JPH0261079A - Electrolytic protection device for full-titanium heat exchanger - Google Patents

Electrolytic protection device for full-titanium heat exchanger

Info

Publication number
JPH0261079A
JPH0261079A JP63210501A JP21050188A JPH0261079A JP H0261079 A JPH0261079 A JP H0261079A JP 63210501 A JP63210501 A JP 63210501A JP 21050188 A JP21050188 A JP 21050188A JP H0261079 A JPH0261079 A JP H0261079A
Authority
JP
Japan
Prior art keywords
potential
water chamber
heat exchanger
piping
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63210501A
Other languages
Japanese (ja)
Inventor
Noboru Kikuna
菊名 登
Yuji Nishino
西野 悠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63210501A priority Critical patent/JPH0261079A/en
Priority to DE8989100352T priority patent/DE68901269D1/en
Priority to EP89100352A priority patent/EP0324440B1/en
Priority to KR1019890000359A priority patent/KR920004508B1/en
Priority to CN 89100284 priority patent/CN1014806B/en
Publication of JPH0261079A publication Critical patent/JPH0261079A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the corrosion of the carbon steel part of a piping by electrolytic corrosion and to prevent the generation of hydrogen embittlement in a Ti part by constituting a part of a piping device connected to a heat exchanger made of Ti using sea water as a refrigerant of an insulating material such as rubber and mounting a sacrificial anode near to the lower part of the piping. CONSTITUTION:The inside of an outlet water chamber 9 of the condenser 2 of the full-Ti heat exchanger using the sea water as the refrigerant is coated with rubber 31 of an electrical insulator at the time of passing the sea water in a cooling pipe 3 to cool the high temp. clean to water. An expansion joint 19 and a lower part 31 thereof in the part L2 of an outlet circulating water pipe 10 in the lower part of the outlet water chamber 9 are made of rubber as well. The inside surface of a steel pipe part which is connected thereto and in which the sea water 6 passes is coated with a tar epoxy resin 32. The sacrificial anode 26 is mounted at the distance L3 from the outlet water chamber 9 in order to prevent the steel part in the boundary part between the part 32 coated with the epoxy resin and the rubber part 31 from being corroded by the sea water. Electrolytic corrosion current 27 is passed to this anode to prevent the corrosion of the steel of the circulating water pipe in the part L1 after subtraction of L2 from L3 by the sea water and to prevent the generation of the hydrogen embrittlement in the Ti part.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は冷媒として海水が使用される全チタン熱交換器
において、これに接続される配管装置のガルバニック腐
食を防止するために用いられる全チタン熱交換器の電気
防食方法およびその装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention is aimed at preventing galvanic corrosion of piping equipment connected to an all-titanium heat exchanger that uses seawater as a refrigerant. This invention relates to a method and device for cathodic protection of all-titanium heat exchangers used in

(従来の技術) 一般に、海水を冷却水とする熱交換器9例えば、発電プ
ラントにおける復水器はシェル・アンド・チューブ式が
広く採用されている。この復水器の冷却管は海水と直接
に接触するので冷却管には腐食しにくい貴なる金属2例
えば、アルミニウム黄銅を主とする銅合金が、また復水
器管板にはネーバル黄銅板等が使用されている。一方、
復水器水室ならびに復水器に接続する機器、配管には鋼
が使用されている。また、計装品の温度計ウェル等には
モネルおよびステンレス鋼が使用されている。
(Prior Art) In general, a shell-and-tube type heat exchanger 9, for example, a condenser in a power generation plant, which uses seawater as cooling water is widely used. Since the cooling pipes of this condenser come into direct contact with seawater, the cooling pipes are made of noble metals that are difficult to corrode.For example, copper alloys, mainly aluminum brass, are used for the condenser tube sheets, and naval brass plates are used for the condenser tube sheets. is used. on the other hand,
Steel is used for the condenser water chamber, equipment and piping connected to the condenser. Monel and stainless steel are also used for instrumentation such as thermometer wells.

以下、発電プラントの蒸気を水に戻す復水器ならびに当
該復水器に近接する機器、配管および計装品についての
一例を第7図を用いて説明する。
Hereinafter, an example of a condenser that returns steam in a power generation plant to water, and equipment, piping, and instrumentation in the vicinity of the condenser will be described using FIG. 7.

蒸気タービンから排出された蒸気1は復水器2に導かれ
、復水器2の内部に冷却海水を流通させた複数の冷却管
3の該表面に接触して冷却され、凝縮して復水5となる
。この復水は復水ポンプ4により復水器2から発電プラ
ントでの再使用のため回収され、図示しない給水加熱器
に送水される。
Steam 1 discharged from the steam turbine is led to a condenser 2, is cooled by contacting the surfaces of a plurality of cooling pipes 3 through which cooling seawater flows inside the condenser 2, and is condensed into condensed water. It becomes 5. This condensate is recovered from the condenser 2 by the condensate pump 4 for reuse in the power generation plant, and is sent to a feedwater heater (not shown).

一般に、復水器2の冷却管3にはアルミニウム黄銅管が
使用されている。一方、冷却海水6は、般に、タールエ
ポキシ樹脂等の防食性塗装または被覆材を施した炭素鋼
鋼板製の入口循環水管7を通って供給され、入口水室8
を経て上述したアルミニウム黄銅管製の冷却管3の内側
を通り、蒸気1の熱を冷却管3を介して吸収し、温度上
昇しながら、出口水室9および出口循環木管10を経て
放出口(海)へ排出される。そして、上記の入口循環水
管7および出口循環木管10には、一般に、冷却海水6
の停止および切換等を行なうバタフライ弁11や、温度
、圧力等を検出および監視する温度計12(温度検出床
)および圧力計13(圧力検出座)が取付けられている
。また、冷却管3の内面の清浄度を維持するためのボー
ル洗浄装置が設置されている。即ち、冷却海水中よりボ
ール捕集器14により回収された洗浄ボールは、ボール
再循環管15に導かれてボール循環ポンプ16を通って
ボール回収器17に運ばれ、そこから再びボール注入管
18により入口循環水管7内を流れる冷却海水中に注入
され、これを繰り返すことにより冷却管3の内面に付着
した異物等を取り除く。
Generally, aluminum brass pipes are used for the cooling pipes 3 of the condenser 2. On the other hand, the cooling seawater 6 is generally supplied through an inlet circulating water pipe 7 made of carbon steel sheet coated with anticorrosive coating or coating material such as tar epoxy resin, and is supplied through an inlet water chamber 8.
The heat of the steam 1 is absorbed through the cooling pipe 3, and while the temperature rises, it passes through the outlet water chamber 9 and the outlet circulation wood pipe 10 to the outlet ( discharged into the ocean). The inlet circulating water pipe 7 and the outlet circulating wood pipe 10 generally contain cooling seawater 6.
A butterfly valve 11 for stopping and switching the temperature, a thermometer 12 (temperature detection bed) and a pressure gauge 13 (pressure detection seat) for detecting and monitoring temperature, pressure, etc. are installed. Additionally, a ball cleaning device is installed to maintain the cleanliness of the inner surface of the cooling pipe 3. That is, the cleaning balls collected by the ball collector 14 from the cooling seawater are guided to the ball recirculation pipe 15, passed through the ball circulation pump 16, and transported to the ball collector 17, and from there, the balls are returned to the ball injection pipe 18. This is injected into the cooling seawater flowing through the inlet circulating water pipe 7, and by repeating this process, foreign matter adhering to the inner surface of the cooling pipe 3 is removed.

また、入口循環水管7と入口水室8.出口水室9と出口
循環水管10の接続にはゴム製の伸縮継手19を取付け
、据付誤差および運転時の微少変位を吸収できるように
している。
In addition, an inlet circulation water pipe 7 and an inlet water chamber 8. A rubber expansion joint 19 is attached to the connection between the outlet water chamber 9 and the outlet circulation water pipe 10 to absorb installation errors and minute displacements during operation.

さらに、入口水室8および出口水室9には空気抜きのた
め、空気抜管20およびこの途中には空気抜弁21が取
付けられている。なお、図中符号22は管板を示してい
る。
Furthermore, an air vent pipe 20 and an air vent valve 21 are attached to the inlet water chamber 8 and the outlet water chamber 9 in order to vent air. Note that the reference numeral 22 in the figure indicates a tube plate.

ところで、復水器や循環木管の海水に触れる部分は海水
による腐食防止のため、材料の選定や金属面の塗装また
は防食性被覆材による保護など設計には十分な注意が払
われている。即ち、一般に、腐食現象には酸性環境中の
金属単体が腐食する自然腐食と、異種金属が接触してい
る場合に生ずるガルバニック腐食(以下、電食と略称す
る)がある。この電食は腐食速度が非常に速いため特に
注意しなければならない。電食とは、通常、電気的に接
続されている異種金属が電解質溶液中に置かれると、貴
なる金属は陰極に、卑なる金属を陽極として自然電位差
が形成され、陽極金属が金属イオンとなって電解質溶液
中に溶出し、卑金属が腐食される現象をいう。第8図に
海水中における金属の自然電位を示す。ここに、7種類
の金属の自然電位を示すが、ここではチタンが最つども
食倒の金属であり、亜鉛が最つども岸側の金属となる。
By the way, in order to prevent seawater from corroding the parts of condensers and circulating wood pipes that come into contact with seawater, sufficient care is taken in the design, including selection of materials and protection with coatings on metal surfaces or anti-corrosion coatings. That is, in general, corrosion phenomena include natural corrosion in which a single metal is corroded in an acidic environment, and galvanic corrosion (hereinafter abbreviated as electrolytic corrosion) that occurs when dissimilar metals are in contact. Particular attention must be paid to this electrolytic corrosion, as the rate of corrosion is very fast. Electrolytic corrosion usually occurs when electrically connected dissimilar metals are placed in an electrolyte solution, and a natural potential difference is formed with the noble metal at the cathode and the base metal at the anode, and the anode metal interacts with metal ions. This is a phenomenon in which base metals are corroded by being eluted into the electrolyte solution. Figure 8 shows the natural potential of metals in seawater. Here, the natural potentials of seven types of metals are shown, where titanium is the metal that is most often used up, and zinc is the metal that is most often used on the shore.

例えば、海水中で食倒の黄銅と岸側の鉄が接水し、黄銅
と鉄が電気的に接続している場合にはこの2つの金属間
の自然電位差Vにより岸側の鉄がこの電位差により電食
を受けることになる。また、海水中で食倒のステンレス
鋼(不動態)と岸側の鉄が接触し、ステンレスm(不動
態)と鉄が電気的に接続している場合にはこの2つの金
属間の自然電位差Vにより岸側の鉄が電食を受ける。他
の金属の組合せでも、同様なことがいえ、これらの2つ
の金属間の自然電位差が大きいほど電食現象は著しく進
む。なお、横軸の電位の岸側VSCEは飽和甘こう電位
を示す。
For example, when brass and iron on the shore are in contact with water in seawater, and the brass and iron are electrically connected, the natural potential difference V between these two metals causes the iron on the shore to This will result in electrolytic corrosion. In addition, when stainless steel (passive) and iron on the shore are in contact with each other in seawater, and the stainless steel (passive) and iron are electrically connected, there is a natural potential difference between these two metals. The steel on the shore is subject to electrolytic corrosion due to V. The same thing can be said for other metal combinations, and the greater the natural potential difference between these two metals, the more the electrolytic corrosion phenomenon progresses. Note that the shore side VSCE of the potential on the horizontal axis indicates the saturated sweet potential.

これらの現象は発電プラントの海水系にも起こり得る。These phenomena can also occur in the seawater systems of power plants.

例えば、熱交換器に使用されている冷却管、ストレーナ
、弁、温度計ウェル等の計装品の露出金属との間に電食
が生ずる可能性がある。また、この他にも前述の材料と
次のようなものが考えられる。即ち、配管装置類の内面
は鋼表面の腐食を防止するため鋼表面が直接に海水と触
れないように防食性塗装または被覆材が施されている。
For example, electrolytic corrosion can occur between exposed metal on instrumentation such as cooling pipes, strainers, valves, thermometer wells, etc. used in heat exchangers. Additionally, in addition to the above-mentioned materials, the following materials can be considered. That is, in order to prevent corrosion of the steel surface, the inner surface of the piping equipment is coated with an anticorrosive coating or coating material so that the steel surface does not come into direct contact with seawater.

しかしながら、何らかの原因により塗装または被覆面が
損傷した場合には鋼表面が海水中に露出することになり
、前述の貴金属材料と卑金属の鋼表面が電気的に接続さ
れると、この2つの金属の自然電位差により岸側の鋼表
面が電食を受けることになる。即ち、例えば、上述した
復水器2の冷却管3にアルミニウム黄銅管が、また、復
水器管板22にはネーバル黄銅板が各々使用されている
場合、入口および出口水室8,9ならびに入口および出
口循環水管7,10は、通常、鋼板により製作されるた
め、鋼板が岸側の金属となる。
However, if the painted or coated surface is damaged for some reason, the steel surface will be exposed in seawater, and when the aforementioned noble metal material and base metal steel surface are electrically connected, the two metals will The steel surface on the shore side will be subject to electrolytic corrosion due to the natural potential difference. That is, for example, when an aluminum brass tube is used for the cooling pipe 3 of the condenser 2 and a naval brass plate is used for the condenser tube plate 22, the inlet and outlet water chambers 8, 9 and Since the inlet and outlet circulating water pipes 7 and 10 are usually made of steel plates, the steel plates are the metal on the shore side.

これらの入口および出口水室8,9ならびに入口および
出口循環水管7,10には防食性塗装または被覆材が施
されるのは上述した通りであるが、これらの塗装または
被覆箇所が施工不良および海水の流れ等により損傷し、
下地である鋼表面が露出すると、前述のように黄銅と鉄
の間の自然電位差のため卑金属の鉄の鋼面が電食を受け
る。
As mentioned above, the inlet and outlet water chambers 8 and 9 and the inlet and outlet circulating water pipes 7 and 10 are coated with anti-corrosive coating or coating material, but these coating or coating areas may be damaged due to poor construction or Damaged by seawater flow, etc.
When the underlying steel surface is exposed, the base metal steel surface is subject to electrolytic corrosion due to the natural potential difference between brass and iron, as described above.

以下、この現象を図を参照して詳しく説明する。This phenomenon will be explained in detail below with reference to the drawings.

第9図において、復水器2の出口水室9に被膜損傷部2
3aが、 また、出口循環水管10にも被膜損傷部23
bが存在していると想定する。従って、被膜損傷部23
a、 23bは鋼表面が露出している。ここで、復水器
2は基礎等によりアース25がとられており、また、出
口循環水管10にも配管装置のサポートまたは土中配管
などによりアース25がとられているものとする。以上
から、出口水室9の被膜損傷部23aおよび出口循環水
管lOの被膜損傷部23bから冷却海水6を通って、管
板22および冷却管3を経て、復水器2の銅を通る電気
的回路が形成され、これにより被膜損傷部23a、 2
3bから復水器管板22.冷却管3へ腐食電流24が流
れて被膜損傷部23a、 23bが電食されることにな
る。なお、この現象は出口水室9および出口循環水管1
0の間に限られるものでは勿論なく、入口水室8および
入口循環水管7についても事情は全く変わらない。
In FIG. 9, a damaged coating 2 is shown in the outlet water chamber 9 of the condenser 2.
3a also has a damaged coating 23 on the outlet circulating water pipe 10.
Assume that b exists. Therefore, the damaged coating 23
A and 23b have exposed steel surfaces. Here, it is assumed that the condenser 2 is grounded 25 by a foundation or the like, and the outlet circulating water pipe 10 is also grounded 25 by a support of a piping device or underground piping. From the above, the electrical current flows from the coating damage part 23a of the outlet water chamber 9 and the coating damage part 23b of the outlet circulating water pipe 10, through the cooling seawater 6, through the tube plate 22 and the cooling pipe 3, and through the copper of the condenser 2. A circuit is formed, which causes the film damaged portions 23a, 2
3b to condenser tube plate 22. A corrosive current 24 flows into the cooling pipe 3, causing electrolytic corrosion to the damaged coating parts 23a and 23b. Note that this phenomenon occurs in the outlet water chamber 9 and the outlet circulation water pipe 1.
Of course, the situation is not limited to 0, and the same applies to the inlet water chamber 8 and the inlet circulating water pipe 7.

一方、上記現象は冷却管3および管板22が貴金属とし
て存在する場合について述べたものであるが、第7図に
示されるボール捕集器14.ボール注入管18.バタフ
ライ弁11.温度計12および圧力計13の取出部など
が鉄より貴のステンレス鋼等により構成される場合、こ
れらのステンレス鋼等と被膜損傷部23a、 23bの
鉄の間に自然電位差が生じ、前述と同様に卑金属の鉄が
電食を受ける。
On the other hand, although the above phenomenon has been described for the case where the cooling tube 3 and the tube plate 22 are made of noble metal, the ball collector 14 shown in FIG. Ball injection tube 18. Butterfly valve 11. If the extraction parts of the thermometer 12 and pressure gauge 13 are made of stainless steel, etc., which is nobler than iron, a natural potential difference will occur between these stainless steels, etc. and the iron of the damaged coating parts 23a and 23b, and the same as described above will occur. Iron, a base metal, undergoes electrolytic corrosion.

この現象についても第10図を参照して詳しく説明する
。第10図において、出口循環水管10にはステンレス
鋼等の材料で製作されたボール捕集器14が設置され、
これにボール再w4環管15が接続されている。従って
、第9図で説明したような、出口循環水管lOの被膜損
傷部23bから管板22.冷却管3に流れる腐食電流2
4に他に、出口循環水管10の被膜損傷部23bから冷
却海水6を通って、ボール捕集器14を経て、出口循環
木管10を通る電気的回路が形成される。 これにより
、被膜損傷部23bからボール捕集器14に腐食電流2
4が流れ、この場合も被膜損傷部23bが電食されるこ
とになる。 この現象は被膜損傷部23bが復水器2に
近い場合には管板22および冷却管3の影響を受け、ま
た、被膜損傷部23bがボール捕集器14に近い場合に
はボール捕集器14の影響を受ける。なお、ここで述べ
ているステンレス鋼は安定した不動態被IFJを有する
ステンレス鋼であり、第8図に示されるようにステンレ
ス鋼(不動態)の電位は、通常0〜−100mV S 
CE程度であるが、上記した不動態被膜の厚さが十分で
あれば、黄銅の方がステンレス鋼(不動態)よりも卑と
なる。
This phenomenon will also be explained in detail with reference to FIG. In FIG. 10, a ball collector 14 made of a material such as stainless steel is installed in the outlet circulating water pipe 10.
A ball re-W4 ring pipe 15 is connected to this. Therefore, as explained in FIG. 9, the tube plate 22. Corrosion current 2 flowing through cooling pipe 3
In addition to 4, an electrical circuit is formed that runs from the coating damaged portion 23b of the outlet circulating water pipe 10, through the cooling seawater 6, through the ball collector 14, and through the outlet circulating wood pipe 10. As a result, a corrosion current of 2
4 will flow, and in this case too, the damaged coating portion 23b will be electrolytically corroded. This phenomenon is affected by the tube plate 22 and the cooling pipe 3 when the damaged coating part 23b is close to the condenser 2, and when the damaged coating part 23b is close to the ball collector 14, it is affected by the ball collector. Affected by 14. The stainless steel mentioned here has a stable passive IFJ, and as shown in Figure 8, the potential of stainless steel (passive) is usually 0 to -100 mV S.
Although it is about CE, if the thickness of the above-mentioned passive film is sufficient, brass becomes more base than stainless steel (passive).

このため、異常な状態が発生しない限りにおいてはステ
ンレス鋼(不動態)が電食をうけることはない。しかし
、復水器2の運転条件が変り、特別な状態、例えば海水
中の異物等によりステンレス鋼の表面の一部が活性状態
となった場合には。
Therefore, unless an abnormal condition occurs, stainless steel (passive) will not be subject to electrolytic corrosion. However, if the operating conditions of the condenser 2 change and a part of the stainless steel surface becomes active due to special conditions, such as foreign objects in the seawater.

ステンレス鋼の方が卑となって、管板22のネーバル黄
銅板および冷却管3のアルミニウム黄銅管との自然電位
差が生じ、この場合はステンレス鋼が電食を受ける。
Stainless steel becomes less base, and a natural potential difference occurs between the naval brass plate of the tube sheet 22 and the aluminum brass tube of the cooling tube 3, and in this case, the stainless steel is subject to electrolytic corrosion.

この現象を第11図を参照して説明する。第11図にお
いて、ここでは出口循環水管10に設置されるボール捕
集器14の一部が活性状態となり、他の部分は不動態被
膜に覆われていると考える。そして、このとき5活性状
態が出現した領域は図中のA領域にあるものと想定する
This phenomenon will be explained with reference to FIG. In FIG. 11, it is assumed that a part of the ball collector 14 installed in the outlet circulating water pipe 10 is in an active state, and the other part is covered with a passive film. At this time, it is assumed that the area where the 5 active states have appeared is in area A in the figure.

この場合の電気的回路は出口循環水管10より露出した
ステンレス鋼のボール捕集器14へ、さらに冷却海水6
を通って、復水器管板22および冷却管23を経て、復
水器2の胴を通る回路となる。これにより露出したボー
ル捕集器14の不動態被膜で覆われた部分からボール捕
集器14のA領域を経て、管板22.冷却管3へと腐食
電流24が流れ、この場合もステンレス鋼のボール捕集
器14がA領域を中心として電食されることになる。
In this case, the electrical circuit runs from the outlet circulating water pipe 10 to the exposed stainless steel ball collector 14, and then to the cooling seawater 6.
The circuit passes through the condenser tube plate 22 and the cooling pipe 23, and then through the shell of the condenser 2. As a result, the ball collector 14 is exposed through the area A of the ball collector 14 from the portion covered with the passive film, and then the tube plate 22. A corrosive current 24 flows into the cooling pipe 3, and in this case as well, the stainless steel ball collector 14 is electrolytically corroded mainly in the area A.

このような入口および出口水室8,9ならびに入口およ
び出口循環水管7,10における電食現象から機器を護
る方法として入口および出口水室8゜9内に防食電流を
流すやり方が広く行なわれている。一方、ボール捕集器
14等における同様な現象に対してもその近傍に適切な
防食電流を流して電食を防止することも行なわれている
As a method of protecting equipment from such electrolytic corrosion phenomena in the inlet and outlet water chambers 8 and 9 and the inlet and outlet circulating water pipes 7 and 10, it is widely practiced to flow an anticorrosive current into the inlet and outlet water chambers 8.9. There is. On the other hand, in response to a similar phenomenon in the ball collector 14 and the like, an appropriate anti-corrosion current is passed in the vicinity of the ball collector 14 to prevent electrolytic corrosion.

以下、これらの対策を中心として電気防食の具体的な方
法を説明する。第12図において、符号26は犠牲陽極
を示しており、これに防食電流27を発生するために取
り付けられている。
Hereinafter, specific methods of cathodic protection will be explained focusing on these measures. In FIG. 12, reference numeral 26 designates a sacrificial anode, which is attached to generate an anticorrosive current 27.

なお、ここには示されないが、入口水室8にも同様の装
置が設置され、同様の効果が得られるようになっている
Although not shown here, a similar device is also installed in the inlet water chamber 8, so that similar effects can be obtained.

上記構成において、防食電流27は犠牲陽極26から復
水器管板22.冷却管3.被膜損傷部23a、 23b
へ流れ、被膜損傷部23a、 23bより流れる腐食電
流24(第9図参照)が消滅させられる。これにより、
被膜損傷部23a、 23bの電食を防止することがで
きる。また、このとき同時に管板22及び冷却管3の局
部的な腐食も防止される。
In the above configuration, the anti-corrosion current 27 flows from the sacrificial anode 26 to the condenser tube plate 22. Cooling pipe 3. Damaged coating parts 23a, 23b
Corrosion current 24 (see FIG. 9) flowing from the damaged coating parts 23a and 23b is extinguished. This results in
Electrolytic corrosion of the damaged coating parts 23a and 23b can be prevented. Further, at this time, local corrosion of the tube sheet 22 and the cooling pipe 3 is also prevented.

通常、陰極防食を行なう場合にはその金属の自然電位よ
り200〜250mV程度卑側にすることによりその金
属の防食が行なわれる。一般に、海水中における鉄の自
然電位は第8図に示されるように−450〜−650m
V S CE程度であり、これから鉄の防食電位が設定
される。
Normally, when cathodic protection is performed, the metal is protected from corrosion by making the metal's natural potential about 200 to 250 mV more base. Generally, the natural potential of iron in seawater is -450 to -650m as shown in Figure 8.
It is about V S CE, and the anticorrosion potential of iron is set from this.

なお、車側にすればするほど防食効果は高まるが、防食
のための鋼表面に施されるゴム、タールエポキシ樹脂等
の被覆材料は、あまり車側にすると表面が劣化して剥離
するという問題があり、あまり車側に設定することはで
きない。従って、通常は−650〜−900mV S 
CEの範囲に設定される。
Furthermore, the corrosion prevention effect increases as the surface is placed closer to the car, but coating materials such as rubber and tar epoxy resin applied to the steel surface for corrosion protection have the problem that if placed too close to the car, the surface deteriorates and peels off. There is, and it cannot be set very much on the car side. Therefore, normally -650 to -900mV S
Set in the CE range.

一方、出口循環水管10の経路内にステンレス鋼のボー
ル捕集器14が設けられる場合にはステンレス鋼の電食
現象に対する備・えが必要となる。この場合の電気防食
はボール捕集器14を中心として次のように行なわれる
On the other hand, if a stainless steel ball collector 14 is provided in the path of the outlet circulating water pipe 10, it is necessary to prepare for electrolytic corrosion of the stainless steel. In this case, cathodic protection is performed centering on the ball collector 14 as follows.

即ち、第13図において、符号28は犠牲陽極を示して
おり、防食電流29を発生させるため取り付けられてい
る。
That is, in FIG. 13, reference numeral 28 indicates a sacrificial anode, which is attached to generate an anticorrosion current 29.

上記構成において、防食電流は犠牲陽極28からボール
捕集器14.被膜損傷部23へ流れ、被膜損傷部23よ
り流れる腐食電流24(第9図参照)が消滅させられる
。これにより被膜損傷部23の電食を防止することがで
きる。また、このとき同時にボール捕集器14の孔食お
よび隙間腐食などの局部的腐食ならびに活性状態の腐食
も防止される。
In the above configuration, the anticorrosion current flows from the sacrificial anode 28 to the ball collector 14. Corrosion current 24 (see FIG. 9) flowing to and from the damaged coating portion 23 is extinguished. Thereby, electrolytic corrosion of the damaged coating portion 23 can be prevented. At the same time, localized corrosion such as pitting corrosion and crevice corrosion of the ball collector 14 as well as active corrosion are also prevented.

次に、従来の黄銅系の材料により構成される復水器2の
主要な部分を黄銅よりも責な金属であるチタン材により
構成した復水器において、腐食現象にどのような方法で
対処しているかを説明する。
Next, how can we deal with corrosion in a condenser where the main parts of the condenser 2, which is conventionally made of brass-based materials, are made of titanium, a metal that is more harmful than brass? Explain what you are doing.

一般に、このようなチタン材からなる復水器は全チタン
復水器と呼ばれているが、復水器を始めとして周辺機器
、配管および計装品等の構成は第7図に示したものと変
わるところはない。この種の全チタン復水器の典型的な
ものは大型の火力発電プラント、M予力発電プラントに
用いられており、管板22および冷却管3がチタン材で
製作される。
Generally, a condenser made of titanium like this is called an all-titanium condenser, but the configuration of the condenser, peripheral equipment, piping, instrumentation, etc. is shown in Figure 7. There is no difference. A typical all-titanium condenser of this type is used in large-scale thermal power plants and M pre-power generation plants, and the tube sheets 22 and cooling pipes 3 are made of titanium material.

チタン材からなる管板22および冷却管3は極めて耐食
性に優れており、海水それ自体による腐食現象に限れば
、これらの部分はほぼ除いて考えてもよい。しかしなが
ら、チタン材以外の金属が全チタン復水器の他の部分構
成材として使用され、またその周辺機器、配管および製
品等にもチタンよりも卑な金属を用いているのは前記し
たとおりであり、チタン材と他の金属と電位差のために
車側の金属に電食が発生することは避けられない。
The tube plate 22 and the cooling pipe 3 made of titanium material have extremely excellent corrosion resistance, and as long as the corrosion caused by seawater itself is limited, these parts can be largely excluded. However, as mentioned above, metals other than titanium are used for other parts of the all-titanium condenser, and metals less base than titanium are also used for peripheral equipment, piping, and products. However, due to the potential difference between the titanium material and other metals, it is inevitable that electrolytic corrosion will occur on the metal on the car side.

これに加えて、全チタン復水器には第12図および第1
3図で述べられた単に電食現象に対処するのみでは充分
でなく、別の考え方で取組まなければならない問題があ
る。それはチタン材等の特有の現象である水素脆性の問
題である。この水素脆性とは水素の吸収により金属材料
が脆くなる現象で、チタン材を海水中において、約−6
00mV S CEよす車側に分極させると、水素吸収
が始まることから引き起こされる。従って、第12図お
よび第13図に示されるような方法で電食を防止する場
合の防食電位はチタン材が水素脆性を生じないところの
電位は設定する必要がある。
In addition to this, all-titanium condensers are shown in Figures 12 and 1.
It is not enough to simply deal with the electrolytic corrosion phenomenon described in Figure 3; there are problems that must be tackled from a different perspective. This is the problem of hydrogen embrittlement, which is a unique phenomenon of titanium materials. Hydrogen embrittlement is a phenomenon in which metal materials become brittle due to the absorption of hydrogen.
00mV S CE When polarized toward the vehicle side, hydrogen absorption begins, causing this phenomenon. Therefore, when preventing electrolytic corrosion by the method shown in FIGS. 12 and 13, the corrosion protection potential must be set at a potential at which the titanium material does not develop hydrogen embrittlement.

第14図に上記した点を踏まえて実施される全チタン復
水器における電気防食の施工方法を示している。なお、
図中第12図および第13図に示される部分と同一の部
分には同一の符号を付している。
FIG. 14 shows a construction method for cathodic protection in an all-titanium condenser, which is carried out based on the above points. In addition,
In the figure, the same parts as those shown in FIGS. 12 and 13 are designated by the same reference numerals.

第14図において、符号26は犠牲陽極を示しており、
防食電流27を発生させるため取り付けられている。
In FIG. 14, numeral 26 indicates a sacrificial anode,
It is attached to generate an anti-corrosion current 27.

なお、図中符号30はアースを示している。また、ここ
には示されないが、入口水室8にも同様の装置が設けら
れ、同様の効果が得られるようになっている。
Note that the reference numeral 30 in the figure indicates earth. Although not shown here, a similar device is also provided in the inlet water chamber 8, so that similar effects can be obtained.

上記構成において、防食電流27は犠牲陽極26から管
板22.冷却管3.被膜損傷部23a、 23bへ流れ
、被膜損傷部23a、 23bより流れる腐食電流24
(第9図参照)が消滅させられる。ここで、出口水室9
の下部における電位はチタン材の水素脆性の発生を回避
するうえで一600mV S CEよりも前側になるよ
うにしている。また出口循環水管10出ロ付近の電位は
鉄を対象に−650〜−900mV程度になるようにし
ている。
In the above configuration, the anti-corrosion current 27 flows from the sacrificial anode 26 to the tube plate 22. Cooling pipe 3. Corrosion current 24 flows to and from the damaged coating parts 23a and 23b.
(see Figure 9) is eliminated. Here, outlet water chamber 9
The potential at the bottom of the titanium material is set to be in front of -600 mV S CE in order to avoid hydrogen embrittlement of the titanium material. Further, the electric potential near the outlet of the circulating water pipe 10 is set to about -650 to -900 mV for iron.

なお、ステンレス鋼のボール捕集器14における電食現
象に対処する方法は第13図で述べたところと変わると
ころはない。
Note that the method for dealing with the electrolytic corrosion phenomenon in the stainless steel ball collector 14 is the same as that described in FIG. 13.

(発明が解決しようとする課M) 上述したように、全チタン復水器では出口水室9および
出口水管10に発生した被膜損傷部23a。
(Problem M to be Solved by the Invention) As described above, in the all-titanium condenser, the coating damage portion 23a occurs in the outlet water chamber 9 and the outlet water pipe 10.

23bの露出鋼面の電食を防止するために出口循環水管
10に犠牲陽極26を設け、ここから防食電流27を、
例えば、出口水室9に存在する被膜損傷部23aに向け
て流すようにしているが、 この場合。
In order to prevent electrolytic corrosion on the exposed steel surface of 23b, a sacrificial anode 26 is provided in the outlet circulating water pipe 10, from which an anti-corrosion current 27 is supplied.
For example, in this case, the water is directed toward the damaged coating portion 23a existing in the outlet water chamber 9.

犠牲陽極26を極端に出口水室9側に近づけた場合には
被膜損傷部23aに防食電流27が流れると同時に、防
食対象外の管板22および冷却管3にも防食電流27が
流れ込む。
When the sacrificial anode 26 is brought extremely close to the outlet water chamber 9 side, the anti-corrosion current 27 flows into the damaged coating portion 23a, and at the same time, the anti-corrosion current 27 also flows into the tube plate 22 and the cooling pipe 3 which are not subject to corrosion protection.

この損失電流が管板22および冷却管3に流入すると、
チタン材の分極特性が電流値の大きさにより変動するた
め、チタン材が海水中で示す自然電位より車側の電位を
示すようになる。このため。
When this loss current flows into the tube plate 22 and the cooling pipe 3,
Since the polarization characteristics of the titanium material vary depending on the magnitude of the current value, the titanium material exhibits a potential closer to the vehicle than the natural potential it exhibits in seawater. For this reason.

出口水室9の下部では電位がチタン材が水素脆性を起こ
す電位約−600mV S CEより車側になってしま
う。
At the lower part of the outlet water chamber 9, the potential is closer to the car than the potential at which titanium material becomes hydrogen brittle, which is approximately -600 mV S CE.

この対策としては犠牲MI極26を出口水室9から遠く
離れた箇所に設けることが考えられる。この場合、管板
22および冷却管3に流れる損失電流は上記した場合と
比べると大幅に小さくなり、出口水室9の下部の電位が
上述した約−600mV S CEよりも食倒になりチ
タン材の水素脆性は生じない。
As a countermeasure to this problem, it is conceivable to provide the sacrificial MI pole 26 at a location far away from the outlet water chamber 9. In this case, the loss current flowing through the tube plate 22 and the cooling pipe 3 becomes significantly smaller than in the case described above, and the potential at the bottom of the outlet water chamber 9 becomes lower than the above-mentioned approximately -600 mV S CE, and the titanium material Hydrogen embrittlement does not occur.

しかしながら、この部位の電位が食倒になるということ
は出口水室9内全体をみると、出口水室9の下部以外の
遠いところではさらに食倒の電位になることであり、例
えば被膜損傷部23aの付近は全く防食電流37が流れ
なくなってしまう。
However, the fact that the potential in this area is reduced means that when looking at the entire inside of the outlet water chamber 9, the potential is further reduced in areas other than the lower part of the outlet water chamber 9. For example, in areas where the membrane is damaged. The anti-corrosion current 37 no longer flows in the vicinity of 23a.

この時、仮に犠牲陽極26を出口水室9から遠く離すと
同時に鉄の防食電位である−650〜−900mVSC
Eを一層卑側にすることが可能であれば、対応が比較的
容易であり、望ましいと考えられる。
At this time, if the sacrificial anode 26 is moved far away from the outlet water chamber 9, the anti-corrosion potential of iron is -650 to -900 mVSC.
If it were possible to make E even more base, this would be relatively easy to deal with and would be desirable.

しかしながら、犠牲陽極26が取付けられる出口循環水
管10の近傍ではこうした対策が採られた場合に次のよ
うな問題を生じる懸念があり、現実に用いられる可能性
はない。すなわち、出口循環木管10等の防食のために
鋼表面に施されるゴム、タールエポキシ樹脂等の被覆材
料の表面はかかる対策により一層増大する防食電位およ
び電流値のために劣化が進み易くなり、鋼表面からこれ
らの材料が剥離してしまう危険性があり、大きな問題と
なる。
However, if such a measure is taken near the outlet circulating water pipe 10 to which the sacrificial anode 26 is attached, there is a concern that the following problem will occur, and there is no possibility that it will actually be used. In other words, the surface of the coating material such as rubber or tar epoxy resin applied to the steel surface for corrosion prevention of the outlet circulation wood pipe 10 etc. is likely to deteriorate due to the corrosion prevention potential and current value which are further increased by such measures. There is a risk that these materials will peel off from the steel surface, which poses a major problem.

このように単に鉄の防食電位−650〜−000mV 
SCEを一層卑側に持って行くことは被覆材料側に不都
合が生じるため、好ましくない。
In this way, the corrosion protection potential of iron is simply -650 to -000 mV.
It is not preferable to bring the SCE to a more base side because it causes inconvenience to the coating material.

一方、先に述べたように犠牲陽極26の設置場所等に必
要な配慮を欠いている従来の電気防食方法においては真
に電食防止に役立つものとはいえないところがあり、改
善が求められている。
On the other hand, as mentioned earlier, the conventional cathodic protection method, which lacks the necessary consideration for the installation location of the sacrificial anode 26, cannot be said to be truly useful for preventing electrolytic corrosion, and improvements are needed. There is.

したがって、本発明の目的は熱交換器に使用されるチタ
ン材の水素脆性を抑制し、かつチタン材と共に用いられ
る炭素鋼の部分においても電食現象により鋼表面が腐食
されるのを確実に防止するようにした全チタン熱交換器
の電気防食装置を提供することにある。
Therefore, the purpose of the present invention is to suppress the hydrogen embrittlement of titanium materials used in heat exchangers, and also to reliably prevent the steel surface from being corroded due to galvanic corrosion even in the carbon steel parts used together with the titanium materials. An object of the present invention is to provide a cathodic protection device for an all-titanium heat exchanger.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記課題を解決するために熱交換器胴に連なる
一対の水室を有し、冷媒としての海水を前記水室の一方
から他方にかけて伝熱管を通して流すように構成してな
り、その際、各伝熱管は伝熱管を支持する管板と共にチ
タン材を用いて、かつ各水室は水室に連なる配管装置と
共にチタン材よりも電気的に卑な金属材料を用いてそれ
ぞれ農作されてなる全チタン熱交換器の電気防食装置に
おいて、各水室内の全域および各配管装置内の水室に連
なる一定領域の電気的絶縁が好適に保たれるように当該
領域を比較的堅牢な絶縁性材料を用いて被覆し、各水室
および各配管装置内の防食電位を保持するにあたり、各
水室内の管板下部近傍にてチタン材の水素脆性を抑制可
能な電位を、また各配管装置内の絶縁性材料による被覆
領域境界部近傍で少なくとも海水中における鉄の自然電
位よりも車側の電位をそれぞれ保つように犠牲陽極を取
り付けたことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention has a pair of water chambers connected to a heat exchanger body, and allows seawater as a refrigerant to flow from one of the water chambers to the other through heat transfer tubes. In this case, each heat exchanger tube is made of titanium material together with the tube plate that supports the heat exchanger tube, and each water chamber is made of a metal electrically more base than titanium material together with the piping device connected to the water chamber. In cathodic protection equipment for all-titanium heat exchangers, which are manufactured using the same materials, the electrical insulation of the entire area inside each water chamber and a certain area connected to the water chamber in each piping device is maintained appropriately. In order to maintain the anti-corrosion potential in each water chamber and each piping device by covering the area with a relatively robust insulating material, it is possible to suppress the hydrogen embrittlement of the titanium material near the bottom of the tube plate in each water chamber. A sacrificial anode is installed to maintain the potential near the boundary of the area covered by the insulating material in each piping device, at least at a potential closer to the vehicle than the natural potential of iron in seawater.

また、本発明に係る全チタン熱交換器の電気防食装置は
熱交換器に連なる一対の水室を有し、冷媒としての海水
を前水室の一方から他方にかけて伝熱管を通して流すよ
うに構成してなり、その際、各伝熱管は伝熱管を支持す
る管板と共にチタン材を用いて、かつ各水室は水室に連
なる配管装置と共にチタン材よりも電気的に卑な金属材
料をそ九ぞれ用いて製作されてなる全チタン熱交換器の
電気防食装置において、各水室内の全域および各配管装
置内の水室に連なる一定領域の電気的絶縁が好適に保た
れるように当該領域を比較的堅牢な絶縁性材料を用いて
被覆し、各水室内の管板下部近傍と、各配管装置内の絶
縁性材料による被覆領域境界部近傍についてこれらの地
点の防食電位が所定の値を保てるように犠牲陽極を前記
各水室から一定距離離間して各々設けたことを特徴とす
るものである。
Further, the cathodic protection device for an all-titanium heat exchanger according to the present invention has a pair of water chambers connected to the heat exchanger, and is configured to allow seawater as a refrigerant to flow from one of the front water chambers to the other through the heat transfer tube. In this case, each heat exchanger tube and the tube plate that supports the heat exchanger tube are made of titanium material, and each water chamber and the piping device connected to the water chamber are made of a metal material that is electrically less noble than titanium material. In the cathodic protection device for the all-titanium heat exchanger manufactured using the above-mentioned methods, the electrical insulation of the entire area inside each water chamber and a certain area connected to the water chamber in each piping device is maintained in a suitable manner. is covered with a relatively robust insulating material, and the corrosion protection potential at these points near the bottom of the tube plate in each water chamber and near the boundary of the area covered by the insulating material in each piping device reaches a predetermined value. The present invention is characterized in that sacrificial anodes are provided at a certain distance from each of the water chambers so as to maintain the temperature of the sacrificial anodes.

(作用) 第2図は実験および解析により求められた出口水室およ
び出口循環水管の中心部の電位分布について示している
。図中、縦軸は管中心の電位を示し、横軸はグラフの上
に示した出口水室9および出口循環水管10の部位を示
している。電位分布は出口循環水管lO内における犠牲
陽極の位置をそれぞれ変化させたものである。この場合
、亜鉛又はアルミニウムを主成分とする犠牲陽極であり
、海水中での電位が約−1000nV S CEに保つ
ように製造されたもので、出口水室9および出口循環水
管10内の測定された電位を結んで分布曲線(a)(b
)(C)として示されている。初めに、(a)は犠牲陽
極26の取付位置が理想的であった場合の電位分布であ
り、この場合、犠牲陽極26から少し出口水室9側に寄
った位置で約−770nV S CEの電位となり、出
口水室9内では一500mV S CEよりも責な電位
となっている。即ち、約−770nV S CEを境界
点としてそれよりも責な電位を示している出口循環木管
10と、これに続いている出口水室9とは適切な対応が
採れない場合に鋼表面が電食によって容易に侵されてし
まう領域に入っている。一方、約−770nV S C
Eよりも卑な電位を示している出口循環水管10内の領
域は電気防食の効果が及ぶ領域であり、鋼表面が電食さ
れる危険性は少ない。
(Function) Figure 2 shows the potential distribution at the center of the outlet water chamber and the outlet circulating water pipe, which was determined through experiment and analysis. In the figure, the vertical axis shows the potential at the center of the pipe, and the horizontal axis shows the parts of the outlet water chamber 9 and the outlet circulating water pipe 10 shown above the graph. The potential distribution is obtained by changing the position of the sacrificial anode in the outlet circulating water pipe lO. In this case, it is a sacrificial anode mainly composed of zinc or aluminum, manufactured to keep the potential in seawater at approximately -1000 nV S CE, The distribution curves (a) (b) are created by connecting the potentials.
) (C). First, (a) shows the potential distribution when the mounting position of the sacrificial anode 26 is ideal. The potential inside the outlet water chamber 9 is greater than -500 mV S CE. In other words, the outlet circulation wood pipe 10 exhibiting a higher potential with a boundary point of approximately -770nV S CE and the outlet water chamber 9 following this may cause the steel surface to become electrically charged if appropriate measures cannot be taken. It is in an area that is easily attacked by eclipses. On the other hand, about -770nV S C
The area within the outlet circulating water pipe 10 exhibiting a potential less noble than E is an area where cathodic protection is effective, and there is little risk of electrolytic corrosion on the steel surface.

上記実験および解析結果により鋼表面が電食によって侵
される危険性のある約−770nV S CEよりも食
倒の電位を示す領域は特に電気的絶縁性の優れた材料を
適用して出口水室9内および出口循環木管10内の約−
770nV S CEより貴な電位を示す領域を被覆す
る。一方、約−770nV S CEより卑な電位を示
す領域については鋼表面の腐食抑制を考慮して主として
防食性を有する材料を用いて被覆する。なお、出口循環
水管10に介装される伸縮継手19については元々絶縁
性材料により構成(ゴム等)されるため、電気的防食の
対象から除いて考えてよい。
According to the above experimental and analytical results, in areas where the steel surface exhibits a potential of more than about -770nV S CE, where there is a risk of corrosion due to electrolytic corrosion, a material with particularly excellent electrical insulation properties is applied to the outlet water chamber 9. Approximately - in the inner and outlet circulation woodwind 10
Cover areas exhibiting a potential more noble than 770 nV S CE. On the other hand, a region exhibiting a potential less noble than about -770 nV S CE is coated with a material mainly having anti-corrosion properties in consideration of suppressing corrosion of the steel surface. Note that since the expansion joint 19 installed in the outlet circulating water pipe 10 is originally made of an insulating material (such as rubber), it may be excluded from the scope of electrical corrosion protection.

次に、(b)は犠牲陽極26が(a)の場合よりも出口
水室9側に寄っている場合の電位分布である6(a)と
比べると、約−770nVの電位を示す箇所はよす出口
水室9側に近くなっている。即ち、電気防食の効果が及
ぶ領域は(a)よりも出口水室9側に近づき、その分電
気的絶縁性を備えた材料による被覆領域は減少する。し
かしながら、出口水室9内の電位は一500+eV S
 CEを切っている(a)と比べて著しく岸側に寄って
おり、チタン材の水素脆性を伴う電位−600nV S
 CEに近づき、仮に、管板22および冷却管3の汚れ
等から電位が大きく変化して岸側に振れる場合には一6
00mV S CEに達するかも知れず、(a)と比べ
て余裕の少ない(b)はそれだけ水素脆性の危険性が高
く、採用し難いものである。
Next, (b) shows the potential distribution when the sacrificial anode 26 is closer to the outlet water chamber 9 side than in the case (a).Compared to 6 (a), the location showing a potential of about -770 nV is It is close to the Yosu outlet water chamber 9 side. That is, the area where the cathodic protection effect is applied is closer to the outlet water chamber 9 side than in (a), and the area covered by the electrically insulating material is reduced accordingly. However, the potential inside the outlet water chamber 9 is -500+eV S
Compared to (a) where CE is cut, it is significantly closer to the shore, and the potential is -600nV S due to the hydrogen embrittlement of the titanium material.
When approaching CE, if the potential changes significantly due to dirt on the tube plate 22 and cooling pipes 3 and swings toward the shore,
00 mV S CE may be reached, and (b), which has less margin than (a), has a higher risk of hydrogen embrittlement and is therefore difficult to adopt.

さらに、(b)と反対に(a)からさらに遠い位置に犠
牲陽極26を取付けた場合の電位分布が(c)として示
されている。 (a)と対比すると、この場合の出口水
室9内の電位はさらに食倒に移り、チタン材の水素脆性
に関しては全く問題にならない電位となる。しかしなが
ら、出口循環木管10内の電位は(a)と比べた場合に
約−770nV S CEの電位を示す箇所が出口水室
9からみてより遠くなっている。つまり、電気防食の効
果が及ぶ領域の移動により電気的絶縁性を有する材料に
よる被覆領域は拡がり、反対に防食性材料による被覆領
域は狭くなる。このように電気的絶縁性材料による被覆
領域を伸ばし、換言すると、電気防食の効果が及ばない
領域を拡げることは万が−の被覆材料の損傷を考慮する
と、より慎重でなければならない。また、経済的にも高
価な絶縁性材料の適用は限度がある。結局、(C)の電
位分布を示す位置には犠牲陽極26は取付けられず、被
覆領域をより短くするようにこれを配置することになる
。しかし、先に述べたように電位分布が(b)のように
なると、今度はチタン材の水素脆性の懸念が強くなる。
Furthermore, in contrast to (b), the potential distribution when the sacrificial anode 26 is attached at a position further away from (a) is shown as (c). In comparison with (a), the potential in the outlet water chamber 9 in this case is further shifted to a potential that poses no problem with regard to the hydrogen embrittlement of the titanium material. However, when comparing the potential inside the outlet circulation wood pipe 10 with (a), the point exhibiting a potential of about -770 nV S CE is located further away from the outlet water chamber 9. In other words, as the area affected by cathodic protection moves, the area covered by the electrically insulating material expands, and conversely, the area covered by the anticorrosive material narrows. In this way, extending the area coated with the electrically insulating material, in other words, expanding the area beyond the effect of cathodic protection, must be done with greater care, taking into account possible damage to the coating material. Furthermore, there is a limit to the application of economically expensive insulating materials. As a result, the sacrificial anode 26 is not attached to the position showing the potential distribution in (C), but is arranged so as to shorten the covered area. However, as described above, when the potential distribution becomes as shown in (b), there is a growing concern about hydrogen embrittlement of the titanium material.

従って、(a)は電気防食の及ばない領域が少なく、 
しかもチタン材の水素脆性が生じない電位分布であると
いえる。
Therefore, in (a) there are few areas that are not covered by cathodic protection,
Furthermore, it can be said that the potential distribution is such that hydrogen embrittlement of the titanium material does not occur.

一方、別の実験および解析では犠牲陽極26の電位を上
記実験の電位約−1000mV S CEから、マグネ
シウムを主成分とする犠牲陽極26を使用し、海水中で
電位が約−1600nV S CEに保つように製造さ
れたもので、この犠牲陽極26を使用して約−1600
mV S CEに上げて電位分布を測定した。これが図
に破線で示される分布曲線である。(a)と対比するな
らば、(a)よりもさらに電気防食の効果が及ぶ領域は
拡がることは明らかであるが、電位設定を大きくしただ
けでは利するところよりも害だけが目立って大きくなる
。すなわち、出口水室9内の電位は一600mV S 
CEすれすれに近づき、水素脆性が起こる危険性はます
ます高くなると共に、−10100OS CEより岸側
に設定しているために絶縁材料の剥離が生じ易くなる。
On the other hand, in another experiment and analysis, the potential of the sacrificial anode 26 was changed from the potential of about -1000 mV S CE in the above experiment to about -1600 nV S CE in seawater using a sacrificial anode 26 mainly composed of magnesium. Using this sacrificial anode 26, approximately -1600
The potential distribution was measured by increasing the voltage to mV S CE. This is the distribution curve shown by the dashed line in the figure. If we compare it with (a), it is clear that the area where the effect of cathodic protection extends is even wider than in (a), but simply increasing the potential setting will only cause more harm than good. . That is, the potential inside the outlet water chamber 9 is -600 mV S
As it approaches CE, the risk of hydrogen embrittlement becomes higher and higher, and since it is set closer to the shore than -10100OS CE, it becomes easier for the insulating material to peel off.

したがって、犠牲陽極26は亜鉛又はアルミニウムを主
成分とする犠牲陽極26を使用し犠牲陽極26の電位は
約−1000mV S CEとするのが望ましい。
Therefore, it is desirable to use a sacrificial anode 26 whose main component is zinc or aluminum, and to set the potential of the sacrificial anode 26 to about -1000 mV S CE.

また、防食電位の下限は鉄の海水中の自然電位が−45
(+−−650mV S CEであり、約−650mV
 S CEとする。
In addition, the lower limit of corrosion protection potential is -45, which is the natural potential of iron in seawater.
(+-650mV S CE, approximately -650mV
SCE.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図において、出口水室9の内部は電気的絶縁性を有
する被覆材料、例えば堅牢な構造のゴム31で覆われて
いる。この出口水室9の下部については、 その電位を
一600mV S CEよりも食倒にして、チタン材の
水素脆性が起こらないように犠牲陽極26を取付けてい
る。また、出口循環水管10の出口水室9に連なるL2
の領域についても同様なゴ1131により覆われている
。通常、伸縮継手19はゴムで作られており、 L2の
領域には鋼表面の露出部分は存在しない。
In FIG. 1, the interior of the outlet water chamber 9 is covered with an electrically insulating covering material, for example a rubber 31 having a robust structure. A sacrificial anode 26 is attached to the lower part of the outlet water chamber 9 so that its potential is set lower than -600 mV S CE to prevent hydrogen embrittlement of the titanium material. In addition, L2 connected to the outlet water chamber 9 of the outlet circulation water pipe 10
The region is also covered with a similar gore 1131. Usually, the expansion joint 19 is made of rubber, and there is no exposed steel surface in the region L2.

また、出口循環水管10のL2以外の領域は防食性を有
する被覆材料であるタールエポキシ樹脂32で被覆され
ているが、ゴム31とこのタールエポキシ樹脂32との
境界部について、この部分の設定電位は一770mV 
S CEよりも岸側になるようにして、鋼表面が電食に
よって侵されないように犠牲陽極26の位置を考慮し、
設置されている。
In addition, the area other than L2 of the outlet circulating water pipe 10 is covered with tar epoxy resin 32, which is a coating material with anti-corrosion properties. is -770mV
The position of the sacrificial anode 26 is taken into consideration so that it is closer to the shore than the S CE so that the steel surface is not attacked by electrolytic corrosion.
is set up.

一方、犠牲陽極26は出口水室9よりり、の距離に取付
けられる。したがって、電気防食の対象領域はL3から
L2を引いたLlとなる。
On the other hand, the sacrificial anode 26 is mounted at a distance of from the outlet water chamber 9. Therefore, the target area for cathodic protection is Ll, which is obtained by subtracting L2 from L3.

以下、L、が約4.8m、出口循環水管10の内径りが
2.4m、  犠牲陽極26の電位が約−1000mV
 S CEである場合の出口水室内下部の電位、電流値
および出口循環水管内の電位分布の測定結果について述
べる。
Hereinafter, L is approximately 4.8 m, the inner diameter of the outlet circulating water pipe 10 is 2.4 m, and the potential of the sacrificial anode 26 is approximately -1000 mV.
The measurement results of the potential and current value in the lower part of the outlet water chamber and the potential distribution in the outlet circulating water pipe in the case of SCE will be described.

初めに、出口水室下部の電位の変化について説明する。First, changes in the potential at the bottom of the outlet water chamber will be explained.

第3図において、なお、図中縦軸は出口循環水管10の
管中心の電位を、また横軸は犠牲陽極26より熱交換器
側への距離をそれぞれ示している。
In FIG. 3, the vertical axis indicates the potential at the center of the outlet circulating water pipe 10, and the horizontal axis indicates the distance from the sacrificial anode 26 to the heat exchanger side.

Llが約4.8m (L、/ D 句2 )の場合、即
ち、犠牲陽極26から約4.8m離れているところまで
の電位は曲線(g)として示され、出口水室9内下部の
電位が一600mV S CEより前側にあることが理
解される。この場合、約4.8mより約3.3mの範囲
で電位が一600mV S CEよりも前側となり、 
この範囲内ではチタン材の水素脆性は発生しない。
When Ll is about 4.8 m (L,/D clause 2), that is, the potential up to a distance of about 4.8 m from the sacrificial anode 26 is shown as a curve (g), and the lower part of the outlet water chamber 9 It is understood that the potential is in front of 1600 mV S CE. In this case, the potential is in front of 1600 mV S CE in the range of about 3.3 m from about 4.8 m,
Within this range, hydrogen embrittlement of titanium material does not occur.

ところで、第3図にはL3が約2.4mの場合、および
約1.2mの場合とが曲線(h)および(i)として示
されている6なお、これらの値は出口循環水管10の内
径りに対して1.0倍および0.5倍である。
By the way, in FIG. 3, the cases where L3 is about 2.4 m and the case where L3 is about 1.2 m are shown as curves (h) and (i). They are 1.0 times and 0.5 times the inner diameter.

曲線(h)および(i)の電位は一600mV S C
Eより常に岸側であるためにチタン材の水素脆性が生じ
る。従って、内径りに対して2倍の距離まで離した(g
)を目標とする必要がある。
The potential of curves (h) and (i) is -600 mV SC
Hydrogen embrittlement occurs in the titanium material because it is always on the shore side of E. Therefore, the distance was set twice as far as the inner diameter (g
) should be the goal.

次に、電流値の変化について説明する。Next, changes in current value will be explained.

第4図において、なお、ここで縦軸は犠牲陽極26より
の電流値を、また横軸は熱交換器より犠牲陽極26まで
の距離をそれぞれ示している。第4図から距離が約4.
8mより大きくなると、 2アンペア弱でほぼ一定とな
る。また、これより小さくなると、電流値は急激に上昇
する。次に、出口@環水管10内の電位分布について説
明する。なお、条件は第3図および第4図の場合と同じ
であるが、犠牲陽極26の電位が約−1600mV S
 CHの場合も示している。
In FIG. 4, the vertical axis represents the current value from the sacrificial anode 26, and the horizontal axis represents the distance from the heat exchanger to the sacrificial anode 26. The distance from Figure 4 is approximately 4.
When it becomes larger than 8m, it becomes almost constant at less than 2 amperes. Moreover, when it becomes smaller than this, the current value increases rapidly. Next, the potential distribution inside the outlet @ water circulation pipe 10 will be explained. Note that the conditions are the same as those in FIGS. 3 and 4, except that the potential of the sacrificial anode 26 is approximately -1600 mV S
The case of CH is also shown.

第5図において、なお、図中縦軸は犠牲陽極26より熱
交換器側の出口循環水管10の管中心における電位を、
また横軸は犠牲陽極26より熱交換器側への距離をそれ
ぞれ示している。
In FIG. 5, the vertical axis represents the potential at the center of the outlet circulating water pipe 10 on the heat exchanger side from the sacrificial anode 26.
Further, the horizontal axis indicates the distance from the sacrificial anode 26 to the heat exchanger side.

曲線(j)は犠牲陽極26ノ電位が約−1000mV 
SCEの場合の出口循環木管lOの電位分布を示してい
る。犠牲陽極26よりの距離約2.4m以内が一770
mVscEより車側の電位分布となり、鋼表面の防食は
所望の結果が得られる。一方、これを超える部分(斜線
部)は−770mV S CEより貴な電位となって防
食効果が得られなくなる。
Curve (j) indicates that the potential of the sacrificial anode 26 is approximately -1000 mV.
The potential distribution of the exit circulating woodwind lO in the case of SCE is shown. 1770 within a distance of approximately 2.4m from the sacrificial anode 26
The electric potential distribution is closer to the car than mVscE, and the desired corrosion protection result on the steel surface can be obtained. On the other hand, the part exceeding this (the shaded part) becomes a potential nobler than -770 mV S CE, and no anticorrosion effect can be obtained.

曲線(j)と対比するために犠牲陽極26の電位が約−
1600mV S CEの場合の出口水室9および出口
循環水管10の管中心の電位分布が曲線(k)として示
されている。
To contrast with curve (j), the potential of the sacrificial anode 26 is approximately -
The potential distribution at the center of the outlet water chamber 9 and the outlet circulation water pipe 10 in the case of 1600 mV S CE is shown as a curve (k).

犠牲陽極26よりの距離約4.1m以内が一770mV
 SCEより車側の電位分布となり、上記電位よりも広
い範囲に防食効果が及ぶが、この電位は出口水室9内下
部の電位を第3図の(g)の如く適正な値に保つ電位(
約−1000mV S CE )ではなく、これに依存
することはできない。
1770mV within a distance of approximately 4.1m from the sacrificial anode 26
The potential distribution is closer to the vehicle than the SCE, and the anticorrosion effect extends over a wider range than the above potential, but this potential is a potential that keeps the potential at the lower part of the outlet water chamber 9 at an appropriate value as shown in (g) in Figure 3.
-1000 mV S CE ) and cannot be relied upon.

以上の第3図、第4図および第5図に基づくならば、犠
牲陽極26の取付は位置が約4.8mのときに防食効果
の得られる範囲は約2.4mであるから、L2=L3−
L1=4.8−2.4=2.4となり、 約2.4m以
上がこの場合の絶縁性を有する材料による被覆領域とな
る。
Based on the above figures 3, 4, and 5, when the sacrificial anode 26 is installed at a position of about 4.8 m, the corrosion protection effect can be obtained within a range of about 2.4 m, so L2= L3-
L1=4.8-2.4=2.4, and the area covered by the insulating material in this case is about 2.4 m or more.

次に1本発明の他の実施例について説明する。Next, another embodiment of the present invention will be described.

本実施例では、出口循環水管10のL2以外の領域は防
食性を有する被覆材料であるタールエポキシ樹脂32で
被覆されているが、ゴム31とこのタールエポキシ樹脂
32の境界部について、防食電位を鉄の海水中の自然電
位(−450〜−650mV S CE )程度として
、 自然電位上限の約−650mV S CE :fS
i度に設定したものである。これは上記実施例に対して
電位を前側に設定して電流値を下げること、また、水室
9の下部の電位を食倒にしてチタン材の水素脆性を皆無
にし、さらに、高価なゴムによる被覆領域を減少させる
ことなどにより経済的な効果をより一層高めたい場合に
特に考えられるやり方である。
In this embodiment, the area other than L2 of the outlet circulating water pipe 10 is coated with tar epoxy resin 32, which is a coating material having anti-corrosion properties. Assuming the natural potential of iron in seawater (-450 to -650 mV S CE ), the upper limit of the natural potential is approximately -650 mV S CE : fS
It is set to i degree. This is done by setting the potential to the front side to lower the current value compared to the above embodiment, and by reducing the potential at the bottom of the water chamber 9 to completely eliminate the hydrogen embrittlement of the titanium material. This method is especially conceivable when it is desired to further increase the economical effect by reducing the covered area.

第6図において、上記実施例と同様、出口水室9の内部
とこれに連なるL2の領域が堅牢な構造のゴム31で被
覆され、これらの箇所には鋼表面の露出部分は存在しな
い。なお、L2の領域には伸縮継手19が含まれる。
In FIG. 6, similarly to the embodiment described above, the inside of the outlet water chamber 9 and the region L2 connected thereto are covered with a rubber 31 having a robust structure, and there are no exposed portions of the steel surface at these locations. Note that the area L2 includes the expansion joint 19.

また、 出口循環水管lOのL2以外の領域がタールエ
ポキシ樹脂32により被覆される。犠牲陽極26はこの
被覆領域内のり、の位置に設置され、L、からり、を引
いたL□がこの場合の電気防食の対象領域となる。
Further, the area other than L2 of the outlet circulating water pipe IO is covered with tar epoxy resin 32. The sacrificial anode 26 is installed at a position within this coating area, and L□, which is obtained by subtracting L and KARI, becomes the area to be subjected to cathodic protection in this case.

以下、L3が約4.8m、出口循環水管10の内径が2
.4m、  犠牲陽極26の電位が約−1000mV 
S CEである場合の出口水室9内下部の電位、電流値
および出口循環水管10内の電位分布の測定結果につい
て説明する。
Below, L3 is approximately 4.8 m, and the inner diameter of the outlet circulating water pipe 10 is 2.
.. 4m, the potential of the sacrificial anode 26 is approximately -1000mV
The measurement results of the potential in the lower part of the outlet water chamber 9, the current value, and the potential distribution in the outlet circulating water pipe 10 in the case of SCE will be explained.

初めに、出口水室内下部の電位の変化について説明する
。本実施例は上記実施例に比べ、出口循環水管10の堅
牢な構造のゴム31で被覆された部分L2が短く、また
、出口循環水管10のL2以外の領域であるタールエポ
キシ樹脂32で被覆されたLlの範囲を長くしたもので
ある。従って、犠牲陽極26の位置が同一の場合には、
はぼ、第3図の曲線(g)と同一となる。
First, changes in the potential in the lower part of the outlet water chamber will be explained. In this embodiment, compared to the above embodiment, the portion L2 of the outlet circulating water pipe 10 covered with the rubber 31 having a robust structure is shorter, and the area other than L2 of the outlet circulating water pipe 10 is covered with the tar epoxy resin 32. The range of Ll is lengthened. Therefore, if the positions of the sacrificial anodes 26 are the same,
The curve is the same as curve (g) in FIG.

L3が約4.8rn (L3/ D”= 2)の場合、
 つまり犠牲陽極26から約4.8m離れているところ
までの電位は曲線(g)と同一の電位となる。従って、
先にも述べたが、このとき、出口水室9内下部の電位は
一600mV S CEより前側に入るためチタン材の
水素脆性が生じることはない。
When L3 is approximately 4.8rn (L3/D”=2),
In other words, the potential up to a distance of about 4.8 m from the sacrificial anode 26 is the same potential as the curve (g). Therefore,
As mentioned earlier, at this time, the potential at the lower part of the outlet water chamber 9 is in front of -600 mV S CE, so hydrogen embrittlement of the titanium material does not occur.

次に、電流値の変化については、犠牲陽極26の位置は
前述の実施例と同一の位置であり、前述したように第4
図から熱交換器より陽極までの路流が約4.8mの場合
は、 2アンペア弱でほぼ一定となる。また、これより
距離が小さくなると、電流値は急激に上昇する。
Next, regarding the change in current value, the position of the sacrificial anode 26 is the same as in the previous embodiment, and the fourth
From the figure, if the path flow from the heat exchanger to the anode is approximately 4.8 m, the current will be approximately constant at a little less than 2 amperes. Furthermore, when the distance becomes smaller than this, the current value increases rapidly.

次に、出口循環水管10内の電位分布を第5図を参照し
て説明する。電位分布は犠牲陽極26の電位が一100
0mV S CEの場合の曲線(j)となる。犠牲陽極
26よりの距離約2.9m以内が約−650mV S 
CEより車側の電位分布となり、鋼表面の防食はほぼ問
題ない領域となる。一方、これを超える部分は約−65
0mV S CEより前側となり防食効果が得られなく
なる。
Next, the potential distribution within the outlet circulating water pipe 10 will be explained with reference to FIG. 5. The potential distribution is such that the potential of the sacrificial anode 26 is 1100
The curve (j) is for 0 mV S CE. Approximately -650mV S within a distance of approximately 2.9m from the sacrificial anode 26
The potential distribution is closer to the car than CE, and corrosion protection on the steel surface is in an area where there is almost no problem. On the other hand, the part exceeding this is about -65
It becomes more anterior than 0 mV S CE and no anticorrosion effect can be obtained.

以上の第3図、第4図及び第5図に基づくならば、犠牲
陽極26の取付位置が約4.8mのときに防食効果の得
られる範囲は約2.9mであるから、L。
Based on the above FIGS. 3, 4, and 5, when the sacrificial anode 26 is installed at a position of about 4.8 m, the range in which the anticorrosion effect can be obtained is about 2.9 m, so L.

=L、−L1.=4.8−2.9=1.9となり、約1
.9m以上がこの場合の電気的絶縁性を有する材料によ
る被覆領域となる。
=L, -L1. =4.8-2.9=1.9, approximately 1
.. In this case, the area covered by the electrically insulating material is 9 m or more.

本実施例の出口循環水管10設定電位は鉄の海水中の自
然電位の限界にあり、上記実施例の一770mVSCE
よりも食倒になるために信頼性は幾分損なわれることに
なるが、経済性を重視する場合、本実施例により相応の
効果を得ることが可能となる。
The set potential of the outlet circulation water pipe 10 in this embodiment is at the limit of the natural potential of iron in seawater, and is 770 mVSCE in the above embodiment.
Although the reliability will be somewhat impaired because the cost will be more wasted than the above, if economic efficiency is important, this embodiment makes it possible to obtain a corresponding effect.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は各水室内の全域および各配
管装置内の水室に連なる一定領域の電気的絶縁が好適に
保たれるように当該領域を比較的堅牢な絶縁性材料を用
いて被覆し、各水室および各配管装置内の防食電位を保
持するにあたり、各水室の管板下部近傍にてチタン材の
水素脆性を抑制可能な電位を、また各配線装置内の絶縁
性材料による被覆領域境界部近傍で少なくとも海水中に
おける自然電位よりも車側の電位をそれぞれ保つように
犠牲陽極を取付けているので、チタン材の水素脆性が発
生する心配がなく、シかも炭素鋼からなる部分の電食現
象が確実に防止されるという優れた効果を奏する。
As explained above, the present invention uses a relatively robust insulating material to maintain electrical insulation of the entire area inside each water chamber and a certain area connected to the water chamber in each piping device. In order to maintain the anti-corrosion potential in each water chamber and each piping device, we maintain a potential that can suppress the hydrogen embrittlement of the titanium material near the bottom of the tube plate of each water chamber, and insulating material in each wiring device. Since sacrificial anodes are installed near the boundary of the covered area to maintain a potential on the vehicle side that is at least higher than the natural potential in seawater, there is no risk of hydrogen embrittlement in the titanium material, and the material is made of carbon steel. This has the excellent effect of reliably preventing electrolytic corrosion in parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に適用される装置の一実施例を示す
構成図、第2図は本発明における電位の分布状態を示す
電位分布図、第3図は第1図に示される実施例に係る出
口室内下部における電位の変化を示す特性図、第4図は
同電流値の変化について示す特性図、第5図は同出口循
環水管内の電位の分布状態を示す特性図、第6図は本発
明方法に適用される装置の他の実施例を示す構成図、第
7図は従来技術による復水器とそれに接続される配管装
置を示す系統構成図、第8図は海水中における各種金属
の自然電位について示す特性図、第9図、第10図およ
び第11図は復水器における電食現象について示す説明
図、第12図、第13図および第14図は従来の復水器
における電気防食装置の一例を示す構成図である。 2・・・復水器     3・・・冷却管7・・・入口
循環水管  8・・・入口水室9・・・出口水室   
 10・・・出口循環水管22・・・管板      
26.28・・・犠牲陽極27、29・・・電食電流 
 31・・・ゴム32・・・タールエポキシ樹脂 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 陽極よりの距離(m) 第 図 第 図 熱交換器より陽極までの距離(m) 第 図 第 図 第 図 第 図 第 図 第 図 1〜6 第13図 1−乙 第 図
FIG. 1 is a block diagram showing one embodiment of the apparatus applied to the method of the present invention, FIG. 2 is a potential distribution diagram showing the state of potential distribution in the present invention, and FIG. 3 is an embodiment shown in FIG. 1. FIG. 4 is a characteristic diagram showing the change in electric potential at the lower part of the outlet chamber, FIG. 5 is a characteristic diagram showing the distribution of electric potential in the outlet circulating water pipe, and FIG. 7 is a block diagram showing another embodiment of the device applied to the method of the present invention, FIG. 7 is a system block diagram showing a conventional condenser and piping equipment connected to it, and FIG. 8 is a block diagram showing various types of equipment in seawater. Characteristic diagrams showing the natural potential of metals; Figures 9, 10, and 11 are explanatory diagrams showing electrolytic corrosion phenomena in condensers; Figures 12, 13, and 14 are diagrams of conventional condensers. It is a block diagram showing an example of the electrolytic protection device in. 2... Condenser 3... Cooling pipe 7... Inlet circulating water pipe 8... Inlet water chamber 9... Outlet water chamber
10... Outlet circulating water pipe 22... Tube plate
26.28...Sacrificial anode 27, 29...Electrolytic corrosion current
31...Rubber 32...Tar epoxy resin agent Patent attorney Rule Ken Chika Yudo Daishimaru Ken Figure 1 Distance from the anode (m) Figure 1 Distance from the heat exchanger to the anode (m) Figure 1-6 Figure 1 - Figure Otsu

Claims (5)

【特許請求の範囲】[Claims] (1)熱交換器胴に連なる一対の水室を有し、冷媒とし
て海水を前記水室の一方から他方にかけて伝熱管を通し
て流すように構成してなり、その際、前記各伝熱管は該
伝熱管を支持する管板と共にチタン材を用いて、かつ前
記各水室は該水室に連なる配管装置と共にチタン材より
も電気的に卑な金属材料を用いてそれぞれ製作されてな
る全チタン熱交換器の電気防食装置において、前記各水
室内の全域および各配管装置内の水室に連なる一定領域
の電気的絶縁が好適に保たれるように当該領域を比較的
堅牢な絶縁性材料を用いて被覆し、前記各水室および各
配管装置内の防食電位を保持するにあたり、前記各水室
内の管板下部近傍にてチタン材の水素脆性を抑制可能な
電位を、また前記各配管装置内の絶縁性材料による被覆
領域境界部近傍で少なくとも海水中における自然電位よ
りも卑側の電位をそれぞれ保つように配管装置内に犠牲
陽極を取り付けたことを特徴とする全チタン熱交換器の
電気防食装置。
(1) It has a pair of water chambers connected to the heat exchanger body, and is configured to flow seawater as a refrigerant from one of the water chambers to the other through the heat transfer tubes. An all-titanium heat exchanger made of titanium material together with the tube plate that supports the heat tubes, and each of the water chambers and the piping devices connected to the water chambers made of a metal material that is electrically less noble than titanium material. In the cathodic protection device for the equipment, in order to maintain suitable electrical insulation of the entire area inside each water chamber and a certain area connected to the water chamber in each piping device, the said area is made of relatively robust insulating material. In order to maintain the anti-corrosion potential in each of the water chambers and each piping device by coating, a potential that can suppress hydrogen embrittlement of the titanium material near the bottom of the tube plate in each of the water chambers and in each of the piping devices is maintained. A cathodic protection device for an all-titanium heat exchanger, characterized in that a sacrificial anode is installed in the piping equipment so as to maintain at least a potential on the more base side than the natural potential in seawater near the boundary of the area coated with an insulating material. .
(2)各水室の全域および配管装置内の該水室下部より
約2.4mの領域を絶縁性材料を用いて被覆し、各水室
および配管装置内の防食電位を保持するにあたり、各水
室内の管板下部近傍にて約−600mVSCEの電位を
、また各水室の下部から約2.4m離れた地点で約−7
70mVSCEの電位をそれぞれ保つように配管装置内
に犠牲陽極を取り付けたことを特徴とする請求項1記載
の全チタン熱交換器の電気防食装置。
(2) Cover the entire area of each water chamber and the approximately 2.4 m area from the bottom of the water chamber in the piping equipment with an insulating material to maintain the anticorrosion potential in each water chamber and the piping equipment. A potential of approximately -600 mVSCE is applied near the bottom of the tube plate in the water chamber, and a potential of approximately -7 mVSCE is applied at a point approximately 2.4 m away from the bottom of each water chamber.
2. The cathodic protection device for an all-titanium heat exchanger according to claim 1, characterized in that sacrificial anodes are installed in the piping equipment so as to maintain a potential of 70 mVSCE.
(3)熱交換器胴に連なる一対の水室を有し、冷媒とし
て海水を前水室の一方から他方にかけて伝熱管を通して
流すように構成してなり、その際、前記各伝熱管を支持
する管板と共にチタン材を用いて、かつ前記各水室は該
水室に連なる配管装置と共にチタン材よりも電気的に卑
な金属材料をそれぞれ用いて製作されてなる全チタン熱
交換器の電気防食装置において、前記各水室内の全域お
よび各配管装置内の水室に連なる一定の領域の電気的絶
縁が好適に保たれるように当該領域を比較的堅牢な絶縁
材料を用いて被覆し、これらの地点の防食電位が、所定
の値に保てるように犠牲陽極を前記各水室から一定距離
、離間して配管装置内に各々設けたことを特徴とする全
チタン熱交換器の電気防食装置。
(3) It has a pair of water chambers connected to the heat exchanger body, and is configured so that seawater as a refrigerant flows through the heat exchanger tubes from one side of the front water chamber to the other, and at this time, supports each of the heat exchanger tubes. Cathodic protection of an all-titanium heat exchanger in which the tube sheets are made of titanium material, and each of the water chambers and the piping devices connected to the water chambers are made of a metal material that is electrically more base than titanium material. In the device, the entire area inside each water chamber and a certain area connected to the water chamber in each piping device are coated with a relatively robust insulating material so that electrical insulation is suitably maintained; An electrolytic corrosion protection device for an all-titanium heat exchanger, characterized in that sacrificial anodes are provided within the piping system at a certain distance from each of the water chambers so that the corrosion protection potential at the point can be maintained at a predetermined value.
(4)犠牲陽極の設置場所が各水室の下部から約4.8
m離れた配置装置内に設けられていることを特徴とする
請求項1記載の全チタン熱交換器の電気防食装置。
(4) The installation location of the sacrificial anode is approximately 4.8 meters from the bottom of each water chamber.
2. The cathodic protection device for an all-titanium heat exchanger according to claim 1, characterized in that the cathodic protection device is provided in a device spaced apart by m.
(5)各水室内の全域および配管装置内の該水室下部よ
り約1.9mの領域を絶縁性材料を用いて被覆し、各水
室および配管装置内の防食電位を保持するにあたり、各
水室内の管板下部近傍にて約−600mVSCEの電位
を、また各水室の下部から約1.9m離れた地点で約−
650mVSCEの電位をそれぞれ保つように配管装置
内に犠牲陽極を取り付けたことを特徴とする請求項1記
載の全チタン熱交換器の電気防食装置。
(5) Cover the entire area inside each water chamber and the approximately 1.9 m area from the bottom of the water chamber in the piping equipment with an insulating material to maintain the anti-corrosion potential in each water chamber and the piping equipment. A potential of approximately -600 mVSCE is applied near the bottom of the tube plate in the water chamber, and approximately -
The cathodic protection device for an all-titanium heat exchanger according to claim 1, characterized in that sacrificial anodes are installed in the piping equipment so as to maintain a potential of 650 mVSCE.
JP63210501A 1988-01-14 1988-08-26 Electrolytic protection device for full-titanium heat exchanger Pending JPH0261079A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63210501A JPH0261079A (en) 1988-08-26 1988-08-26 Electrolytic protection device for full-titanium heat exchanger
DE8989100352T DE68901269D1 (en) 1988-01-14 1989-01-10 EQUIPMENT FOR CATHODICAL PROTECTION IN CIRCUIT SYSTEMS OF CORROSIVE LIQUIDS.
EP89100352A EP0324440B1 (en) 1988-01-14 1989-01-10 Cathodic protection apparatus in systems for the circulation of corrosive liquids
KR1019890000359A KR920004508B1 (en) 1988-01-14 1989-01-14 Apparatus and method for electrical anti-corrosion of total titanium heat exchanger
CN 89100284 CN1014806B (en) 1988-01-14 1989-01-14 Apparatus and method for electrical anti-corrosion of total-titanium heat-exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210501A JPH0261079A (en) 1988-08-26 1988-08-26 Electrolytic protection device for full-titanium heat exchanger

Publications (1)

Publication Number Publication Date
JPH0261079A true JPH0261079A (en) 1990-03-01

Family

ID=16590411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210501A Pending JPH0261079A (en) 1988-01-14 1988-08-26 Electrolytic protection device for full-titanium heat exchanger

Country Status (1)

Country Link
JP (1) JPH0261079A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184290A (en) * 1988-01-14 1989-07-21 Toshiba Corp Corrosion preventive device for circulating water system using sea water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184290A (en) * 1988-01-14 1989-07-21 Toshiba Corp Corrosion preventive device for circulating water system using sea water

Similar Documents

Publication Publication Date Title
JPH0261079A (en) Electrolytic protection device for full-titanium heat exchanger
KR920004508B1 (en) Apparatus and method for electrical anti-corrosion of total titanium heat exchanger
JPH01263285A (en) Method and device for electrolytically protecting all-titanium heat exchanger
WO1986001837A1 (en) Corrosion protection for heat exchangers
JP2941543B2 (en) Cathodic protection of heat exchanger
Sowmya et al. A review on corrosion of steel structures
JP2007085599A (en) Heat exchanger
Sinha Aspects of failure of condenser tubes and their remedial measures at power plants
CN103528943A (en) Evaluation method of cathodic protection potential range in soil environment
JP4620409B2 (en) Anti-corrosion device for small-diameter piping system valve or pump inner surface
Baker et al. The evaluation of stainless steels for condenser tube nest construction
JPH01111888A (en) Corrosion preventing device for ancillary apparatus of heat exchanger
Cumberland Demonstration of the cumberland electrolytic process for preventing corrosion of all metals immersed in liquids
Verink Jr Designing to prevent corrosion
ASAN CORROSION AS A METAL DISEASE (EXAMPLE STUDY: USE OF INHIBITORS TO PROTECT BRASS FROM CORROSION IN ACIDIC ENVIRONMENT)
JPS6350620Y2 (en)
Han Computational Fluid Dynamics Modeling for Steam Condenser Corrosion
LaQue Deterioration of metals in an ocean environment
Brouwer Corrosion Experiences with Dissimilar Metals
Brouwer CORROSION—Corrosion with Dissimilar Metals
Jackson et al. Corrosion in HVDC valve cooling systems
Cotton Practical Use of Anodic Passivation for the Protection of Chel11Ical Plant
JP4382247B2 (en) Jumping current reduction method, pipe connecting structure, and piping equipment including the same
JPH0293085A (en) Electric corrosion protection device for heat exchanger
JPH0545089A (en) Condenser