefore, if the mounting position of the sacrificial anode 9 is set to l 1 ≧ 0.003D 2 (cm), hydrogen embrittlement of titanium used for the tube sheet 4 and the heat transfer tube 3 can be prevented.

上記説明は、犠牲陽極9にアルミニウムを用いた場合で
あるが、亜鉛を用いても亜鉛製の犠牲陽極の電位Φ
アルミニウムのそれとほぼ同じ値であるため、同様なチ
タンの水素脆化防止結果を得ることが分った。
The above description is for the case where aluminum is used for the sacrificial anode 9. However, even if zinc is used, the potential Φ A of the sacrificial anode made of zinc is almost the same value as that of aluminum, and therefore, similar hydrogen embrittlement prevention of titanium is prevented. I found that I got the result.

一方、チタン部の電位を−600mv・SCE以上の電位に保つ
とともに、循環水管内の電位をガルバニック腐蝕を防ぐ
ため−770mv・SCE以下となるようにした場合、第2図か
らも判るように、熱交換器と循環水管との接続部近傍に
は当然−600〜−700mv・SCEの電位域が生ずる。したが
って、少なくともこの部分は絶縁性の高いライニングを
施すことが好ましい。しかして、この熱交換器に近接す
る循環水管1に絶縁性の高いライニングを施す範囲l
2は、次のようにして決定する。
On the other hand, when the potential of the titanium part is kept at a potential of −600 mv · SCE or more and the potential in the circulating water pipe is set to −770 mv · SCE or less to prevent galvanic corrosion, as can be seen from FIG. 2, In the vicinity of the connection between the heat exchanger and the circulating water pipe, a potential range of -600 to -700 mv SCE naturally occurs. Therefore, at least this portion is preferably provided with a highly insulating lining. Therefore, the range 1 where a highly insulating lining is applied to the circulating water pipe 1 adjacent to this heat exchanger
2 is determined as follows.

この場合、熱交換器の底面よりl2の位置でその電位が炭
素鋼の防食電位−770mv・SCEと等しければよい。従って
同様にオームの法則を適用すると、次の式が成り立つ。
In this case, the potential at the position of l 2 from the bottom surface of the heat exchanger may be equal to the corrosion protection potential of carbon steel −770 mv · SCE. Therefore, applying Ohm's law in the same way, the following equation holds.

前記式(1),(3)より次の式が求まる。 The following equation is obtained from the above equations (1) and (3).

ここにΦR:絶縁性の高いライニングの犠牲陽極側端部炭
素鋼配管の防食電位 Φ、ΦA:式(1)と同じ ここで、式(4)は、Φ、ΦおよびΦの値が決ま
ると、循環水管内径D、防食電流Iおよび海水の伝導率
σ等によらずして、循環水管1にライニングを施す範囲
l2と犠牲陽極9の取付装置l1の比が求まることを表わし
ている。
Where Φ R : sacrificial anode side end carbon steel pipe of highly insulating lining corrosion resistance potential Φ T , Φ A : same as formula (1) where formula (4) is Φ T , Φ A and Φ When the value of R is determined, the range in which the circulating water pipe 1 is lined regardless of the circulating water pipe inner diameter D, the anticorrosion current I, the conductivity σ of seawater, etc.
It shows that the ratio of l 2 and the mounting device l 1 of the sacrificial anode 9 can be obtained.

前記と同様に Φ≧−0.6(V・SCE) Φ=−1.0(V・SCE) Φ≦−0.77(V・SCE) とし、式(5)にこれらを代入すると、 よって循環水管1に絶縁性の高いライニングを施す範囲
l2をl2≧0.4l1(cm)とすれば炭素鋼製循環水管の防食
が可能となる。
Similarly to the above, Φ T ≧ −0.6 (V · SCE) Φ A = −1.0 (V · SCE) Φ R ≦ −0.77 (V · SCE) and substituting them into the equation (5), Therefore, the range where the circulating water pipe 1 is lined with high insulation
If l 2 is l 2 ≧ 0.4l 1 (cm), it is possible to prevent corrosion of the carbon steel circulating water pipe.

〔実施例〕〔Example〕

以下本発明の実施例を第1図により説明する。第1図に
おいて、海水5を伝熱管3内に導びく循環水管1は、熱
交換器の水室2に接続され、また熱交換器の管板4には
多数の伝熱管3が取付けられている。循環水管1(配管
内径Dcm)の内面には一般的なコーテング6(例えばタ
ールエポキシコーテング)、また水室2の内面には従来
の合成ゴム材料を含む信頼性の高い電気的絶縁材料から
なるライニング8(例えばゴムライニング)が施され、
さらに熱交換器に近接する部分の循環水管1の内面に
は、図示したl2の範囲において、従来の合成ゴム材料を
含む絶縁性の高い電気的絶縁材料からなるライニング7
が施されている。熱交換器水室2の底部から図示したl1
の位置に犠牲陽極9が循環水管1の内部に設置されてい
る。さらに循環水管1と水室2は、チタンよりも電気的
に卑な金属材料である炭素鋼から、また、管板4と伝熱
管3はチタンからなっている。犠牲陽極9は循環水管1
の構成材料より電気的に卑な金属材料からなっている。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, a circulating water pipe 1 for guiding seawater 5 into a heat transfer pipe 3 is connected to a water chamber 2 of a heat exchanger, and a large number of heat transfer pipes 3 are attached to a tube plate 4 of the heat exchanger. There is. The inner surface of the circulating water pipe 1 (pipe inner diameter Dcm) is a general coating 6 (for example, tar epoxy coating), and the inner surface of the water chamber 2 is a lining made of a highly reliable electrically insulating material including a conventional synthetic rubber material. 8 (eg rubber lining) is applied,
Further, on the inner surface of the circulating water pipe 1 near the heat exchanger, a lining 7 made of an electrically insulating material having a high insulating property including a conventional synthetic rubber material is provided within the range of l 2 shown in the figure.
Has been applied. L 1 shown from the bottom of the heat exchanger water chamber 2
The sacrificial anode 9 is installed inside the circulating water pipe 1 at the position. Further, the circulating water pipe 1 and the water chamber 2 are made of carbon steel, which is a metal material that is electrically less base than titanium, and the tube sheet 4 and the heat transfer pipe 3 are made of titanium. Sacrificial anode 9 is circulating water pipe 1
It is made of a metal material that is electrically less base than the constituent materials.

このように構成された配管系統において、犠牲陽極9の
取付位置l1は上述したようにl2≧ 0.003D2(cm)から決定され、この結果、管板4と伝熱
管3等の熱交換器の熱交換部に用いたチタンの水素脆化
が防止できる。
In the piping system configured as described above, the mounting position l 1 of the sacrificial anode 9 is determined from l 2 ≧ 0.003D 2 (cm) as described above, and as a result, heat exchange between the tube sheet 4 and the heat transfer tube 3 is performed. It is possible to prevent hydrogen embrittlement of titanium used in the heat exchange part of the vessel.

また、循環水管1に絶縁性の高い電気的絶縁材料からな
るライニング7を施す範囲l2は、上述したようにl2≧0.
4l1(cm)から決定され、炭素鋼製配管の海水からの防
食が可能となる。
Further, the range l 2 in which the circulating water pipe 1 is provided with the lining 7 made of an electrically insulating material having a high insulating property is, as described above, l 2 ≧ 0.
Determined from 4l 1 (cm), carbon steel pipes can be protected from seawater.

〔発明の他の実施例〕 本発明の他の実施例を第3図に示す。Another Embodiment of the Invention Another embodiment of the present invention is shown in FIG.

第3図において、第1図の実施例と同様に、海水5を伝
熱管3内に導びく循環水管1(内径Dcm)は、熱交換器
の水室2に接続され、また熱交換器の管板4に多数の伝
熱管3が取付けられている。ただ、この実施例では、第
1図の実施例と異なり、水室8の底面から長さl2の範囲
に、塩化ビニール、プラスチック、ゴム合成ゴム材料あ
るいは強化ブラスチック(FRP)等の電気的絶縁材料か
らなる絶縁配管10が設けられている。また、第1図の実
施例と同様に水室2の内面には信頼性の高いライニング
8が施され、また循環水管1の内面には絶縁性の高い電
気的絶縁材料からなるライニング7が施されている。さ
らに、熱交換器水室2の底部から図示したl1の位置に犠
牲陽極9が循環水管1の内部に設置されている。さら
に、循環水管1と水室2は、炭素鋼から、また、管板4
と伝熱管3はチタンからなっている。犠牲陽極9は循環
水管1の構成材料より電気的に卑な金属材料からなって
いる。
In FIG. 3, as in the embodiment of FIG. 1, the circulating water pipe 1 (inner diameter Dcm) that guides the seawater 5 into the heat transfer pipe 3 is connected to the water chamber 2 of the heat exchanger, and A large number of heat transfer tubes 3 are attached to the tube plate 4. However, in this embodiment, unlike the embodiment of FIG. 1, electrical conductivity such as vinyl chloride, plastic, rubber synthetic rubber material or reinforced plastic (FRP) is provided within the range of the length l 2 from the bottom of the water chamber 8. An insulating pipe 10 made of an insulating material is provided. Further, as in the embodiment shown in FIG. 1, the inner surface of the water chamber 2 is provided with a highly reliable lining 8, and the inner surface of the circulating water pipe 1 is provided with a lining 7 made of an electrically insulating material having a high insulation property. Has been done. Further, a sacrificial anode 9 is installed inside the circulating water pipe 1 at the position of l 1 shown from the bottom of the heat exchanger water chamber 2. Further, the circulating water pipe 1 and the water chamber 2 are made of carbon steel, and the pipe sheet 4 is used.
And the heat transfer tube 3 is made of titanium. The sacrificial anode 9 is made of a metal material that is electrically lower than the constituent material of the circulating water pipe 1.

このように構成された配管系統において、犠牲陽極9の
取付位置l1は、上述したようにl1≧0.003D2(cm)から
決定され、この結果、管板4と伝熱管3等の熱交換器の
熱交換部に用いたチタンの水素脆化が防止できる。
In the piping system configured as described above, the mounting position l 1 of the sacrificial anode 9 is determined from l 1 ≧ 0.003D 2 (cm) as described above, and as a result, the heat of the tube sheet 4 and the heat transfer tube 3 is reduced. It is possible to prevent hydrogen embrittlement of titanium used in the heat exchange part of the exchanger.

また、水室8の底面から絶縁配管10を設ける範囲l2は、
上述したようにl2≧0.4l1(cm)から決定される。
Further, the range l 2 where the insulating pipe 10 is provided from the bottom of the water chamber 8 is
As described above, it is determined from l 2 ≧ 0.4l 1 (cm).

この実施例の絶縁配管10の材質は、従来の合成ゴム材料
を含む電気的絶縁材料からなるため電気的絶縁性が高
く、炭素鋼配管の内面に絶縁性の高いライニングを施す
のと同様な効果が得られる。
The material of the insulating pipe 10 of this embodiment has a high electrical insulating property because it is made of an electrically insulating material including a conventional synthetic rubber material, and the same effect as the lining having a high insulating property is applied to the inner surface of the carbon steel pipe. Is obtained.

〔発明の効果〕〔The invention's effect〕

本発明によれば、前述した計算式に基づいて、犠牲陽極
の取付位置l1および絶縁性の高いライニング7を施す範
囲あるいはライニングに代えて絶縁配管10を設ける範囲
l2を決定すれば、管板4と伝熱管3に用いるチタンをそ
の水素脆化防止電位以上に維持できるとともに、一方、
炭素鋼配管を防食電位以下の電位に維持することがで
き、熱交換器とその配管系の完全な海水からの防食が可
能となる。
According to the present invention, the mounting position l 1 of the sacrificial anode and the range where the highly insulating lining 7 is applied or the range where the insulating pipe 10 is provided instead of the lining according to the above-described calculation formula
If l 2 is determined, the titanium used for the tube sheet 4 and the heat transfer tube 3 can be maintained above the hydrogen embrittlement prevention potential, while
The carbon steel pipe can be maintained at a potential lower than the anticorrosion potential, and the heat exchanger and its piping system can be completely protected from seawater.

したがって、海水を使用する熱交換器の熱交換部に用い
るチタンの水素脆化を防止し、かつ熱交換器に接続され
る炭素鋼配管のガルバニック腐食をも防止し、よって信
頼性に優れた発電プラントの海水を用いる循環水系の防
食システムを確立することが可能となる。
Therefore, hydrogen embrittlement of titanium used in the heat exchange part of the heat exchanger using seawater is prevented, and also galvanic corrosion of the carbon steel pipe connected to the heat exchanger is prevented, so that highly reliable power generation is possible. It becomes possible to establish a circulating water system anticorrosion system using seawater of the plant.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の海水を用いる循環水系の防食装置を示
す構成図で熱交換器の一部のみを簡単的に示す図、第2
図は犠牲陽極を設けた海水を用いる循環水系の等電位分
布線図、第3図は本発明の他の実施例を示す構成図であ
る。 1……循環水管、3……伝熱管、4……管板、6……コ
ーテング、7……ライニング、9……犠牲陽極、10……
絶縁配管。
FIG. 1 is a block diagram showing a circulating water system anticorrosion device using seawater according to the present invention, which is a diagram schematically showing only a part of a heat exchanger, and FIG.
FIG. 3 is an equipotential distribution diagram of a circulating water system using seawater provided with a sacrificial anode, and FIG. 3 is a configuration diagram showing another embodiment of the present invention. 1 ... Circulating water tube, 3 ... Heat transfer tube, 4 ... Tube plate, 6 ... Coating, 7 ... Lining, 9 ... Sacrificial anode, 10 ...
Insulated piping.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 修一 神奈川県横浜市鶴見区末広町2―4 株式 会社東芝京浜事業所内 (72)発明者 和田 素直 神奈川県横浜市鶴見区末広町2―4 株式 会社東芝京浜事業所内 (56)参考文献 実開 昭60−128196(JP,U) 実開 昭54−39445(JP,U) 実開 昭59−42488(JP,U) 実開 昭54−39446(JP,U) 実公 昭59−2113(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shuichi Inagaki 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi Kanagawa Stock company Toshiba Keihin office (72) Inventor Naoto Wada 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Company Toshiba Corporation Keihin Office (56) References Showa 60-128196 (JP, U) Showa 54-39445 (JP, U) Showa 59-42488 (JP, U) Showa 54-39446 ( JP, U) Actual public Sho 59-2113 (JP, Y2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱交換部にチタン材からなる伝熱管を用い
た熱交換器の各水室にチタン材よりも電気的に卑な金属
材料から構成される循環水管を各々接続し、これらの循
環水管内には該循環水管の構成材料より電気的に卑な金
属材料で構成される犠牲陽極をそれぞれ設けてなる海水
を用いる循環水系において、前記各犠牲陽極の循環水管
内の設置領域は、前記水室の底部から前記犠牲陽極まで
の距離をl1、前記循環水管の内径寸法をDcmとしたと
き、 l1≧0.003D2(cm)の範囲に、 かつ、前記循環水管内に電気的絶縁材料を施す領域ある
いは前記循環水管自体を電気的絶縁材料で構成する領域
は前記水室の底部を基準として施工長さをl2としたと
き、 l2≧0.4l1(cm)の範囲に、 それぞれ定めることを特徴とする海水を用いる循環水系
の防食装置。
1. A circulating water pipe made of a metal material that is electrically baser than a titanium material is connected to each water chamber of a heat exchanger using a heat transfer tube made of a titanium material in a heat exchange section. In a circulating water system using seawater in which each sacrificial anode made of a metal material electrically less than the constituent material of the circulating water pipe is provided in the circulating water pipe, the installation area in the circulating water pipe of each sacrificial anode is When the distance from the bottom of the water chamber to the sacrificial anode is l 1 and the inner diameter of the circulating water pipe is Dcm, l 1 ≧ 0.003D 2 (cm) in the range, and the circulating water pipe is electrically connected. The area where the insulating material is applied or the area where the circulating water pipe itself is made of an electrically insulating material is within the range of l 2 ≧ 0.4l 1 (cm) when the construction length is l 2 with reference to the bottom of the water chamber. , Circulating water system anticorrosion equipment using seawater characterized by their respective specifications
JP63006717A 1988-01-14 1988-01-14 Circulating water system anticorrosion equipment using seawater Expired - Fee Related JPH07110999B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63006717A JPH07110999B2 (en) 1988-01-14 1988-01-14 Circulating water system anticorrosion equipment using seawater
DE8989100352T DE68901269D1 (en) 1988-01-14 1989-01-10 EQUIPMENT FOR CATHODICAL PROTECTION IN CIRCUIT SYSTEMS OF CORROSIVE LIQUIDS.
EP89100352A EP0324440B1 (en) 1988-01-14 1989-01-10 Cathodic protection apparatus in systems for the circulation of corrosive liquids
KR1019890000359A KR920004508B1 (en) 1988-01-14 1989-01-14 Apparatus and method for electrical anti-corrosion of total titanium heat exchanger
CN 89100284 CN1014806B (en) 1988-01-14 1989-01-14 Apparatus and method for electrical anti-corrosion of total-titanium heat-exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006717A JPH07110999B2 (en) 1988-01-14 1988-01-14 Circulating water system anticorrosion equipment using seawater

Publications (2)

Publication Number Publication Date
JPH01184290A JPH01184290A (en) 1989-07-21
JPH07110999B2 true JPH07110999B2 (en) 1995-11-29

Family

ID=11646017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006717A Expired - Fee Related JPH07110999B2 (en) 1988-01-14 1988-01-14 Circulating water system anticorrosion equipment using seawater

Country Status (1)

Country Link
JP (1) JPH07110999B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261079A (en) * 1988-08-26 1990-03-01 Toshiba Corp Electrolytic protection device for full-titanium heat exchanger
CN110846666B (en) * 2019-12-11 2024-04-05 苏州热工研究院有限公司 Condenser cathode protection mechanism and condenser cathode protection potential monitoring system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592113U (en) * 1982-06-29 1984-01-09 パイオニア株式会社 coil
JPS60128196U (en) * 1984-02-08 1985-08-28 三菱重工業株式会社 heat exchange equipment

Also Published As

Publication number Publication date
JPH01184290A (en) 1989-07-21

Similar Documents

Publication Publication Date Title
US2459123A (en) Water heating device with corrosion protective anode
CA1236046A (en) Corrosion protection system comprising electrode with conductive core and conductive polymer layer
CN211695424U (en) Inner container structure and water storage type water heater
US3176115A (en) Electric water heater
JPH07110999B2 (en) Circulating water system anticorrosion equipment using seawater
US2710833A (en) Electrode and water outlet assembly for hot water tanks
EP0231178A1 (en) Corrosion protection for heat exchangers.
WO2017072177A1 (en) Cathodic protection of a heat exchanger
Nikolakakos COOLING WATER SYSTEM COMPONENTS- PART I CORROSION AND CORROSION PROTECTION METHODS
US3691040A (en) Electrical shield for cathodic protection systems
KR102652545B1 (en) Impressed current cathodic protection system for pipe
JP2644591B2 (en) Electrochemical corrosion protection components
KR920004508B1 (en) Apparatus and method for electrical anti-corrosion of total titanium heat exchanger
JP3011531B2 (en) Cathodic protection of heat exchanger
CN215328372U (en) Power plant water inlet chamber anticorrosion control system
JP2941543B2 (en) Cathodic protection of heat exchanger
CN217540120U (en) Corrosion-resistant pert ground heating coil
US7081187B1 (en) Internal cathodic protection system
Gehring Galvanic corrosion in steam surface condensers tubed with either stainless steel or titanium
Sen et al. Corrosion and steel grounding
Astley et al. Modelling of bimetallic corrosion in sea water systems
Bartlett Galvanic corrosion
JPS63123998A (en) Corrosion preventive device of heat exchanger
Fontana Sacrificial anodes Corrosion.
JP3172967B2 (en) Mounting structure of reference electrode in shell and tube heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees