JPH01263285A - Method and device for electrolytically protecting all-titanium heat exchanger - Google Patents

Method and device for electrolytically protecting all-titanium heat exchanger

Info

Publication number
JPH01263285A
JPH01263285A JP63090221A JP9022188A JPH01263285A JP H01263285 A JPH01263285 A JP H01263285A JP 63090221 A JP63090221 A JP 63090221A JP 9022188 A JP9022188 A JP 9022188A JP H01263285 A JPH01263285 A JP H01263285A
Authority
JP
Japan
Prior art keywords
potential
heat exchanger
water chamber
titanium
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63090221A
Other languages
Japanese (ja)
Other versions
JPH076073B2 (en
Inventor
Noboru Kikuna
菊名 登
Yuji Nishino
西野 悠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63090221A priority Critical patent/JPH076073B2/en
Priority to DE8989100352T priority patent/DE68901269D1/en
Priority to EP89100352A priority patent/EP0324440B1/en
Priority to KR1019890000359A priority patent/KR920004508B1/en
Publication of JPH01263285A publication Critical patent/JPH01263285A/en
Publication of JPH076073B2 publication Critical patent/JPH076073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the corrosion of a steel surface due to the electrolytic corrosion even at the carbon steel part jointly used with a titanium material by controlling the voltage and current value so that an electric potential capable of controlling the hydrogen embrittlement of a titanium material in the vicinity of the lower part of a tube plate in each water chamber. CONSTITUTION:A reference electrode 39a is set at the lower part of an outlet water chamber 9 lined an inside of the chamber 9 with an electrical insulating coating material 42, the potential is set at a value nobler than -600mVSCE, and a detection potential is returned to an electrolytic protection device 38 to prevent the hydrogen embrittlement of the titanium material. The region L2 of the outlet circulating water passage 10 communicating with the outlet water chamber 9 is also lined with the similar rubber 42. The region of the outlet circulating water pipe other than the region L2 is lined with a tar epoxy resin 43 as the anticorrosion coating material, a reference electrode 39b is set at the boundary with the rubber tube 42, and the detection potential is returned to the electrolytic protection device 38. Meanwhile, an external power source electrode 36 to be controlled by the electrolytic protection device 38 is set at a distance of L3 from the outlet water chamber 9. Accordingly, the hydrogen embrittlement of the titanium material is obviated, and further the electrolytic corrosion of the part of a carbon steel can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は冷媒として海水が使用される全チタン熱交換器
において、これに接続される配管装置のガルバニック腐
食を防止するために用いられる全チタン熱交換器の電気
防食方法およびその装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention is aimed at preventing galvanic corrosion of piping equipment connected to an all-titanium heat exchanger that uses seawater as a refrigerant. This invention relates to a method and device for cathodic protection of all-titanium heat exchangers used in

(従来の技術) 一般に、海水を冷却水とする熱交換器9例えば、発電プ
ラントにおける復水器はシェル・アンド・チューブ式が
広く採用されている。この復水器の冷却管は海水と直接
に接触するので冷却管には腐食しにくい貴なる金属2例
えば、アルミニウム黄銅を主とする銅合金が、また復水
器管板にはネーバル黄銅板等が使用されている。一方、
復水器水室ならびに復水器に接続する機器、配管には鋼
が使用されている。また、計装品の温度計ウェル等には
モネルおよびステンレス鋼が使用されている。
(Prior Art) In general, a shell-and-tube type heat exchanger 9, for example, a condenser in a power generation plant, which uses seawater as cooling water is widely used. Since the cooling pipes of this condenser come into direct contact with seawater, the cooling pipes are made of noble metals that are difficult to corrode.For example, copper alloys, mainly aluminum brass, are used for the condenser tube sheets, and naval brass plates are used for the condenser tube sheets. is used. on the other hand,
Steel is used for the condenser water chamber, equipment and piping connected to the condenser. Monel and stainless steel are also used for instrumentation such as thermometer wells.

以下1発電プラントの蒸気を水に戻す復水器ならびに当
該復水器に近接する機器、配管および計装品についての
一例を第11図を用いて説明する。
An example of a condenser that returns steam to water in a power generation plant, as well as equipment, piping, and instrumentation in the vicinity of the condenser will be described below with reference to FIG. 11.

蒸気タービンから排出された蒸気1は復水器2に導かれ
、復水器2の内部に冷却海水を流通させた複数の冷却管
3の外表面に接触して冷却され、凝縮して復水となる。
Steam 1 discharged from the steam turbine is guided to a condenser 2, is cooled by contacting the outer surface of a plurality of cooling pipes 3 through which cooling seawater flows inside the condenser 2, and is condensed into condensed water. becomes.

この復水は復水ポンプ4により復水器2から発電プラン
トでの再使用のため回収され、図示しない給水加熱器に
送水される。
This condensate is recovered from the condenser 2 by the condensate pump 4 for reuse in the power generation plant, and is sent to a feedwater heater (not shown).

一般に、復水器2の冷却管3にはアルミニウム黄銅管が
使用されている。一方、冷却海水6は、−般に、タール
エポキシ樹脂等の防食性塗装または被覆材を施した炭素
鋼鋼板製の入口循環水管7を通って供給され、入口水室
8を経て上述したアルミニウム黄銅管製の冷却管3の内
側を通り、蒸気1の熱を冷却管3を介して吸収し、温度
上昇しながら、出口水室9および出口循環水管lOを経
て放出口(海)へ排出される。そして、上記の入口循環
水管7および出口循環水管10には、一般に、冷却海水
6の停止および切換等を行なうバタフライ弁】1や、温
度、圧力等を検出および監視する温度計12(温度検出
座)および圧力計13(圧力検出座)が取付けられてい
る。また、冷却管3の内面の清浄度を維持するためのボ
ール洗浄装置が設置されている。即ち、冷却海水中より
ボール捕集器14により回収された洗浄ボールは、ボー
ル再循環管15に導かれてボール循環ポンプ16を通っ
てボール回収器17に運ばれ、そこから再びボール注入
管18により入口循環水管7内を流れる冷却海水中に注
入され、これを繰り返すことにより冷却管3の内面に付
着した異物等を取り除く。
Generally, aluminum brass pipes are used for the cooling pipes 3 of the condenser 2. On the other hand, the cooling seawater 6 is generally supplied through an inlet circulating water pipe 7 made of a carbon steel sheet coated with anti-corrosive coating or coating such as tar epoxy resin, and then passed through an inlet water chamber 8 made of the above-mentioned aluminum brass pipe. It passes through the inside of the cooling pipe 3 made of pipe, absorbs the heat of the steam 1 through the cooling pipe 3, and is discharged to the outlet (sea) through the outlet water chamber 9 and the outlet circulating water pipe 1O while increasing the temperature. . The inlet circulating water pipe 7 and outlet circulating water pipe 10 are generally equipped with a butterfly valve 1 for stopping and switching the cooling seawater 6, and a thermometer 12 for detecting and monitoring temperature, pressure, etc. ) and a pressure gauge 13 (pressure detection seat) are attached. Additionally, a ball cleaning device is installed to maintain the cleanliness of the inner surface of the cooling pipe 3. That is, the cleaning balls collected by the ball collector 14 from the cooling seawater are guided to the ball recirculation pipe 15, passed through the ball circulation pump 16, and transported to the ball collector 17, and from there, the balls are returned to the ball injection pipe 18. This is injected into the cooling seawater flowing through the inlet circulating water pipe 7, and by repeating this process, foreign matter adhering to the inner surface of the cooling pipe 3 is removed.

また、入口循環水管7と入口水室8.出口水室9と出口
循環水管10の接続にはゴム製の伸縮継手19を取付け
、据付誤差および運転時の微少変位を吸収できるように
している。
In addition, an inlet circulation water pipe 7 and an inlet water chamber 8. A rubber expansion joint 19 is attached to the connection between the outlet water chamber 9 and the outlet circulation water pipe 10 to absorb installation errors and minute displacements during operation.

さらに、入口水室8および出口水室9には空気抜きのた
め、空気抜管20およびこの途中には空気抜弁21が取
付けられている。なお、図中符号22は管板を示してい
る。
Furthermore, an air vent pipe 20 and an air vent valve 21 are attached to the inlet water chamber 8 and the outlet water chamber 9 in order to vent air. Note that the reference numeral 22 in the figure indicates a tube plate.

ところで、復水器や循環木管の海水に触れる部分は海水
による腐食防止のため、材料の選定や金属面の塗装また
は防食性被覆材による保護など設計には十分な注意が払
われている。即ち、一般に、腐食現象には酸性環境中の
金属単体が腐食する自然腐食と、異種金属が接触してい
る場合に生ずるガルバニック腐食(以下、電食と略称す
る)がある。この電食は腐食速度が非常に速いため特に
注意しなければならない。電食とは、通常、電気的に接
続されている異種金属が電解質溶液中に置かれると、貴
なる金属は陰極に、卑なる金属を陽極として自然電位差
が形成され、陽極金属が金属イオンとなって電解質溶液
中に溶出し、卑金属が腐食される現象をいう。第12図
に海水中における金属の自然電位を示す。ここに7種類
の金属の自然電位を示すが、ここではチタンが最つども
食倒の金屑であり、亜鉛が最っとも車側の金属となる。
By the way, in order to prevent seawater from corroding the parts of condensers and circulating wood pipes that come into contact with seawater, sufficient care is taken in the design, including selection of materials and protection with coatings on metal surfaces or anti-corrosion coatings. That is, in general, corrosion phenomena include natural corrosion in which a single metal is corroded in an acidic environment, and galvanic corrosion (hereinafter abbreviated as electrolytic corrosion) that occurs when dissimilar metals are in contact. Particular attention must be paid to this electrolytic corrosion, as the rate of corrosion is very fast. Electrolytic corrosion usually occurs when electrically connected dissimilar metals are placed in an electrolyte solution, and a natural potential difference is formed with the noble metal at the cathode and the base metal at the anode, and the anode metal interacts with metal ions. This is a phenomenon in which base metals are corroded by being eluted into the electrolyte solution. Figure 12 shows the natural potential of metals in seawater. The natural potentials of seven types of metals are shown here, with titanium being the scrap metal that is most often eaten away, and zinc being the metal that is most commonly used by cars.

例えば、海水中で食倒の黄銅と車側の鉄が接水し、黄銅
と鉄が電気的に接続している場合にはこの2つの金属間
の自然電位差Vにより車側の鉄がこの電位差により電食
を受けることになる。また、海水中で食倒のステンレス
鋼(不動態)と車側の鉄が接触し、ステンレス鋼(不動
態)と鉄が電気的に接続している場合にはこの2つの金
属間の自然電位差Vにより車側の鉄が電食を受ける。他
の金属の組合せでも、同様なことがいえ、これらの2つ
の金属間の自然電位差が大きいほど電食現象は著しく進
む。なお、横軸の電位の単位VSCEは飽和甘こう電位
を示す。
For example, when the brass and iron on the car side are in contact with water in seawater, and the brass and iron are electrically connected, the natural potential difference V between these two metals causes the iron on the car side to This will result in electrolytic corrosion. In addition, when the stainless steel (passive state) and the iron on the car side come into contact in seawater, and the stainless steel (passive state) and iron are electrically connected, the natural potential difference between these two metals is The steel on the car side is subject to electrolytic corrosion due to the V. The same thing can be said for other metal combinations, and the greater the natural potential difference between these two metals, the more the electrolytic corrosion phenomenon progresses. Note that the unit of potential on the horizontal axis, VSCE, indicates the saturation potential.

これらの現象は発電プラントの海水系にも起こり得る。These phenomena can also occur in the seawater systems of power plants.

例えば、熱交換器に使用されている冷却管、ストレーナ
、弁、温度計ウェル等の計装品の露出金属との間に電食
が生ずる可能性がある。また、この他にも前述の材料と
次のようなものが考えられる。即ち、配管装置類の内面
は鋼表面の腐食を防止するため鋼表面が直接に海水と触
れないように防食性塗装または被覆材が施されている。
For example, electrolytic corrosion can occur between exposed metal on instrumentation such as cooling pipes, strainers, valves, thermometer wells, etc. used in heat exchangers. Additionally, in addition to the above-mentioned materials, the following materials can be considered. That is, in order to prevent corrosion of the steel surface, the inner surface of the piping equipment is coated with an anticorrosive coating or coating material so that the steel surface does not come into direct contact with seawater.

しかしながら、何らかの原因により塗装または被覆面が
損傷した場合には鋼表面が海水中に露出することになり
、前述の貴金属材料と卑金属の鋼表面が電気的に接続さ
れると、この2つの金属の自然電位差により車側の鋼表
面が電食を受けることになるや即ち、例えば、上述した
復水器2の冷却管3にアルミニウム黄銅管が、また、復
水器管板22にはネーバル黄銅板が各々使用されている
場合、入口および出口水室8,9ならびに入口および出
口循環水管7,10は、通常、鋼板により製作されるた
め、鋼板が車側の金属となる。
However, if the painted or coated surface is damaged for some reason, the steel surface will be exposed in seawater, and when the aforementioned noble metal material and base metal steel surface are electrically connected, the two metals will If the steel surface on the vehicle side is subjected to electrolytic corrosion due to natural potential difference, for example, the cooling pipe 3 of the condenser 2 mentioned above is made of aluminum brass, and the condenser tube plate 22 is made of naval brass. are used, the inlet and outlet water chambers 8, 9 and the inlet and outlet circulation water pipes 7, 10 are usually made of steel plates, so the steel plates become the metal on the vehicle side.

これらの入口および出口水室8,9ならびに入口および
出口循環水管7,10には防食性塗装または被覆材が施
されるのは上述した通つてあるが、これらの塗装または
被覆箇所が施工不良および海水の流れ等により損傷し、
下地である鋼表面が露出すると、前述のように黄銅と鉄
の間の自然電位差のため卑金属の鉄の鋼面が電食を受け
る。
As mentioned above, these inlet and outlet water chambers 8 and 9 and the inlet and outlet circulating water pipes 7 and 10 are coated with anticorrosive coatings or coatings, but these coatings or coatings may be damaged due to poor construction or Damaged by seawater flow, etc.
When the underlying steel surface is exposed, the base metal steel surface is subject to electrolytic corrosion due to the natural potential difference between brass and iron, as described above.

以下、この現象を図を参照して詳しく説明する。This phenomenon will be explained in detail below with reference to the drawings.

第13図において、復水器2の出口水室9に被膜損傷部
23aが、 また、出口循環水管1oにも被膜損傷部2
3bが存在していると想定する。従って、被膜損傷部2
3a、 23bは鋼表面が露出している。ここで、復水
器2は基礎等によりアース25がとられており、また、
出口循環水管10にも配管装置のサポートまたは土中配
管などによりアース25がとられているものとする。以
上から、出口水室9の被膜損傷部23aおよび出口循環
水管10の被膜損傷部23bから冷却海水6を通って、
管板22および冷却管3を経て、復水器2の胴を通る電
気的回路が形成され、これにより被膜損傷部23a、 
23bから復水器管板22.冷却管3へ腐食電流24が
流れて被膜損傷部23a、 23bが電食されることに
なる。なお、この現象は出口水室9および出口循環水管
10の間に限られるものでは勿論なく、入口水室8およ
び入口循環水管7についても事情は全く変わらない。
In FIG. 13, there is a damaged coating 23a in the outlet water chamber 9 of the condenser 2, and a damaged coating 23a is also found in the outlet circulating water pipe 1o.
Assume that 3b exists. Therefore, the damaged coating part 2
3a and 23b have exposed steel surfaces. Here, the condenser 2 is grounded 25 by the foundation etc., and
It is assumed that the outlet circulating water pipe 10 is also grounded 25 by a support of a piping device or underground piping. From the above, the cooling seawater 6 passes through the damaged coating part 23a of the outlet water chamber 9 and the damaged coating part 23b of the outlet circulating water pipe 10,
An electrical circuit is formed that passes through the body of the condenser 2 via the tube plate 22 and the cooling pipe 3, thereby removing the damaged coating 23a,
23b to condenser tube plate 22. A corrosive current 24 flows into the cooling pipe 3, causing electrolytic corrosion to the damaged coating parts 23a and 23b. It should be noted that this phenomenon is of course not limited to the outlet water chamber 9 and the outlet circulating water pipe 10, and the situation is the same for the inlet water chamber 8 and the inlet circulating water pipe 7.

一方、上記現象は冷却管3および管板22が貴金属とし
て存在する場合について述べたものであるが、第11図
に示されるボール捕集器14.ボール注入管18.バタ
フライ弁11.温度計12および圧力計13の取出部な
どが鉄より貴のステンレス鋼等により構成される場合、
これらのステンレス鋼等と被膜損傷部23a、 23b
の鉄の間に自然電位差が生じ、前述と同様に卑金属の鉄
が電食を受ける。
On the other hand, although the above phenomenon has been described for the case where the cooling tube 3 and the tube plate 22 are made of noble metal, the ball collector 14 shown in FIG. Ball injection tube 18. Butterfly valve 11. If the take-out parts of the thermometer 12 and pressure gauge 13 are made of stainless steel, etc., which is nobler than iron,
These stainless steel etc. and coating damaged parts 23a, 23b
A natural potential difference occurs between the two irons, and the base metal iron undergoes electrolytic corrosion in the same way as described above.

この現象についても第14図を参照して詳しく説明する
。第14図において、出口循環水管10にはステンレス
鋼等の材料で製作されたボール捕集器14が設置され、
これにボール再循環管15が接続されている。従って、
第13図で説明したような、出口循環水管10の被膜損
傷部23bから管板22.冷却管3に流れる腐食電流2
4の他に、出口循環水管10の被膜損傷部23bから冷
却海水6を通って、ボール捕集器14を経て、出口循環
水管10を通る電気的回路が形成される。 これにより
、被膜損傷部23bからボール捕集器14に腐食電流2
4が流れ、この場合も被膜損傷部23bが電食されるこ
とになる。 この現象は被膜損傷部23bが復水器2に
近い場合には復水器管板22および冷却管3の影響を受
け、また、被膜損傷部23bがボール捕集器14に近い
場合にはボール捕集器14の影響を受ける。なお、ここ
で述べているステンレス鋼は安定した不動態被膜を有す
るステンレス鋼であり、第12図に示されるようにステ
ンレス鋼(不動態)の電位は、通常O〜=100mV 
S CE程度であるが、上記した不動態被膜の厚さが十
分であれば、黄銅の方のがステンレス鋼(不動態)より
も卑となる。
This phenomenon will also be explained in detail with reference to FIG. 14. In FIG. 14, a ball collector 14 made of a material such as stainless steel is installed in the outlet circulating water pipe 10.
A ball recirculation pipe 15 is connected to this. Therefore,
As explained in FIG. 13, the tube sheet 22. Corrosion current 2 flowing through cooling pipe 3
In addition to 4, an electric circuit is formed which runs from the coating damaged portion 23b of the outlet circulating water pipe 10, through the cooling seawater 6, through the ball collector 14, and through the outlet circulating water pipe 10. As a result, a corrosion current of 2
4 will flow, and in this case too, the damaged coating portion 23b will be electrolytically corroded. This phenomenon is affected by the condenser tube plate 22 and the cooling pipe 3 when the damaged coating part 23b is close to the condenser 2, and when the damaged coating part 23b is close to the ball collector 14, it is affected by the influence of the condenser tube plate 22 and the cooling pipe 3. It is affected by the collector 14. The stainless steel mentioned here is a stainless steel with a stable passive film, and as shown in Figure 12, the potential of stainless steel (passive) is usually O ~ = 100 mV.
Although it is about SCE, if the thickness of the above-mentioned passive film is sufficient, brass becomes more base than stainless steel (passive).

このため、異常な状態が発生しない限りにおいてはステ
ンレス!(不動態)が電食をうけることはない。しかし
、復水器2の運転条件が変り、特別な状態、例えば海水
中の異物等によりステンレス鋼の表面の一部が活性状態
となった場合には、ステンレス鋼の方が卑となって、管
板22のネーバル黄銅板および冷却管3のアルミニウム
黄銅管との自然電位差が生じ、この場合はステンレス鋼
が電食を受けるに の現象を第15図を参照して説明する。第15図におい
て、ここでは出口循環水管10に設置されるボール捕集
器14の一部が活性状態となり、他の部分は不動態被膜
に覆われていると考える。そして、このとき、活性状態
が出現した領域は図中のA領域にあるものと想定する。
For this reason, unless an abnormal condition occurs, use stainless steel! (passive) is not subject to electrolytic corrosion. However, if the operating conditions of the condenser 2 change and a part of the surface of the stainless steel becomes active due to special conditions, such as foreign matter in seawater, the stainless steel becomes more base. The phenomenon in which a natural potential difference occurs between the naval brass plate of the tube sheet 22 and the aluminum brass tube of the cooling tube 3, and in this case stainless steel undergoes electrolytic corrosion, will be explained with reference to FIG. In FIG. 15, it is assumed that a part of the ball collector 14 installed in the outlet circulating water pipe 10 is in an active state, and the other part is covered with a passive film. At this time, it is assumed that the area where the active state has appeared is in area A in the figure.

この場合の電気的回路は出口循環水管10より露出した
ステンレス鋼のボール捕集器14へ、さらに冷却海水6
を通って、復水器管板22および冷却管23を経て、復
水器2の胴を通る回路となる。これにより露出したボー
ル捕集器14の不動態被膜で覆われた部分からボール捕
集器14のA領域を経て。
In this case, the electrical circuit runs from the outlet circulating water pipe 10 to the exposed stainless steel ball collector 14, and then to the cooling seawater 6.
The circuit passes through the condenser tube plate 22 and the cooling pipe 23, and then through the shell of the condenser 2. From the exposed portion of the ball collector 14 covered with the passive coating, the ball collector 14 passes through area A of the ball collector 14.

管板22.冷却管3へと腐食電流24が流れ、この場合
もステンレス鋼のボール捕集器14がA領域を中心とし
て電食されることになる。
Tube plate 22. A corrosive current 24 flows into the cooling pipe 3, and in this case as well, the stainless steel ball collector 14 is electrolytically corroded mainly in the area A.

このような入口および出口水室8,9ならびに入口およ
び出口循環水管7,10における電食現象から機器を護
る方法として入口および出口水室8゜9内に防食電流を
流すやり方が広く行なりれている。一方、ボール捕集器
14等における同様な現象に対してもその近傍に適切な
防食電流を流して電食を防止することも行なおれている
As a method of protecting equipment from electrolytic corrosion in the inlet and outlet water chambers 8 and 9 and the inlet and outlet circulating water pipes 7 and 10, a widely used method is to flow an anticorrosive current into the inlet and outlet water chambers 8 and 9. ing. On the other hand, in response to a similar phenomenon in the ball collector 14 and the like, it is also practiced to prevent electrolytic corrosion by flowing an appropriate anti-corrosion current in the vicinity thereof.

以下、これらの対策を中心として電気防食の具体的な方
法を説明する。第16図において、符号26は外部電源
電極を示しており、これに防食電流27を発生するため
の電気防食装置が接続されている。
Hereinafter, specific methods of cathodic protection will be explained focusing on these measures. In FIG. 16, reference numeral 26 indicates an external power supply electrode, to which an electrolytic protection device for generating a corrosion protection current 27 is connected.

また、出口水室9の下部には防食電位および電流値を制
御する照合電極29が取付けられている。この照合電極
29は電位制御装置30を介して電気防食装置28と結
ばれている。なお、ここには示されないが、入口水室8
にも同様の装置が設置され、同様の効果が得られるよう
になっている。
Furthermore, a reference electrode 29 is attached to the lower part of the outlet water chamber 9 to control the corrosion protection potential and current value. This reference electrode 29 is connected to the electrolytic protection device 28 via a potential control device 30. Although not shown here, the inlet water chamber 8
A similar device has also been installed to produce similar effects.

上記構成において、防食電流27は外部電源電極26か
ら復水器管板22.冷却管3.被膜損傷部23a。
In the above configuration, the anti-corrosion current 27 flows from the external power supply electrode 26 to the condenser tube plate 22. Cooling pipe 3. Coating damage part 23a.

23bへ流れ、被膜損傷部23a、 23bより流れる
腐食電流24(第13図参照)が消滅させられる。これ
により、被膜損傷部23a、 23bの電食を防止する
ことができる。また、このとき同時に管板22および冷
却管3の局部的な腐食も防止される。
23b, and the corrosion current 24 (see FIG. 13) flowing from the damaged coating parts 23a and 23b is extinguished. Thereby, electrolytic corrosion of the damaged coating parts 23a and 23b can be prevented. Further, at this time, local corrosion of the tube sheet 22 and the cooling pipe 3 is also prevented.

ちなみに、照合電極29および電位制御装置30は電気
防食装置27の電位および電流値を制御するために設置
され、照合電極29の取付けられている位置の電位を検
出して電気防食装置27に帰還させている。通常、陰極
防食を行なう場合にはその金属の自然電位より200〜
250mV程度卑側にすることによりその金属の防食が
行なわれる。一般に、海水中における鉄の自然電位は第
12図に示されるようニー 450〜−650+*V 
S CE程度であり、これから鉄の防食電位が設定され
る。
Incidentally, the reference electrode 29 and the potential control device 30 are installed to control the potential and current value of the cathodic protection device 27, and detect the potential at the position where the reference electrode 29 is attached and feed it back to the cathode protection device 27. ing. Normally, when cathodic protection is applied, the natural potential of the metal is 200~
Corrosion protection of the metal is achieved by setting the voltage to the base side of about 250 mV. Generally, the natural potential of iron in seawater is approximately 450 to -650+*V, as shown in Figure 12.
It is about SCE, and the anticorrosion potential of iron is set from this.

なお、車側にすればするほど防食効果は高まるが、防食
のための鋼表面に施されるゴム、タールエポキシ樹脂等
の被覆材料は、あまり車側にすると表面が劣化して剥離
するという問題があり、あまり車側に設定することはで
きない。従って、通常は−650〜−900mV S 
CEの範囲に設定される。
Furthermore, the corrosion prevention effect increases as the surface is placed closer to the car, but coating materials such as rubber and tar epoxy resin applied to the steel surface for corrosion protection have the problem that if placed too close to the car, the surface deteriorates and peels off. There is, and it cannot be set very much on the car side. Therefore, normally -650 to -900mV S
Set in the CE range.

一方、出口循環水管10の経路内にステンレス鋼のボー
ル捕集器14が設けられる場合にはステンレス鋼の電食
現象に対する備えが必要となる。この場合の電気防食は
ボール捕集器14を中心として次のように行なわれる。
On the other hand, if a stainless steel ball collector 14 is provided in the path of the outlet circulating water pipe 10, it is necessary to prepare for electrolytic corrosion of the stainless steel. In this case, cathodic protection is performed centering on the ball collector 14 as follows.

即ち、第17図において、符号31は外部電源電極を示
しており、これに防食電流32を発生するための電気防
食装置33が接続されている。また、出口循環水管10
のボール捕集器14に隣接する箇所に防食電位および電
流値を制御する照合電極34が取付けられる。この照合
電極34は電位制御装置35を介して電気防食装置33
と結ばれている。
That is, in FIG. 17, reference numeral 31 indicates an external power supply electrode, to which an electrolytic protection device 33 for generating a corrosion protection current 32 is connected. In addition, the outlet circulation water pipe 10
A reference electrode 34 for controlling the anti-corrosion potential and current value is attached to a location adjacent to the ball collector 14. This reference electrode 34 is connected to the electrolytic protection device 33 via a potential control device 35.
It is tied to

上記構成おいて、防食電流は外部電源電極31からボー
ル捕集器14.被膜損傷部23へ流れ、被膜損傷部23
より流れる腐食電流24(第13図参照)が消滅させら
れる。これにより被膜損傷部23の電食を防止すること
ができる。また、このとき同時にボール捕集器14の孔
食および隙間腐食などの局部的腐食ならびに活性状態の
腐食も防止される。
In the above configuration, the anticorrosion current is transmitted from the external power supply electrode 31 to the ball collector 14. Flows to the damaged film part 23, and the damaged film part 23
The more flowing corrosion current 24 (see FIG. 13) is extinguished. Thereby, electrolytic corrosion of the damaged coating portion 23 can be prevented. At the same time, localized corrosion such as pitting corrosion and crevice corrosion of the ball collector 14 as well as active corrosion are also prevented.

なお、ここでも照合電極34および電位制御装置35は
電気防食装置33の電流値を制御するために設置され、
照合電極34の取付けられている位置の電位を検出して
帰還させている。
Note that the reference electrode 34 and the potential control device 35 are also installed here to control the current value of the cathodic protection device 33,
The potential at the position where the reference electrode 34 is attached is detected and fed back.

次に、従来の黄銅系の材料により構成される復水器2の
主要な部分を黄銅よりも責な金属であるチタン材により
構成した復水器において、腐食現象にどのような方法で
対処しているかを説明する。
Next, how can we deal with corrosion in a condenser where the main parts of the condenser 2, which is conventionally made of brass-based materials, are made of titanium, a metal that is more harmful than brass? Explain what you are doing.

一般に、このようなチタン材からなる復水器は全チタン
復水器と呼ばれているが、復水器を始めとして周辺機器
、配管および計装品等の構成は第11図に示したものと
変わるところはない。この種の全チタン復水器の典型的
なものは大型の火力発電プラント、原子力発電プラント
に用いられており、管板22および冷却管3がチタン材
で製作される。
Generally, such a condenser made of titanium material is called an all-titanium condenser, but the configuration of the condenser, peripheral equipment, piping, instrumentation, etc. is as shown in Figure 11. There is no difference. A typical all-titanium condenser of this type is used in large-scale thermal power plants and nuclear power plants, and the tube sheet 22 and cooling pipes 3 are made of titanium material.

チタン材からなる管板22および冷却管3は極めて耐食
性に優れており、海水それ自体による腐食現象に限れば
、これらの部分はほぼ除いて考えてもよい。しかしなが
ら、チタン材以外の金属が全チタン復水器の他の部分構
成材として使用され、またその周辺機器、配管および製
品等にもチタンよりも卑な金属を用いているのは前記し
たとおりであり、チタン材と他の金属と電位差のために
辺側の金属に電食が発生することは避けられない。
The tube plate 22 and the cooling pipe 3 made of titanium material have extremely excellent corrosion resistance, and as long as the corrosion caused by seawater itself is limited, these parts can be largely excluded. However, as mentioned above, metals other than titanium are used for other parts of the all-titanium condenser, and metals less base than titanium are also used for peripheral equipment, piping, and products. However, due to the potential difference between the titanium material and other metals, it is inevitable that electrolytic corrosion will occur on the side metal.

これに加えて、全チタン復水器には第16図および第1
7図で述べられた単に電食現象に対処するのみでは充分
でなく、別の考え方で取組まなければならない問題があ
る。それはチタン材等に特有の現象である水素脆性の問
題である。この水素脆性とは水素の吸収により金属材料
が脆くなる現象で、チタン材を海水中において、約−6
00mV S CEより辺側に分極させると、水素吸収
が始まることから引き起こされる。従って、第16図お
よび第17回に示されるような方法で電食を防止する場
合の防食電位はチタン材が水素脆性を生じないところの
電位に設定する必要がある。
In addition to this, all-titanium condensers are shown in Figures 16 and 1.
It is not enough to simply deal with the electrolytic corrosion phenomenon described in Figure 7; there are problems that must be tackled from a different perspective. This is the problem of hydrogen embrittlement, which is a phenomenon specific to titanium materials. Hydrogen embrittlement is a phenomenon in which metal materials become brittle due to the absorption of hydrogen.
This is caused by the start of hydrogen absorption when polarization is made to the side of 00 mV S CE. Therefore, when preventing electrolytic corrosion by the method shown in FIGS. 16 and 17, the corrosion protection potential must be set to a potential at which the titanium material does not develop hydrogen embrittlement.

第18図は上記した点を踏まえて実施される全チタン復
水器における電気防食の施工方法を示している。なお、
図中第16図および第17図に示される部分と同一の部
分には同一の符号を付している。
FIG. 18 shows a method of applying cathodic protection to an all-titanium condenser based on the above-mentioned points. In addition,
In the figure, the same parts as those shown in FIGS. 16 and 17 are designated by the same reference numerals.

第18図において、符号36は外部電源電極を示してお
り、これに防食電流37を発生するための電気防食装置
38が接続されている。また、出口水室9の下部および
出口循環水管10の復水器2側端部には防食電位および
電流値を制御する照合な極39a。
In FIG. 18, reference numeral 36 indicates an external power supply electrode, to which an electrolytic protection device 38 for generating a corrosion protection current 37 is connected. Further, at the lower part of the outlet water chamber 9 and at the end of the outlet circulating water pipe 10 on the condenser 2 side, there is a reference pole 39a for controlling the anti-corrosion potential and the current value.

39bが各々設けられている。これらの照合電極39a
39b are provided respectively. These reference electrodes 39a
.

39bは電位制御装置40a、 40bを介して電気防
食装!!138とそれぞれ結ばれている。なお、図中、
符号41はアースを示している。また、ここには示され
ないが、入口水室8にも同様の装置が設けられ、同様の
効果が得られるようになっている。
39b is a cathodic protection system via potential control devices 40a and 40b! ! 138 respectively. In addition, in the figure,
Reference numeral 41 indicates ground. Although not shown here, a similar device is also provided in the inlet water chamber 8, so that similar effects can be obtained.

」1記構成において、防食電流37は外部電源電極36
から管板22.冷却管3.被膜損傷部23a、 23b
へ流れ、被膜損傷部23a、 23bより流れる腐食電
流24(第13図参照)が消滅させられる。ここで、照
合電極39aは出口水室9の下部における電位を検出し
て電気防食装置38に帰還させているが、この場合の設
定電位はチタン材の水素脆性の発生を回避するうえで一
600mVSCEよりも食倒になるようにしている。
In the configuration described in item 1, the anti-corrosion current 37 is connected to the external power supply electrode 36.
From the tube plate 22. Cooling pipe 3. Damaged coating parts 23a, 23b
Corrosion current 24 (see FIG. 13) flowing from the damaged coating parts 23a and 23b is extinguished. Here, the reference electrode 39a detects the potential at the lower part of the outlet water chamber 9 and returns it to the cathodic protection device 38, but the set potential in this case is -600 mVSCE in order to avoid hydrogen embrittlement of the titanium material. I try to eat more than I can.

一方、照合電極39aは出口循環水管10出ロ付近の電
位を検出し、電気防食装置38に帰還させている。 こ
の場合の設定電位は鉄を対象に−650〜−900mV
程度に設定される。
On the other hand, the reference electrode 39a detects the potential near the outlet of the circulating water pipe 10 and returns it to the electrolytic protection device 38. In this case, the set potential is -650 to -900 mV for iron.
It is set to a certain degree.

なお、ステンレス鋼のボール捕集器14における電食現
象に対処する方法は第17図で述べたところと変わると
ころはない。
Note that the method for dealing with the electrolytic corrosion phenomenon in the stainless steel ball collector 14 is the same as that described in FIG. 17.

(発明が解決しようとする課題) 上述したように、全チタン復水器では出口水室9および
出口循環木管lOに発生した被膜損傷部23a、 23
bの露出鋼面の電食を防止するために出口循環水管10
に外部電源電極36を設け、ここから防食電流37を、
例えば、出口水室9に存在する被膜損傷部23aに向け
て流すようにしているが、 この場合、外部電源電極3
6を極端に出口水室9側に近づけた場合には被膜損傷部
23aに防食電流37が流れると同時に、防食対象外の
管板22および冷却管3にも防食電流37が流れ込む。
(Problems to be Solved by the Invention) As described above, in the all-titanium condenser, the coating damage parts 23a, 23 that occur in the outlet water chamber 9 and the outlet circulation wood pipe lO.
Outlet circulating water pipe 10 to prevent electrolytic corrosion on the exposed steel surface of b.
An external power supply electrode 36 is provided at , from which a corrosion protection current 37 is applied.
For example, the water is directed toward the damaged coating 23a present in the outlet water chamber 9, but in this case, the external power supply electrode 3
6 extremely close to the outlet water chamber 9 side, the anti-corrosion current 37 flows into the damaged coating portion 23a, and at the same time, the anti-corrosion current 37 also flows into the tube plate 22 and the cooling pipe 3 which are not subject to corrosion protection.

この損失電流が管板22および冷却管3に流入すると、
チタン材の分極特性が電流値の大きさにより変動するた
めのチタン材が海水中で示す自然電位より車側の電位を
示すようになる。このため、出口水室9の下部にて照合
電極39aが検出する電位がチタン材が水素脆性を起こ
す電位約−600mVSCEより車側になり、 照合電
極39aからの帰還信号が電位制御装置40aに導かれ
、電気防食装置38の防食電位が食倒に制御され、外部
電源電極36から出される防食電流37が制限される。
When this loss current flows into the tube plate 22 and the cooling pipe 3,
Since the polarization characteristics of the titanium material vary depending on the magnitude of the current value, the titanium material exhibits a potential closer to the vehicle than the natural potential it exhibits in seawater. Therefore, the potential detected by the reference electrode 39a at the lower part of the outlet water chamber 9 is closer to the vehicle than the potential of about -600 mVSCE at which titanium material becomes hydrogen brittle, and the feedback signal from the reference electrode 39a is guided to the potential control device 40a. As a result, the corrosion protection potential of the cathodic protection device 38 is selectively controlled, and the corrosion protection current 37 output from the external power supply electrode 36 is limited.

しかし。but.

このとき防食電位が食倒に制限される結果、鉄の防食電
位である−650〜−900mV S CEを外れてし
まい、出口水室9の被膜損傷部23aの電食を防止する
ことができなくなる。また、同様に出口循環水管10の
出口水室9に近い被膜損傷部23bの電食を止めること
も適わなくなる。
At this time, as a result of the corrosion prevention potential being limited to corrosion, it deviates from the corrosion prevention potential of iron, -650 to -900 mV S CE, and it becomes impossible to prevent electrolytic corrosion of the coating damage part 23a of the outlet water chamber 9. . Similarly, it is also no longer suitable to stop electrolytic corrosion of the damaged coating portion 23b of the outlet circulating water pipe 10 near the outlet water chamber 9.

この対策としては外部電源電極36を出口水室9から遠
く離れた箇所に設けることが考えられる。
As a countermeasure to this problem, it is conceivable to provide the external power supply electrode 36 at a location far away from the outlet water chamber 9.

この場合、管板22および冷却管3に流れる損失電流は
上記した場合と比べると大幅に小さくなり、照合電極3
9aの検出電位が上述した約−600mV S CEよ
りも食倒になりチタン材の水素脆性は生じない。しかし
ながら、この検出電位が食倒になるということは出口水
室9内全体をみると、照合電極39aから遠いところで
はさらに食倒の電位になることであり、例えば被膜損傷
部23aの付近は全く防食電流37が流れなくなってし
まう。
In this case, the loss current flowing through the tube plate 22 and the cooling tube 3 is significantly smaller than in the above case, and the reference electrode 3
The detection potential of 9a is lower than the above-mentioned approximately -600 mV S CE, and hydrogen embrittlement of the titanium material does not occur. However, the fact that this detected potential is lowered means that when looking at the entire inside of the outlet water chamber 9, the potential is further lowered in areas far from the reference electrode 39a. The anti-corrosion current 37 will no longer flow.

この時、仮に外部電源電極36を出口水室9から遠く離
すと同時に鉄の防食電位である−650〜−900mV
 S CEを一層卑側に設定することが可能であれば、
対応が比較的容易であり、望ましいと考えられる。
At this time, suppose that the external power supply electrode 36 is moved far away from the outlet water chamber 9 and at the same time the corrosion protection potential of iron is -650 to -900 mV.
If it is possible to set SCE to the lower side,
This is relatively easy to deal with and is considered desirable.

しかしながら、外部電源電極36が取付けられる出口循
環水管10の近傍ではこうした対策が採られた場合に次
のような問題を生じる懸念があり、現実に用いられる可
能性はない。すなわち、出口循環木管lO等の防食のた
めに鋼表面に施されるゴム。
However, if such a measure is taken in the vicinity of the outlet circulating water pipe 10 to which the external power supply electrode 36 is attached, there is a concern that the following problem will occur, and there is no possibility that it will actually be used. In other words, rubber is applied to the steel surface to prevent corrosion of outlet circulation wood pipes, etc.

タールエポキシ樹脂等の被覆材料の表面はががる対策に
より一層増大する防食電位および電流値のために劣化が
進み易くなり、鋼表面からこれらの材料が剥離してしま
う危険性があり、大きな問題となる。
Measures to prevent surface peeling of coating materials such as tar epoxy resin further increase corrosion protection potential and current values, making deterioration more likely, and there is a risk that these materials will peel off from the steel surface, which is a major problem. becomes.

このように単に鉄の防食電位−650〜−900mV 
SCEを一層卑側に持って行くことは被覆材料側に不都
合が生じるため、好ましくない。
In this way, the corrosion protection potential of iron is simply -650 to -900 mV.
It is not preferable to bring the SCE to a more base side because it causes inconvenience to the coating material.

一方、先に述べたように外部電源電極36の設置場所等
に必要な配慮を欠いている従来の電気防食方法において
は真に電食防止に役立つものとはいえないところがあり
、改善が求められている。
On the other hand, as mentioned earlier, the conventional cathodic protection method, which lacks the necessary consideration for the installation location of the external power supply electrode 36, cannot be said to be truly useful for preventing electrolytic corrosion, and improvements are needed. ing.

したがって、本発明の目的は熱交換器に使用されるチタ
ン材の水素脆性を抑制し、かつチタン材と共に用いられ
る炭素鋼の部分においても電食現象により鋼表面が腐食
されるのを確実に防止するようにした全チタン熱交換器
の電気防食方法およびその装置を提供することにある。
Therefore, the purpose of the present invention is to suppress the hydrogen embrittlement of titanium materials used in heat exchangers, and also to reliably prevent the steel surface from being corroded due to galvanic corrosion even in the carbon steel parts used together with the titanium materials. An object of the present invention is to provide a method for cathodic protection of an all-titanium heat exchanger and an apparatus therefor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記課題を解決するために熱交換器胴に連なる
一対の水室を有し、冷媒としての海水を前記水室の一方
から他方にかけて伝熱管を通つて流すように構成してな
り、その際、各伝熱管は伝熱管を支持する管板と共にチ
タン材を用いて、かつ各水室は水室に連なる配管装置と
共にチタン材よりも電気的に卑な金属材料を用いてそれ
ぞれ製作されてなる全チタン熱交換器の電気防食方法に
おいて、各水室内の全域および各配管装置内の水室に連
なる一定領域の電気的絶縁が好適に保たれるように当該
領域を比較的堅牢な絶縁性材料を用いて被覆し、各水室
および各配管装置内の防食電位を保持するにあたり、各
水室内の管板下部近傍にてチタン材の水素脆性を抑制可
能な電位を、また各配管装置内の絶縁性材料による被覆
領域境界部近傍で少なくとも海水中における鉄の自然電
位よりも卑側の電位をそれぞれ保つように電圧および電
流値を制御することを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention has a pair of water chambers connected to a heat exchanger body, and seawater as a refrigerant is passed through heat transfer tubes from one of the water chambers to the other. In this case, each heat exchanger tube and the tube plate supporting the heat exchanger tube are made of titanium material, and each water chamber and the piping device connected to the water chamber are made of titanium material, which is electrically less expensive than titanium material. In the cathodic protection method for all-titanium heat exchangers, which are manufactured using metal materials such as In order to maintain the anti-corrosion potential in each water chamber and each piping device by covering the area with a relatively robust insulating material, we suppressed the hydrogen embrittlement of the titanium material near the bottom of the tube plate in each water chamber. It is characterized by controlling the voltage and current values so as to maintain a possible potential, and a potential that is at least more base than the natural potential of iron in seawater near the boundary of the area covered by the insulating material in each piping device. shall be.

また、本発明に係る全チタン熱交換器の電気防食装置は
熱交換器に連なる一対の水室を有し、冷伝熱管を支持す
る管板と共にチタン材を用いて、かつ各水室は水室に連
なる配管装置と共にチタン材よりも電気的に卑な金属材
料をそれぞれ用いて製作1されてなる全チタン熱交換器
において、各水室内の全域および各配管装置内の水室に
連なる一定領域の電気的絶縁が好適に保たれるように当
該領域を比較的堅牢な絶縁性材料を用いて被覆し、各水
室内の管板下部近傍と、各配管装置内の絶縁性材料によ
る被覆領域境界部近傍との照合電極をそれぞれ設けると
共に、これらの地点の防食電位が所定の値を保てるよう
に外部電源電極を前記各水室から一定距離離間して各々
設けたことを特徴とするものである。
Further, the cathodic protection device for an all-titanium heat exchanger according to the present invention has a pair of water chambers connected to the heat exchanger, and uses titanium material together with the tube plate that supports the cold heat transfer tube, and each water chamber has a pair of water chambers connected to the heat exchanger. In an all-titanium heat exchanger manufactured using a metal material that is electrically more base than titanium material together with the piping equipment connected to the chamber, the entire area inside each water chamber and a certain area connected to the water chamber in each piping equipment. The area is covered with a relatively strong insulating material so that the electrical insulation of In addition to providing reference electrodes for the vicinity of the water chambers, external power supply electrodes are also provided at a certain distance from each of the water chambers so that the corrosion protection potential at these points can be maintained at a predetermined value. .

(作用) 第2図は実験および解析により求められた出口水室およ
び出口循環木管の中心部の電位分布について示している
。図中、縦軸は管中心の電位を示し、横軸はグラフの上
に示した出口水室9および出口循環水管10の部位を示
している。電位分布は出口循環木管10内における外部
電源電極36の位置をそれぞれ変化させて同一の電位(
約−1000mV 5CE)を保つように電圧値を制御
した場合のもので、出口水室9および出口循環水管10
内の測定された電位を結んで分布曲線(a)(b)(c
)として示されている。初めに、(a)は外部電源電極
36の取付位置が理想的であった場合の電位分布であり
、この場合、外部電源電極36から少し出口水室9側に
寄った位置で約−770mV S CEの電位となり、
出口水室9内では一500mVSCEよりも責な電位と
なっている。即ち、約−770mV S CEを境界点
としてそれよりも責な電位を示している出口循環水管1
0と、これに続いている出口水室9とは適切な対応が採
れない場合に鋼表面が電食によって容易に侵されてしま
う領域に入っている。一方、約−770mVSCEより
も卑な電位を示している出口循環水管10内の領域は電
気防食の効果が及ぶ領域であり、鋼表面が電食される危
険性は少ない。
(Function) Figure 2 shows the potential distribution at the center of the outlet water chamber and the outlet circulation wood pipe determined by experiment and analysis. In the figure, the vertical axis shows the potential at the center of the pipe, and the horizontal axis shows the parts of the outlet water chamber 9 and the outlet circulating water pipe 10 shown above the graph. The potential distribution is determined by changing the positions of the external power supply electrodes 36 in the outlet circulation wood pipe 10 to maintain the same potential (
This is when the voltage value is controlled to maintain approximately -1000mV 5CE), and the outlet water chamber 9 and outlet circulation water pipe 10
The distribution curves (a), (b), and (c) are created by connecting the measured potentials in
). First, (a) shows the potential distribution when the mounting position of the external power supply electrode 36 is ideal. becomes the potential of CE,
Inside the outlet water chamber 9, the potential is greater than -500 mVSCE. In other words, the outlet circulating water pipe 1 exhibits a higher potential than approximately -770 mV S CE as the boundary point.
0 and the outlet water chamber 9 following it are in a region where the steel surface is easily attacked by electrolytic corrosion if appropriate measures are not taken. On the other hand, the area within the outlet circulating water pipe 10 exhibiting a potential less noble than about -770 mVSCE is an area where cathodic protection is effective, and there is little risk of electrolytic corrosion on the steel surface.

上記実験および解析結果により鋼表面が電食によって侵
される危険性のある約−770mV S CEよりも食
倒の電位を示す領域は特に電気的絶縁性の優れた材料を
適用して出口水室9内および出口循環水管10内の約−
770mVSCEより貴な電位を示す領域を被覆する。
According to the above experiment and analysis results, the area where the steel surface has a potential of more than approximately -770 mV S CE, where there is a risk of being attacked by electrolytic corrosion, is constructed using a material with particularly excellent electrical insulation properties. Approximately - within the inner and outlet circulating water pipes 10
Cover areas exhibiting potentials nobler than 770 mVSCE.

一方、約−770mV S CEより卑な電位を示す領
域については鋼表面の腐食抑制を考慮して主として防食
性を有する材料を用いて被覆する。なお、出口循環水管
10に介装される伸縮継手19については元々絶縁性材
料により構成(ゴム等)されるため、電気防食の対象か
ら除いて考えてよい。
On the other hand, a region exhibiting a potential less noble than about -770 mV S CE is coated with a material mainly having anticorrosion properties in consideration of suppressing corrosion of the steel surface. Note that since the expansion joint 19 installed in the outlet circulating water pipe 10 is originally made of an insulating material (such as rubber), it may be excluded from the scope of cathodic protection.

次に、(b)は外部電源電極36が(a)の場合よりも
出口水室9側に寄っている場合の電位分布である。(a
)と比べると、約−770mVの電位を示す箇所はより
出口水室9側に近くなっている。即ち、電気防食の効果
が及ぶ領域は(a)よりも出口水室9側に近づき、その
全電気的絶縁性を備えた材料による被覆領域は減少する
。しかしながら、出口水室9内の電位は一500mVS
CEを切っている(a)と比べて著しく卑側に寄ってお
り、チタン材の水素脆性を伴なう電位−600mV S
 CEに近づき、仮に、管板22および冷却管3の汚れ
等から電位が大きく変化して卑側に振れる場合には一6
00mVSCEに達するかも知れず、(a)と比べて余
裕の少なぃ(b)はそれだけ水素脆性の危険性が高く、
採用し難いものである。
Next, (b) shows the potential distribution when the external power supply electrode 36 is closer to the outlet water chamber 9 side than in the case (a). (a
), the location showing a potential of about -770 mV is closer to the outlet water chamber 9 side. That is, the area where the cathodic protection effect is applied is closer to the outlet water chamber 9 side than in (a), and the area covered by the material having total electrical insulation properties is reduced. However, the potential inside the outlet water chamber 9 is -500 mVS
Compared to (a) where CE is cut, the potential is significantly closer to the base side, and the potential is -600 mV S, which is accompanied by hydrogen embrittlement of the titanium material.
When approaching CE, if the potential changes significantly due to dirt on the tube plate 22 and cooling pipe 3 and swings to the base side,
00mVSCE may be reached, and (b) has less margin than (a), so the risk of hydrogen embrittlement is higher.
It is difficult to adopt.

さらに、(b)と反対に(a)からさらに遠い位置に外
部電源電極36を取付けた場合の電位分布が(C)とし
て示されている。(a)と対比すると、この場合の出口
水室9内の電位はさらに食倒に移り、チタン材の水素脆
性に関しては全く問題にならない電位となる。しかしな
がら、出口循環水管10内の電位は(a)と比べた場合
に約−770mVSCEの電位を示す箇所が出口水室9
からみてより遠くなっている。つまり、電気防食の効果
が及ぶ領域の移動により電気的絶縁性を有する材料によ
る被覆領域は拡がり2反対に防食性材料による被覆領域
は狭くなる。このように電気的絶縁性材料による被覆領
域を延ばし、換言すると、電気防食の効果が及ばない領
域を拡げることは万が−の被覆材料の損傷を考慮すると
、より慎重でなければならない。また、経済的にも高価
な絶縁性材料の適用は限度がある。結局、(C)の電位
分布を示す位置には外部電源電極36は取付けられず、
被覆領域をより短くするようにこれを配置することにな
る。しかし、先に述べたように電位分布が(b)のよう
になると、今度はチタン材の水素脆性の懸念が強くなる
。従って、(a)は電気防食の及ばない領域が少なく、
しかもチタン材の水素脆性が生じない電位分布であると
いえる。
Further, in contrast to (b), the potential distribution when the external power supply electrode 36 is attached at a position further away from (a) is shown as (C). In comparison with (a), the potential in the outlet water chamber 9 in this case is further shifted to a potential that poses no problem with regard to the hydrogen embrittlement of the titanium material. However, when compared with (a), the potential inside the outlet circulating water pipe 10 is approximately -770 mVSCE at the location where the potential is at the outlet water chamber 9.
It looks further away from the sky. That is, due to the movement of the area over which the cathodic protection effect is applied, the area covered by the electrically insulating material expands, whereas the area covered by the anticorrosion material narrows. In this way, extending the area covered by the electrically insulating material, in other words, expanding the area where the effect of cathodic protection does not reach, must be done with greater care, taking into account possible damage to the coating material. Furthermore, there is a limit to the application of economically expensive insulating materials. In the end, the external power supply electrode 36 is not attached to the position showing the potential distribution in (C),
This will be arranged so that the covered area is shorter. However, as described above, when the potential distribution becomes as shown in (b), there is a growing concern about hydrogen embrittlement of the titanium material. Therefore, in (a) there are few areas that are not covered by cathodic protection,
Furthermore, it can be said that the potential distribution is such that hydrogen embrittlement of the titanium material does not occur.

一方、別の実験および解析では外部′電源電極36付近
の上記実験の電位約−1000mV S CEから約−
1,500mV S CEに上げて電位分布を測定した
。これが図に破線で示される分布曲線である。(a)と
対比するならば、(a)よりもさらに電気防食の効果が
及ぶ領域は拡がることは明らかであるが、電位設定を大
きくしただけでは利するところよりも害だけが目立って
大きくなる。すなわち、出口水室9内の電位は一600
mV S CEすれすれに近づき、水素脆性が起こる危
険性はますます高くなると共に、−10100OS C
Eより車側に設定しているために絶縁材料の剥離が生じ
易くなる。
On the other hand, in another experiment and analysis, the potential near the external power supply electrode 36 was changed from about -1000 mV S CE in the above experiment to about -
The potential distribution was measured by increasing the voltage to 1,500 mV S CE. This is the distribution curve shown by the dashed line in the figure. If we compare it with (a), it is clear that the area where the effect of cathodic protection extends is even wider than in (a), but simply increasing the potential setting will only cause more harm than good. . That is, the potential inside the outlet water chamber 9 is -600
mV S CE is approaching, and the risk of hydrogen embrittlement is increasing, and -10100OS C
Since it is set closer to the car than E, the insulating material is likely to peel off.

したがって、外部電源電極36の電位は約−1000m
VscEを上限とするのが望ましい。
Therefore, the potential of the external power supply electrode 36 is approximately -1000m
It is desirable to set the upper limit to VscE.

また、防食電位の下限は鉄の海水中の自然電位カー 4
50〜−650mV S CE テあり、約−650m
V S CEとする。
In addition, the lower limit of the corrosion protection potential is the natural potential car of iron in seawater 4
50~-650mV SCE with te, approx.-650m
VS CE.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図において、出口水室9の内部は電気的絶縁性を有
する被覆材料、例えば堅牢な構造のゴム42で覆われて
いる。この出口水室9の下部には照合電極39aが取付
けられ、その電位を一600mV S CEよりも食倒
に設定して、チタン材の水素脆性が起こらないように電
気防食装置38に検出電位を帰還させている。また、出
口循環水管10の出口水室9に連なるL2の領域につい
ても同様なゴム42により覆われている。通常、伸縮継
手19はゴムで作られており、 L2の領域には鋼表面
の露出部分は存在しない。
In FIG. 1, the interior of the outlet water chamber 9 is covered with an electrically insulating covering material, for example rubber 42 of a robust construction. A reference electrode 39a is attached to the lower part of the outlet water chamber 9, and its potential is set to be lower than -600 mV S CE, and a detection potential is applied to the cathodic protection device 38 to prevent hydrogen embrittlement of the titanium material. They are being sent back. Further, a region L2 of the outlet circulating water pipe 10 that is connected to the outlet water chamber 9 is also covered with a similar rubber 42. Usually, the expansion joint 19 is made of rubber, and there is no exposed steel surface in the region L2.

また、出口循環木管10のL2以外の領域は防食性を有
する被覆材料であるタールエポキシ樹脂43で被覆され
ているが、ゴム42とこのタールエポキシ樹脂43との
境界部に照合電極39bが設置されている。この照合電
極39bの設定電位は一770mV S CEよりも車
側であり、鋼表面が電食によって侵されないように検出
電位を電気防食装置38に帰還させている。
Further, the area other than L2 of the outlet circulation wood pipe 10 is covered with tar epoxy resin 43, which is a coating material having anti-corrosion properties, and a reference electrode 39b is installed at the boundary between the rubber 42 and this tar epoxy resin 43. ing. The set potential of the reference electrode 39b is closer to the vehicle than -770 mV S CE, and the detected potential is fed back to the electrolytic protection device 38 to prevent the steel surface from being corroded by electrolytic corrosion.

一方、電気防食装置38によって制御される外部電源電
極36は出口水室9よりり、の距離に取付けられる。 
したがって、電気防食の対象領域はり。
On the other hand, an external power supply electrode 36 controlled by the cathodic protection device 38 is installed at a distance of .
Therefore, the area covered by cathodic protection beams.

からL2を引いたLlとなる。It becomes Ll by subtracting L2 from.

以下、L3が約4.8m+出口循環水管10の内径りが
2.4m、外部電源電極36の電位が約−1000mV
 S CEである場合の出口水室内下部の電位、電流値
および出口循環木管内の電位分布の測定結果について述
べる。
Below, L3 is approximately 4.8 m + the inner diameter of the outlet circulating water pipe 10 is 2.4 m, and the potential of the external power supply electrode 36 is approximately -1000 mV.
We will discuss the measurement results of the potential and current value in the lower part of the outlet water chamber and the potential distribution in the outlet circulation wood pipe in the case of SCE.

初めに、出口水室内下部の電位の変化について説明する
First, changes in the potential in the lower part of the outlet water chamber will be explained.

第3図において、なお、図中縦軸は出口循環水管10の
管中心の電位を、また横軸は外部電源電極36より熱交
換器側への距離をそれぞれ示している。
In FIG. 3, the vertical axis in the figure represents the potential at the center of the outlet circulating water pipe 10, and the horizontal axis represents the distance from the external power supply electrode 36 to the heat exchanger side.

L3が約4.8m (L、/D:2)の場合、即ち、外
部電源電極36から約4.8mMれているところまでの
電位は曲線(g)として示され、出口水室9内下部の電
位が一600mV S CEより貴側にあることが理解
される。この場合、約4.8mより約3.3mの範囲で
電位が一600mV S CEよりも食倒となり、この
範囲内ではチタン材の水素脆性は発生しない。
When L3 is about 4.8 m (L, /D: 2), the potential up to about 4.8 mm away from the external power supply electrode 36 is shown as a curve (g), and the lower part of the inside of the outlet water chamber 9 It is understood that the potential of is on the more noble side than 1600 mV S CE. In this case, in the range from about 4.8 m to about 3.3 m, the potential becomes lower than 1600 mV S CE, and hydrogen embrittlement of the titanium material does not occur within this range.

ところで、第3図にはり、が約2.4mの場合、および
約1.2mの場合とが曲線(h)および(i)として示
されている。なお、これらの値は出口循環水管10の内
径りに対して1.0倍および0.5倍である。
By the way, in FIG. 3, curves (h) and (i) show cases where the beam is about 2.4 m and about 1.2 m. Note that these values are 1.0 times and 0.5 times the inner diameter of the outlet circulating water pipe 10.

曲線(h)および(i)の電位は一600mV S C
Eより常に卑側であるためにチタン材の水素脆性が生じ
る。従って、内径りに対して2倍の距離まで離した(g
)を目標とする必要がある。
The potential of curves (h) and (i) is -600 mV SC
Hydrogen embrittlement occurs in the titanium material because it is always on the less-base side than E. Therefore, the distance was set twice as far as the inner diameter (g
) should be the goal.

次に、電流値の変化について説明する。Next, changes in current value will be explained.

第4図において、なお、ここで縦軸は外部電源電極36
よりの電流値を、また横軸は熱交換器より外部電源電極
36までの距離をそれぞれ示している。
In FIG. 4, the vertical axis is the external power supply electrode 36.
The horizontal axis shows the distance from the heat exchanger to the external power supply electrode 36.

第4図から距離が約4.8mより大きくなると、2アン
ペア弱でほぼ一定となる。また、これより小さくなると
、電流値は急激に上昇する。
From FIG. 4, when the distance is greater than about 4.8 m, the current remains almost constant at a little less than 2 amperes. Moreover, when it becomes smaller than this, the current value increases rapidly.

次に、出口循環水管lO内の電位分布について説明する
。 なお、条件は第3図および第4図の場合と同じであ
るが、外部電源電極36の電位が約−1500mV S
 CEの場合も示している。
Next, the potential distribution within the outlet circulating water pipe IO will be explained. Note that the conditions are the same as those in FIGS. 3 and 4, except that the potential of the external power supply electrode 36 is approximately -1500 mV S
The case of CE is also shown.

第5図において、なお、図中縦軸は外部電源電極3Gよ
り熱交換器側の出口循環水管10の管中心における電位
を、また横軸は外部電源電極36より熱交換器側への距
離をそれぞれ示している。
In FIG. 5, the vertical axis represents the potential at the center of the outlet circulating water pipe 10 on the heat exchanger side from the external power supply electrode 3G, and the horizontal axis represents the distance from the external power supply electrode 36 to the heat exchanger side. are shown respectively.

曲線(j)は外部電源電極36の電位が約−1000m
VSCEの場合の出口循環水管10の電位分布を示して
いる。電流値によって多少異なるが外部電源電極36よ
りの距離約2.4m以内が一770mV S CEより
卑側の電位分布となり、鋼表面の防食は所望の結果が得
られる。一方、 これを超える部分(斜線部)は−77
0mVSCEより貴な電位となって防食効果が得られな
くなる。
Curve (j) indicates that the potential of the external power supply electrode 36 is approximately -1000 m.
The potential distribution of the outlet circulating water pipe 10 in the case of VSCE is shown. Although it varies somewhat depending on the current value, within a distance of about 2.4 m from the external power supply electrode 36, the potential distribution becomes less noble than 1770 mV S CE, and the desired corrosion prevention result on the steel surface can be obtained. On the other hand, the part beyond this (the shaded part) is -77
The potential becomes nobler than 0 mVSCE, and no anticorrosion effect can be obtained.

曲線(j)と対比するために外部電源電極36の電位が
約−1500mV S CEの場合の出口水室9および
出口循環木管10の管中心の電位分布が曲線(k)とし
て示されている。電流値によって多少異なるが、外部電
源電極36よりの距離約4.1m以内が一770mVS
CEより卑側の電位分布となり、上記電位よりも広い範
囲に防食効果が及ぶが、この電位は出口水室9内下部の
電位を第3図の(g)の如く適正な値に保ツ電位(約−
+000a+V S CE )ではなく、これに依存す
ることはできない。
In order to contrast with the curve (j), the potential distribution at the center of the outlet water chamber 9 and the outlet circulation wood tube 10 when the potential of the external power supply electrode 36 is about -1500 mV S CE is shown as the curve (k). It varies slightly depending on the current value, but within a distance of approximately 4.1 m from the external power supply electrode 36, 1770 mVS
The potential distribution is on the more base side than CE, and the anticorrosion effect extends over a wider range than the above potential, but this potential keeps the potential at the lower part of the outlet water chamber 9 at an appropriate value as shown in (g) in Figure 3. (about -
+000a+V S CE ) and cannot be relied upon.

以上の第3図、第4図および第5図に基づくならば、外
部電源電極36の取付は位置が約4.8mのときに防食
効果の得られる範囲は約2.4mであるから、L、=L
、−L□= 4.8−2.4 = 2.4となり、約2
.4m以上がこの場合の絶縁性を有する材料による被覆
領域となる。
Based on the above figures 3, 4, and 5, when the external power supply electrode 36 is installed at a position of about 4.8 m, the range in which corrosion protection can be obtained is about 2.4 m, so L ,=L
, -L□= 4.8-2.4 = 2.4, which is about 2
.. In this case, the area covered by the insulating material is 4 m or more.

次に1本発明の他の実施例について説明する。Next, another embodiment of the present invention will be described.

本実施例では外部電源電極36の電位が一770mVS
CEよりも責な電位である約−700mVに保持される
In this embodiment, the potential of the external power supply electrode 36 is 1770 mVS.
It is held at about -700 mV, which is a more negative potential than CE.

これは、上記実施例に対して電位を食倒に設定して電流
値を下げること、さらに高価なゴムによる被覆領域を減
少させることなどにより経済的な効果をより一層高めた
い場合に特に考えられるやり方である。
This can be considered especially when it is desired to further increase the economical effect by setting the electric potential to a lower value than in the above embodiment to lower the current value, and by reducing the area covered by expensive rubber. That's the way to do it.

第6図において、上記実施例と同様、出口水室9の内部
とこれに連なるL2の領域とが堅牢な構造のゴム42で
被覆され、これらの箇所には鋼表面の露出部分は存在し
ない。なお、L2の領域には伸縮継手19が含まれる。
In FIG. 6, similarly to the above embodiment, the inside of the outlet water chamber 9 and the region L2 connected thereto are covered with rubber 42 having a robust structure, and there are no exposed parts of the steel surface at these locations. Note that the area L2 includes the expansion joint 19.

また、出口循環木管10のL2以外の領域がタールエポ
キシ樹脂43により被覆される。外部電′If!X電極
36はこの被覆領域内のり、の位置に設置され、L、か
らL2を引いたLlがこの場合の電気防食の対象領域と
なる。
Further, the area other than L2 of the outlet circulation wood pipe 10 is covered with the tar epoxy resin 43. External power 'If! The X electrode 36 is installed at a position within this covered area, and Ll, which is obtained by subtracting L2 from L, is the area to be subjected to cathodic protection in this case.

以下、L、が約3.6m、出口循環木管10の内径が2
.4m、外部電源電極36の電位が約−700mV S
 CEである場合の出口水室9内下部の電位、電流値お
よび出口循環水管10内の電位分布の測定結果について
説明する。
Hereinafter, L is approximately 3.6 m, and the inner diameter of the outlet circulation wood pipe 10 is 2.
.. 4m, the potential of the external power supply electrode 36 is approximately -700mV S
The measurement results of the potential in the lower part of the outlet water chamber 9, the current value, and the potential distribution in the outlet circulating water pipe 10 in the case of CE will be explained.

初めに、出口水室内下部の電位の変化を第7図を参照し
て説明する。なお、図中縦軸は出口循環水管10の管中
心の電位を、また横軸は外部電源な極36より熱交換器
側への距離をそれぞれ示している。
First, changes in the potential in the lower part of the outlet water chamber will be explained with reference to FIG. In the figure, the vertical axis represents the potential at the center of the outlet circulating water pipe 10, and the horizontal axis represents the distance from the external power supply pole 36 to the heat exchanger side.

L3が約3.6m (L3/D句1.5)の場合、つま
り外部電源電極36から約3 、6 m 離れていると
ころまでの電位は曲線(e)として示され、このとき、
出口水室9内下部の電位は一600mV S CEより
も食倒に入るためにチタン材の水素脆性が生じることは
ない。
When L3 is about 3.6 m (L3/D clause 1.5), that is, the potential up to a distance of about 3.6 m from the external power supply electrode 36 is shown as curve (e), and in this case,
Since the potential at the lower part of the outlet water chamber 9 is lower than -600 mV S CE, hydrogen embrittlement of the titanium material does not occur.

なお、曲a(m)および(n)はり、が0.5m(L、
/D句0.2)および0.24m (L、/D#0.1
)の場合の電位を示している。何れの場合も一600f
fiシSCEより車側であるためにチタン材の水素脆性
が発生する。 したがって、内径りに対して1.5倍の
距離まで離すことが必要である。
In addition, the beams of songs a (m) and (n) are 0.5 m (L,
/D clause 0.2) and 0.24m (L, /D#0.1
) is shown. In either case - 600f
Hydrogen embrittlement occurs in the titanium material because it is closer to the car than the SCE. Therefore, it is necessary to separate them by a distance that is 1.5 times the inner diameter.

次に、電流値の変化を第8図を参照して説明する。なお
、ここで縦軸は外部電源電極36よりの電流値を、また
横軸は熱交換器より外部電源電極36までの距離を各々
示している。第8図から距離が3.6mより大きくなる
と、0.2アンペア弱でほぼ一定となる。また、これに
より距離が小さくなると、電流値は急激に上昇する。
Next, changes in current value will be explained with reference to FIG. Note that here, the vertical axis indicates the current value from the external power supply electrode 36, and the horizontal axis indicates the distance from the heat exchanger to the external power supply electrode 36. As shown in FIG. 8, when the distance is greater than 3.6 m, the current remains almost constant at a little less than 0.2 ampere. Furthermore, as the distance becomes smaller, the current value increases rapidly.

次に、出口循環水管lO内の電位分布を第9図を参照し
て説明する。
Next, the potential distribution within the outlet circulating water pipe IO will be explained with reference to FIG.

なお、図中縦軸は外部電源電極36より熱交換器側の出
口循環水管10の管中心における電位を、また横軸は外
部電源電極36より熱交換器側への距離をそれぞれ示し
ている。
In the figure, the vertical axis represents the potential at the center of the outlet circulating water pipe 10 on the side closer to the heat exchanger than the external power source electrode 36, and the horizontal axis represents the distance from the external power source electrode 36 to the heat exchanger side.

曲線(o)は外部電源電極36の電位が約−700mV
SCEの場合の出口循環水管10の電位分布を示してい
る。電流値によって多少異なるが、外部電源電極36よ
りの距離約1.7m以内が約−650mV S CEよ
り車側の電位分布となり、鋼表面の防食はほぼ問題のな
い領域となる。一方、これを超える部分(斜線部)は約
−650mV S CEより食倒となり防食効果が得ら
れなくなる。
Curve (o) indicates that the potential of the external power supply electrode 36 is approximately -700 mV.
The potential distribution of the outlet circulating water pipe 10 in the case of SCE is shown. Although it varies somewhat depending on the current value, within a distance of about 1.7 m from the external power supply electrode 36, the potential distribution becomes about -650 mV S CE on the car side, and the corrosion protection of the steel surface becomes an area where there is almost no problem. On the other hand, the part exceeding this (the shaded part) becomes eroded from about -650 mV S CE and no anticorrosive effect can be obtained.

以上の第7図、第8図および第9図に基づくならば、外
部電源電極36の取付位置が約3.6mのときに防食効
果の得られる範囲は約1.7mであるから、 12=L
、−L1=3.6−1.7=1.9となり、 約1.9
m以上がこの場合の電気的絶縁性を有する材料による被
覆領域となる。
Based on the above figures 7, 8, and 9, when the external power supply electrode 36 is installed at a position of about 3.6 m, the range in which the anticorrosive effect can be obtained is about 1.7 m, so 12= L
, -L1=3.6-1.7=1.9, about 1.9
m or more is the area covered by the electrically insulating material in this case.

本実施例の出口循環木管10設定電位は鉄の海水中の自
然電位の限界にあり、上記実施例の一770mVscE
よりも食倒になるために信頼性は幾分損なわれることに
なるが、経済性を重視する場合、本実施例により相応の
効果を得ることが可能となる。
The set potential of the outlet circulation wood pipe 10 of this embodiment is at the limit of the natural potential of iron in seawater, and is 770 mVscE in the above embodiment.
Although the reliability will be somewhat impaired because the cost will be more wasted than the above, if economic efficiency is important, this embodiment makes it possible to obtain a corresponding effect.

さらに、第10図を参照して上記各実施例と異なる方法
を説明する。第10図において、本実施例の構成は第6
図に示される方法を一歩進めて照合電極44a、 44
bが亜鉛材から鋼材に変更され、その設定電位につき、
鉄の海水中の自然電位とするものである。すなわち、鋼
材の照合電極を使用した場合、照合電極44a、 44
b近傍の電位が鉄の海水中の自然電位より食倒になった
ときに、照合電極自身の電位を直ちに検出し、防食電流
を流すこと、−方、鉄の海水中の自然電位より車側にな
った場合にはこれを直ちに検出し、防食電流を減少させ
ることが可能であり、鋼表面の腐食および防食状態を正
確に把握できる利点がある。通常の亜鉛材等による照合
電極では測定する電位に多少バラツキがあり、誤差が問
題となる。上記実施例の亜鉛材の照合電極の場合設定電
位をどの値にするかも難しく、例えば設定電位を一55
0mV S CHにした場合でも、検出電位の時間おく
れ、さらには亜鉛材の自然電位のバラツキ、環境条件に
よるバラツキ。
Furthermore, a method different from each of the above embodiments will be explained with reference to FIG. In FIG. 10, the configuration of this embodiment is the sixth
Taking the method shown in the figure one step further, reference electrodes 44a, 44
b is changed from zinc material to steel material, and for its set potential,
This is the natural potential of iron in seawater. That is, when using steel reference electrodes, the reference electrodes 44a, 44
When the potential near b is lower than the natural potential of iron in seawater, the potential of the reference electrode itself is immediately detected and an anticorrosive current is applied. If this happens, it can be detected immediately and the anti-corrosion current can be reduced, which has the advantage of being able to accurately grasp the corrosion and anti-corrosion status of the steel surface. With reference electrodes made of ordinary zinc materials, there is some variation in the potential measured, and errors pose a problem. In the case of the reference electrode made of zinc material in the above embodiment, it is difficult to decide what value to set the potential.
Even when set to 0mV S CH, there is a time lag in the detection potential, and furthermore, there are variations in the natural potential of the zinc material and variations due to environmental conditions.

亜鉛分極時電位のバラツキ等があり、測定電位の誤差を
考慮しなければならないが、鋼材の照合電+444a、
 44bを使用することにより、このような誤差を心配
する必要がなくなる。
There are variations in the potential during zinc polarization, and errors in the measured potential must be taken into account, but the reference voltage of steel material +444a,
By using 44b, there is no need to worry about such errors.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は各水室内の全域および各配
管装置内の水室に連なる一定領域の電気的絶縁が好適に
保たれるように当該領域を比較的堅牢な絶縁性材料を用
いて被覆し、各水室および各配管装置内の防食電位を保
持するにあたり、各水室内の管板下部近傍にてチタン材
の水素脆性を抑制可能な電位を、また各配管装置内の絶
縁性材料による被覆領域境界部近傍で少なくとも海水中
における自然電位よりも車側の電位をそれぞれ保つよう
に電圧および電流値を制御しているので、チタン材の水
素脆性が発生する心配がなく、しかも炭素鋼からなる部
分の電食現象が確実に防止されるという優れた効果を奏
する。
As explained above, the present invention uses a relatively robust insulating material to maintain electrical insulation of the entire area inside each water chamber and a certain area connected to the water chamber in each piping device. In order to maintain the anti-corrosion potential in each water chamber and each piping device, we maintain a potential that can suppress the hydrogen embrittlement of the titanium material near the bottom of the tube plate in each water chamber, and insulating material in each piping device. Since the voltage and current values are controlled to maintain a potential on the car side that is at least higher than the natural potential in seawater near the boundary of the covered area, there is no risk of hydrogen embrittlement in titanium materials, and carbon steel This has the excellent effect of reliably preventing electrolytic corrosion of the parts made of the material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に適用される装置の一実施例を示す
構成図、第2図は本発明における電位の分布状態を示す
電位分布図、第3図は第1図に示される実施例に係る出
口室内下部における電位の変化を示す特性図、第4図は
同電流値の変化について示す特性図、第5図は同出口循
環木管内の電の 位の分布状態を示す特性図、第6は本発明方法に△ 適用される装置の他の実施例を示す構成図、第7図は第
6図に示される実施例に係る出口水室下部における電位
の変化を示す特性図、第8図は同電流値の変化について
示す特性図、第9図は同出口循環水管内の電位分布状態
を示す特性図、第1O図は本発明のさらに異なる実施例
を示す構成図、第11図は従来技術による復水器とそれ
に接続される配管装置を示す系統構成図、第12図は海
水中における各種金属の自然電位について示す特性図、
第13図、第14図および第15図は復水器における電
食現象について示す説明図、第16図、第17図および
第18図は従来の復水器における電気防食装置の一例を
示す構成図である。 2・・・復水器     3・・・冷却管7・・・入口
循環水管  8・・・入口水室9・・・出口水室   
 lO・・・出口循環水管22・・・管板    26
.31.36・・・外部電源電極28、33.38・・
・電気防食装置 29、34.39a、 39b−照合電極42・・・ゴ
ム     43・・・タールエポキシ樹脂代理人 弁
理士 則 近 憲 佑 同  第子丸 健 第1図 ^錫中 第3図 然交巾町器より電本kまひyI象(rs)1ンヤよすの
距潟*<rn> 第5図 第6図 第7図 熱ダオ灸違−より電車Vまで°の工E6奮(m)第8図 ?、本廊よりの距責創(m) 第9図 第11図 第12図 第131XU 第14図 第15図 第16図 第17図 第18図 手続釘11正書(自発)
FIG. 1 is a block diagram showing one embodiment of the apparatus applied to the method of the present invention, FIG. 2 is a potential distribution diagram showing the state of potential distribution in the present invention, and FIG. 3 is an embodiment shown in FIG. 1. FIG. 4 is a characteristic diagram showing the change in electric potential at the lower part of the outlet chamber, FIG. 4 is a characteristic diagram showing changes in the current value, FIG. 6 is a configuration diagram showing another embodiment of the apparatus applied to the method of the present invention, FIG. 7 is a characteristic diagram showing changes in potential at the lower part of the outlet water chamber according to the embodiment shown in FIG. 6, and FIG. Figure 9 is a characteristic diagram showing the change in the current value, Figure 9 is a characteristic diagram showing the potential distribution state in the outlet circulating water pipe, Figure 1O is a configuration diagram showing still another embodiment of the present invention, and Figure 11 is a characteristic diagram showing the potential distribution state in the outlet circulating water pipe. A system configuration diagram showing a conventional condenser and piping equipment connected to it; FIG. 12 is a characteristic diagram showing the natural potential of various metals in seawater;
FIGS. 13, 14, and 15 are explanatory diagrams showing the electrolytic corrosion phenomenon in a condenser, and FIGS. 16, 17, and 18 are configurations showing an example of a conventional cathodic protection device in a condenser. It is a diagram. 2... Condenser 3... Cooling pipe 7... Inlet circulating water pipe 8... Inlet water chamber 9... Outlet water chamber
lO... Outlet circulating water pipe 22... Tube plate 26
.. 31.36...External power supply electrode 28, 33.38...
- Cathodic protection device 29, 34. 39a, 39b - Reference electrode 42...Rubber 43...Tar epoxy resin agent Patent attorney Nori Chika Ken Yudo Daishimaru Ken 1st figure From the Kawamachi equipment to the electric train K paralysis y I elephant (rs) 1 Nyayosu's distance *<rn> Figure 8? , Distance from the main gallery (m) Figure 9 Figure 11 Figure 12 Figure 131

Claims (4)

【特許請求の範囲】[Claims] (1)熱交換器胴に連なる一対の水室を有し、冷媒とし
ての海水を前記水室の一方から他方にかけて伝熱管を通
つて流すように構成してなり、その際、前記各伝熱管は
該伝熱管を支持する管板と共にチタン材を用いて、かつ
前記各水室は該水室に連なる配管装置と共にチタン材よ
りも電気的に卑な金属材料を用いてそれぞれ製作されて
なる全チタン熱交換器の電気防食方法において、前記各
水室内の全域および各配管装置内の水室に連なる一定領
域の電気的絶縁が好適に保たれるように当該領域を比較
的堅牢な絶縁性材料を用いて被覆し、前記各水室および
各配管装置内の防食電位を保持するにあたり、前記各水
室内の管板下部近傍にてチタン材の水素脆性を抑制可能
な電位を、また前記各配管装置内の絶縁性材料による被
覆領域境界部近傍で少なくとも海水中における鉄の自然
電位よりも卑側の電位をそれぞれ保つように電圧および
電流値を制御することを特徴とする全チタン熱交換器の
電気防食方法。
(1) It has a pair of water chambers connected to the heat exchanger body, and is configured so that seawater as a refrigerant flows from one of the water chambers to the other through the heat exchanger tubes, and in this case, each of the heat exchanger tubes is made of titanium material together with the tube plate that supports the heat exchanger tube, and each of the water chambers and the piping devices connected to the water chambers are made of a metal material that is electrically less noble than titanium material. In the cathodic protection method for titanium heat exchangers, in order to maintain suitable electrical insulation of the entire area inside each water chamber and a certain area connected to the water chamber in each piping device, the area is covered with a relatively robust insulating material. In order to maintain the anti-corrosion potential in each of the water chambers and each piping device, a potential that can suppress the hydrogen embrittlement of the titanium material near the bottom of the tube plate in each of the water chambers is maintained, and each of the piping An all-titanium heat exchanger characterized in that the voltage and current values are controlled so as to maintain at least a potential on the more base side than the natural potential of iron in seawater near the boundary of a region covered by an insulating material in the device. Cathodic protection method.
(2)各水室内の全域および配管装置内の該水室下部よ
り約2.4mの領域を絶縁性材料を用いて被覆し、各水
室および配管装置内の防食電位を保持するにあたり、各
水室内の管板下部近傍にて約−600mVSCEの電位
を、また各水室の下部から約2.4m離れた地点で約−
770mVSCEの電位をそれぞれ保つように電圧およ
び電流値を制御することを特徴とする請求項1記載の全
チタン熱交換器の電気防食方法。
(2) The entire area inside each water chamber and an area approximately 2.4 m from the bottom of the water chamber in the piping equipment are coated with an insulating material, and in order to maintain the anticorrosive potential in each water chamber and the piping equipment, each A potential of approximately -600 mVSCE is applied near the bottom of the tube plate in the water chamber, and approximately -
2. The cathodic protection method for an all-titanium heat exchanger according to claim 1, wherein the voltage and current values are controlled so as to maintain a potential of 770 mVSCE.
(3)熱交換器胴に連なる一対の水室を有し、冷媒とし
て海水を前記水室の一方から他方にかけて伝熱管を通つ
て流すように構成してなり、その際、前記各伝熱管は該
伝熱管を支持する管板と共にチタン材を用いて、かつ前
記各水室は該水室に連なる配管装置と共にチタン材より
も電気的に卑な金属材料をそれぞれ用いて製作されてな
る全チタン熱交換器において、前記各水室内の全域およ
び各配管装置内の水室に連なる一定領域の電気的絶縁が
好適に保たれるように当該領域を比較的堅牢な絶縁性材
料を用いて被覆し、前記各水室内の管板下部近傍と、前
記各配管装置内の絶縁性材料による被覆領域境界部近傍
とに照合電極をそれぞれ設けると共に、これらの地点の
防食電位が所定の値を保てるように外部電源電極を前記
各水室から一定距離離間して各々設けたことを特徴とす
る全チタン熱交換器の電気防食装置。
(3) It has a pair of water chambers connected to the heat exchanger body, and is configured to flow seawater as a refrigerant from one of the water chambers to the other through the heat exchanger tubes, and in this case, each of the heat exchanger tubes The tube plate supporting the heat exchanger tubes is made of titanium material, and each of the water chambers and the piping devices connected to the water chambers are made of a metal material that is electrically less noble than titanium material. In the heat exchanger, the area is covered with a relatively robust insulating material so that electrical insulation is suitably maintained over the entire area within each water chamber and a certain area connected to the water chamber in each piping device. , a reference electrode is provided near the bottom of the tube plate in each of the water chambers and near the boundary of the area covered by the insulating material in each of the piping devices, and the anticorrosion potential at these points is maintained at a predetermined value. A cathodic protection device for an all-titanium heat exchanger, characterized in that an external power supply electrode is provided at a certain distance from each of the water chambers.
(4)外部電源電極の設置場所が各水室の下部から約4
.8m離れた配管装置内に設けられていることを特徴と
する請求項3記載の全チタン熱交換器の電気防食装置。
(4) The installation location of the external power supply electrode is approximately 4 from the bottom of each water chamber.
.. 4. The cathodic protection device for an all-titanium heat exchanger according to claim 3, wherein the device is installed in a piping system 8 meters apart.
JP63090221A 1988-01-14 1988-04-14 Method and apparatus for cathodic protection of all titanium heat exchanger Expired - Fee Related JPH076073B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63090221A JPH076073B2 (en) 1988-04-14 1988-04-14 Method and apparatus for cathodic protection of all titanium heat exchanger
DE8989100352T DE68901269D1 (en) 1988-01-14 1989-01-10 EQUIPMENT FOR CATHODICAL PROTECTION IN CIRCUIT SYSTEMS OF CORROSIVE LIQUIDS.
EP89100352A EP0324440B1 (en) 1988-01-14 1989-01-10 Cathodic protection apparatus in systems for the circulation of corrosive liquids
KR1019890000359A KR920004508B1 (en) 1988-01-14 1989-01-14 Apparatus and method for electrical anti-corrosion of total titanium heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090221A JPH076073B2 (en) 1988-04-14 1988-04-14 Method and apparatus for cathodic protection of all titanium heat exchanger

Publications (2)

Publication Number Publication Date
JPH01263285A true JPH01263285A (en) 1989-10-19
JPH076073B2 JPH076073B2 (en) 1995-01-25

Family

ID=13992431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090221A Expired - Fee Related JPH076073B2 (en) 1988-01-14 1988-04-14 Method and apparatus for cathodic protection of all titanium heat exchanger

Country Status (1)

Country Link
JP (1) JPH076073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873482A (en) * 2018-08-31 2020-03-10 临沂市云旭新能源科技有限公司 Seawater source heat pump condenser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435141A (en) * 1977-08-25 1979-03-15 Kobe Steel Ltd Crevice corrosion preventing method for chemical apparatus made of titanium
JPS5521832A (en) * 1978-07-31 1980-02-16 Matsushita Electronics Corp Electron gun for color picture tube
JPS592113U (en) * 1982-06-29 1984-01-09 パイオニア株式会社 coil
JPS60128196U (en) * 1984-02-08 1985-08-28 三菱重工業株式会社 heat exchange equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435141A (en) * 1977-08-25 1979-03-15 Kobe Steel Ltd Crevice corrosion preventing method for chemical apparatus made of titanium
JPS5521832A (en) * 1978-07-31 1980-02-16 Matsushita Electronics Corp Electron gun for color picture tube
JPS592113U (en) * 1982-06-29 1984-01-09 パイオニア株式会社 coil
JPS60128196U (en) * 1984-02-08 1985-08-28 三菱重工業株式会社 heat exchange equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873482A (en) * 2018-08-31 2020-03-10 临沂市云旭新能源科技有限公司 Seawater source heat pump condenser

Also Published As

Publication number Publication date
JPH076073B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
Zhang Galvanic corrosion
US7310877B2 (en) Method of producing sensors for monitoring corrosion of heat-exchanger tubes
SE464138B (en) PROCEDURES FOR CORROSION PROTECTION OF A STEERING PIPE
JPH01263285A (en) Method and device for electrolytically protecting all-titanium heat exchanger
EP0324440B1 (en) Cathodic protection apparatus in systems for the circulation of corrosive liquids
WO1986001837A1 (en) Corrosion protection for heat exchangers
JPH0261079A (en) Electrolytic protection device for full-titanium heat exchanger
JP2941543B2 (en) Cathodic protection of heat exchanger
JPH11270996A (en) Lng vaporizer
Sowmya et al. A review on corrosion of steel structures
JP4620409B2 (en) Anti-corrosion device for small-diameter piping system valve or pump inner surface
Brouwer Corrosion Experiences with Dissimilar Metals
Brouwer CORROSION—Corrosion with Dissimilar Metals
JP3011531B2 (en) Cathodic protection of heat exchanger
JPS6350620Y2 (en)
JPH059738B2 (en)
JPH0293085A (en) Electric corrosion protection device for heat exchanger
JPH01111888A (en) Corrosion preventing device for ancillary apparatus of heat exchanger
Lehmann Control of Corrosion in Water Systems
Cotton Practical Use of Anodic Passivation for the Protection of Chel11Ical Plant
JP4382247B2 (en) Jumping current reduction method, pipe connecting structure, and piping equipment including the same
Cooney et al. Forms of Corrosion
CN1014806B (en) Apparatus and method for electrical anti-corrosion of total-titanium heat-exchanger
JP2004339782A (en) Anti-fouling device of structure
JP2001304486A (en) Jumping current reducing method, pipe connecting member, and piping facility with the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees