JPH07110763B2 - Boron Nitride Manufacturing Method - Google Patents

Boron Nitride Manufacturing Method

Info

Publication number
JPH07110763B2
JPH07110763B2 JP17475187A JP17475187A JPH07110763B2 JP H07110763 B2 JPH07110763 B2 JP H07110763B2 JP 17475187 A JP17475187 A JP 17475187A JP 17475187 A JP17475187 A JP 17475187A JP H07110763 B2 JPH07110763 B2 JP H07110763B2
Authority
JP
Japan
Prior art keywords
container
gas
raw material
boron nitride
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17475187A
Other languages
Japanese (ja)
Other versions
JPS6418907A (en
Inventor
信彦 藤枝
宗昭 金丸
弘 福井
一清 三浦
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP17475187A priority Critical patent/JPH07110763B2/en
Publication of JPS6418907A publication Critical patent/JPS6418907A/en
Publication of JPH07110763B2 publication Critical patent/JPH07110763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ホウ素の製造方法に関する。更に詳しく
は、ホウ酸類、無水ホウ酸、ホウ酸塩類と、尿素、メラ
ミンなどのNH2基を有する有機化合物とを加熱により反
応させて窒化ホウ素を製造するに際し、不活性ガスまた
は還元性ガスを流通させることなく加熱する、新規な窒
化ホウ素の製造方法に関する。
The present invention relates to a method for producing boron nitride. More specifically, boric acid, boric anhydride, borate, and urea, an organic compound having an NH 2 group such as melamine are reacted by heating to produce boron nitride, an inert gas or reducing gas The present invention relates to a novel method for producing boron nitride, which is heated without flowing.

窒化ホウ素は耐熱性、化学的安定性、潤滑特性に優れ、
更に中性子吸収作用も有するので、耐熱耐食性材料等の
各種高温構造材料、電気絶縁材、電気回路部品、高温用
潤滑剤、離型剤、中性子遮蔽材のフィラー等多くの用途
があり、今後更に種々の用途への発展が期待される材料
である。
Boron nitride has excellent heat resistance, chemical stability, and lubricating properties,
Furthermore, since it also has a neutron absorbing effect, it has many uses such as various high temperature structural materials such as heat and corrosion resistant materials, electrical insulating materials, electric circuit parts, high temperature lubricants, release agents, neutron shielding material fillers, etc. It is a material that is expected to develop into other uses.

〔従来の技術〕[Conventional technology]

窒化ホウ素は工業的には(1)ホウ酸、無水ホウ酸、あ
るいはホウ砂、ホウ酸アンモニウム等のホウ酸塩類等
を、アンモニアガスまたは窒素ガス雰囲気中で加熱する
ことによりホウ素を窒化させるか、(2)あるいは、こ
れらのホウ素化合物とメラミン、尿素、グアニジン等の
含窒素化合物とを混合した後、この混合物をアンモニ
ア、窒素、アルゴン、ヘリウム等の還元性ガスまたは不
活性ないし非酸化性ガス雰囲気中で加熱することによ
り、ホウ酸を窒化させる方法で製造されている(特開昭
47−27200号、特開昭60−151202号、特開昭60−155507
号、特開昭61−63505号、特開昭61−191505号、特開昭6
1−286207号、特開昭61−295211号、特開昭62−59506号
等)。
Boron nitride is industrially (1) nitriding boron by heating boric acid, boric anhydride, borate such as borax, ammonium borate, etc. in an ammonia gas or nitrogen gas atmosphere, (2) Alternatively, these boron compounds are mixed with a nitrogen-containing compound such as melamine, urea or guanidine, and the mixture is mixed with a reducing gas such as ammonia, nitrogen, argon or helium or an inert or non-oxidizing gas atmosphere. It is produced by a method of nitriding boric acid by heating in an atmosphere (Japanese Patent Application Laid-Open No. S60-18753).
47-27200, JP-A-60-151202, JP-A-60-155507
JP-A-61-63505, JP-A-61-191505, JP-A-6
1-286207, JP-A-61-295211, JP-A-62-59506, etc.).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の如く、従来の窒化ホウ素の工業的製造方法は、い
ずれも上記の通り還元性ガスまたは不活性ないし非酸化
性ガスを流通させて、その雰囲気中でホウ素化合物また
はホウ素化合物と含窒素化合物を加熱する方法で製造さ
れている。そして、加熱手段としては一般に炉が用いら
れており、炉内を上記雰囲気に保つ必要上、炉の加熱は
電気的なヒーター等で外部から加熱する方法が採用され
ている。
As described above, in the conventional industrial production method of boron nitride, a reducing gas or an inert or non-oxidizing gas is circulated as described above, and a boron compound or a boron compound and a nitrogen-containing compound are introduced in the atmosphere. It is manufactured by heating. A furnace is generally used as the heating means, and in order to maintain the inside of the furnace in the above atmosphere, a method of heating the furnace from the outside with an electric heater or the like is adopted.

従って、上記加熱炉は外部から空気の混入を防止する必
要上気密性が要求され、加熱炉の構造が複雑となるとい
う問題がある。これは加熱炉が大形化するに従い更に大
きな問題となる。また、加熱炉はヒーター等で外部から
加熱する方法が多用されるので、熱効率が悪いという大
きな問題がある。
Therefore, the heating furnace is required to be airtight in order to prevent air from being mixed in from the outside, which causes a problem that the structure of the heating furnace becomes complicated. This becomes an even bigger problem as the heating furnace becomes larger. Further, since a heating furnace is often used for heating from the outside with a heater or the like, there is a big problem that the thermal efficiency is low.

更に、前述の従来の製造方法のうち、アンモニアガスま
たは窒素ガス雰囲気中で窒化させる(1)の方法は大量
のアンモニアガスまたは窒素ガスを必要とする。(2)
の方法においては、ホウ酸等のホウ素化合物とメラミン
等の含窒素化合物の割合は通常含窒素化合物が過剰の状
態で反応させる。しかるに、この過剰の含窒素化合物は
熱分解し有害な含窒素ガスを発生するため、このガス
(排ガス)の処理を必要とする。また、この方法も
(1)の方法と同様に、還元性ガスまたは不活性ガス、
非酸化性ガスを必要とするという問題があり、特に不活
性ガスとしてアルゴンやヘリウムなどを使用する場合
は、これらのガスは高価であるので経済性を悪くする。
(1)の方法においても還元性ガスにアンモニアガスを
使用する場合は、過剰のアンモニア分は排ガス中に含有
されるので、排ガス処理しなければならないという問題
がある。
Further, among the conventional manufacturing methods described above, the method (1) of nitriding in an atmosphere of ammonia gas or nitrogen gas requires a large amount of ammonia gas or nitrogen gas. (2)
In the above method, the ratio of the boron compound such as boric acid and the nitrogen-containing compound such as melamine is usually such that the nitrogen-containing compound is excessive. However, since this excess nitrogen-containing compound is thermally decomposed to generate a harmful nitrogen-containing gas, it is necessary to treat this gas (exhaust gas). Further, this method is also similar to the method (1), that is, a reducing gas or an inert gas,
There is a problem that a non-oxidizing gas is required, and particularly when argon, helium, or the like is used as the inert gas, these gases are expensive, which makes the economy less economical.
Also in the method (1), when ammonia gas is used as the reducing gas, the excess ammonia content is contained in the exhaust gas, so that there is a problem that the exhaust gas must be treated.

これらの問題点は大量生産を採用するに従い大きくクロ
ーズアップされ、窒化ホウ素の広範な用途開発を経済的
な面で制約する。
These problems are greatly highlighted with the adoption of mass production, which economically constrains the widespread application development of boron nitride.

〔問題点を解決するための手段〕 本発明者等は、上記種々の問題点を解決し安価でかつ大
量に高純度の窒化ホウ素を製造することを目的として鋭
意検討を重ねた結果、ホウ素化合物と含窒素化合物との
混合物を耐熱性の蓋付き容器に入れ、これを加熱すれば
上記目的を達成することができ、しかも連続的に効率よ
く窒化ホウ素が製造可能であることを見い出し、本発明
を完成するに至ったものである。
[Means for Solving Problems] The inventors of the present invention have diligently studied for the purpose of producing the high-purity boron nitride inexpensively and in large quantities to solve the above-mentioned various problems, resulting in a boron compound. It was found that the above object can be achieved by placing a mixture of a nitrogen-containing compound and a nitrogen-containing compound in a heat-resistant container with a lid and heating the container, and further, it is possible to continuously and efficiently produce boron nitride. Has been completed.

すなわち、本発明はホウ酸類、無水ホウ酸及びホウ酸塩
類から選ばれた1種以上のホウ素化合物とNH2基を有す
る有機化合物との混合物を耐熱性の蓋付き容器に入れ、
不活性ガスまたは還元性ガスを流通させることなく該蓋
付き容器を加熱することを特徴とする窒化ホウ素の製造
法を提供するものであって、特には耐熱性の蓋付き容器
の周囲が酸化性ガス雰囲気である製造法である。
That is, the present invention puts a mixture of one or more boron compounds selected from boric acids, boric anhydride and borate salts and an organic compound having an NH 2 group in a heat-resistant lidded container,
Provided is a method for producing boron nitride, which comprises heating the lidded container without circulating an inert gas or a reducing gas, and particularly, the periphery of the heat-resistant lidded container is oxidizable. The manufacturing method is a gas atmosphere.

本発明を更に詳細に説明する。The present invention will be described in more detail.

本発明において原料として使用するホウ素化合物として
は、ホウ酸類、無水ホウ酸(B2O3)及びホウ酸塩類(以
下これらの化合物を総称して原料ホウ素化合物と記
す。)から選ばれる。この内ホウ酸類としてはオルソホ
ウ酸、メタホウ酸、テトラホウ酸等を挙げることができ
る。またホウ酸塩類としては、これらホウ酸類のアンモ
ニウム塩、ナトリウム塩、カリウム塩、マグネシウム
塩、カルシウム塩等が挙げられる。これらのホウ酸塩類
は結晶水の有無によって無水塩と含水塩とがある。本発
明においてはその何れも使用可能ではあるものの、含水
塩を使用した場合は、蓋付き容器内でのNH2基を有する
有機化合物との加熱反応時に内容物が発泡しやすいの
で、無水塩の方が好ましい。
The boron compound used as the raw material in the present invention is selected from boric acid, boric anhydride (B 2 O 3 ) and borate salts (these compounds are collectively referred to as the raw material boron compound). Among these, orthoboric acid, metaboric acid, tetraboric acid, etc. can be mentioned as boric acid. In addition, examples of the borate include ammonium salts, sodium salts, potassium salts, magnesium salts, calcium salts of these boric acids. These borates include an anhydrous salt and a hydrated salt depending on the presence or absence of crystal water. Although any of them can be used in the present invention, when a hydrated salt is used, the content easily foams during a heating reaction with an organic compound having an NH 2 group in a container with a lid, so that an anhydrous salt is used. Is preferred.

尚、これらの原料ホウ素化合物の品質は、特に高純度で
ある必要はなく、通常市販の工業薬品が好適に使用され
るが、NH2基を有する含窒素化合物と混合された際の均
一混合性を良好ならしめるため、粉末状のものが好まし
いが特に微細化する必要もない。
Incidentally, the quality of these raw material boron compounds does not need to be particularly high purity, and usually commercially available industrial chemicals are preferably used, but uniform mixing properties when mixed with a nitrogen-containing compound having an NH 2 group In order to obtain good quality, powdery materials are preferable, but there is no particular need to make them finer.

NH2基を有する含窒素化合物(以下原料含窒素化合物と
略記する。)としては、尿素、メラミン、メロン、メレ
ム、メラム、ジシアンジアミド、アンメリド、アセトグ
アナミン、塩酸グアニジン、塩化メラミン等が挙げられ
る。これらの原料含窒素化合物の品質も、原料ホウ素化
合物の場合と同様、粉末状の工業薬品が好適に使用され
る。
Examples of the nitrogen-containing compound having an NH 2 group (hereinafter abbreviated as raw material nitrogen-containing compound) include urea, melamine, melon, melem, melam, dicyandiamide, ammelide, acetoguanamine, guanidine hydrochloride, melamine chloride and the like. As for the quality of these raw material nitrogen-containing compounds, powdery industrial chemicals are preferably used as in the case of the raw material boron compounds.

本発明では、原料ホウ素化合物と原料含窒素化合物とを
混合した後、この混合物を耐熱性の蓋付き容器に入れ、
これを加熱し還元反応により原料ホウ素化合物中のホウ
素原子を窒化させて窒化ホウ素を生成させるものであ
る。
In the present invention, after the raw material boron compound and the raw material nitrogen-containing compound are mixed, the mixture is placed in a heat-resistant container with a lid,
This is heated to nitrid the boron atom in the raw material boron compound by a reduction reaction to generate boron nitride.

しかして、窒化ホウ素(BN)はその分子式が示す通りN/
B原子比は1.0である。従って、上記原料ホウ素化合物と
原料含窒素化合物の混合割合は、理論上はN/B原子比と
して1.0で良いはずであるが、本発明においてはN/B原子
比は1.0以下でも窒化ホウ素を得ることはできる。しか
しこの場合は窒化ホウ素の収率が低下するので好ましく
ない。
Then, boron nitride (BN) is N / N as shown by its molecular formula.
The B atomic ratio is 1.0. Therefore, the mixing ratio of the raw material boron compound and the raw material nitrogen-containing compound should theoretically be 1.0 as the N / B atomic ratio, but in the present invention, the N / B atomic ratio is 1.0 or less to obtain boron nitride. You can However, in this case, the yield of boron nitride decreases, which is not preferable.

本発明での窒化ホウ素の製造方法は、上記の通り原料含
窒素化合物を使用し原料ホウ素化合物中のホウ素原子を
還元反応により窒化させる方法であるので、原料ホウ素
化合物と原料含窒素化合物の混合割合は、通常窒素過
剰、すなわちN/B原子比として1.0以上で実施される。し
かし、必要以上の窒素過剰はその分原料含窒素化合物の
損失を招くのみであるので、従って、本発明ではN/B原
子比は通常1.0〜4.0、より好ましくは1.5〜3.0で実施さ
れる。
The method for producing boron nitride in the present invention is a method of nitriding the boron atoms in the raw material boron compound by a reduction reaction using the raw material nitrogen-containing compound as described above, so that the mixing ratio of the raw material boron compound and the raw material nitrogen-containing compound is Is usually performed in excess of nitrogen, that is, at an N / B atomic ratio of 1.0 or more. However, excessive nitrogen excess only causes the loss of the raw material nitrogen-containing compound, and therefore, in the present invention, the N / B atomic ratio is usually 1.0 to 4.0, more preferably 1.5 to 3.0.

本発明では前述の通り耐熱性の蓋付き容器を必要とする
が、本発明における上記還元反応は600〜1600℃で実施
されるので、該蓋付き容器はこの温度に耐えうる材質が
要求され、かつ耐食性のあるものであれば、材質に特に
制限はない。かかる性能を備えた蓋付き容器としては、
アルミナ、チタニア、ジルコニア、シリカ、マグネシ
ア、カルシア及びシリカ、アルミナを主成分とするコー
ジライト、ムライト等の各種セラミックス焼結体が好適
であり、耐熱性ステンレス鋼も使用可能である。
The present invention requires a heat-resistant lidded container as described above, but since the reduction reaction in the present invention is carried out at 600 to 1600 ° C, the lidded container is required to have a material that can withstand this temperature, The material is not particularly limited as long as it has corrosion resistance. As a container with a lid having such performance,
Various ceramics sintered bodies such as alumina, titania, zirconia, silica, magnesia, calcia and silica, cordierite and mullite containing alumina as a main component are suitable, and heat resistant stainless steel can also be used.

本発明においては、原料ホウ素化合物と原料含窒素化合
物の混合物を加熱すると、窒化ホウ素を生成すると共に
各種ガスを発生する。例えば、ホウ酸アンモニウムと尿
素の混合物を加熱した場合、下記(1)式が示す如くア
ンモニア、炭酸ガス、水蒸気を発生する。
In the present invention, when a mixture of the raw material boron compound and the raw material nitrogen-containing compound is heated, boron nitride is generated and various gases are generated. For example, when a mixture of ammonium borate and urea is heated, ammonia, carbon dioxide gas, and water vapor are generated as shown in the following formula (1).

(NH42B4O7+2(NH22CO →4BN+2NH3+2CO2+5H2O ……(1) また、原料含窒素化合物が過剰の場合は、過剰の含窒素
化合物も熱分解して各種ガスを発生する。
(NH 4) The 2 B 4 O 7 +2 (NH 2) 2 CO → 4BN + 2NH 3 + 2CO 2 + 5H 2 O ...... (1), if the raw material nitrogen-containing compound is excessive, also pyrolysis excess nitrogen-containing compound To generate various gases.

しかして、本発明では原料ホウ素化合物と原料含窒素化
合物との混合物は蓋付き容器内で加熱されるので、この
加熱によって発生したガスは該蓋付き容器内をさほど加
圧にすることなく自動的に該蓋付き容器外に流出し、か
つ後述するプロパンなど燃焼ガスが該蓋付き容器内に流
出しにくいような構造(多少の通気性は可)の容器でな
ければならない。
In the present invention, however, since the mixture of the raw material boron compound and the raw material nitrogen-containing compound is heated in the lidded container, the gas generated by this heating is automatically generated without much pressurization in the lidded container. In addition, the container must be structured so that combustion gas such as propane, which will be described later, does not easily flow out into the container with a lid (some ventilation is possible).

従って、該蓋付き容器にあっては蓋は容器本体にのせ置
く形状のものが好ましく、蓋はその自重により容器を密
閉し、しかも容器内に発生したガスは容器内をさほど加
圧にすることなく、その圧力により蓋を僅かに上方に持
ち上げそのガスが容器外へ排出される程度の重量である
必要がある。また、容器上部の蓋と接する面及び蓋の容
器と接する面は、蓋を容器にのせ置いた場合に密接する
ような面であることが望ましい。更に、容器の形状は底
付きの円筒形とか重箱の如き方形等任意の形状から選択
される。しかし、該容器は加熱・冷却を繰返す状態で使
用されるので、この加熱・冷却による歪の発生がもたら
す容器の破損を極力防止するために、容器の形状は円筒
形が好ましい。かかる形状の容器としては例えば第1図
〜第4図に示す形状のものが挙げられるが、必ずしもこ
れらに限定されるものではない。
Therefore, in the case of the container with the lid, it is preferable that the lid is placed on the container body, the lid seals the container by its own weight, and the gas generated in the container is pressurized to a great extent in the container. Instead, the pressure needs to be so high that the lid is lifted slightly upward and the gas is discharged to the outside of the container. Further, it is desirable that the surface of the upper part of the container which comes into contact with the lid and the surface of the lid which comes into contact with the container come into close contact with each other when the lid is placed on the container. Further, the shape of the container is selected from any shape such as a cylindrical shape with a bottom or a square shape such as a heavy box. However, since the container is used in a state where heating and cooling are repeated, it is preferable that the container has a cylindrical shape in order to prevent the damage of the container caused by the distortion due to the heating and cooling as much as possible. Examples of the container having such a shape include those having the shapes shown in FIGS. 1 to 4, but are not necessarily limited thereto.

尚、第4図に示すような形状のものが前記容器の歪によ
る破損を更に防止できるので好ましい。
The shape shown in FIG. 4 is preferable because it can further prevent damage due to strain of the container.

本発明は、不活性ガスまたは還元性ガスを流通させるこ
となく、蓋付き容器を加熱することによって窒化ホウ素
を製造する方法であり、好ましくは蓋付き容器の周囲は
酸化性ガス雰囲気である。かかる加熱方法は、例えば炉
を使用し、この炉内に均一混合された原料ホウ素化合物
と原料含窒素化合物の入った耐熱性の蓋付き容器を挿入
した状態で、炉内に熱風を送入することが簡単に実施す
ることができる。かかる熱風は、プロパン、ブタン、灯
油、重油等の燃料を空気で燃焼させることで簡単に得る
ことができる。更に、この燃焼を空気過剰で行なえば、
蓋付き容器の周囲は自ずと酸化性ガス雰囲気とすること
ができる。本発明はこのような方法で蓋付き容器を加熱
することができるので、加熱装置は極めて簡単でかつ大
形化が容易であり、しかも燃料が低廉なためエネルギー
コストが低く、かつ熱効率も良い。
The present invention is a method for producing boron nitride by heating a lidded container without circulating an inert gas or a reducing gas, and preferably, the periphery of the lidded container is an oxidizing gas atmosphere. Such a heating method uses, for example, a furnace, and in a state where a heat-resistant container with a lid containing the uniformly mixed raw material boron compound and raw material nitrogen-containing compound is inserted into the furnace, hot air is fed into the furnace. It can be easily implemented. Such hot air can be easily obtained by burning a fuel such as propane, butane, kerosene, or heavy oil with air. Furthermore, if this combustion is performed with excess air,
The surrounding of the lidded container can be naturally made into an oxidizing gas atmosphere. According to the present invention, since the lidded container can be heated by such a method, the heating device is extremely simple and easy to be upsized, and the fuel cost is low, so that the energy cost is low and the thermal efficiency is good.

更に加熱炉が水平式のトンネル炉等の形式のものであれ
ば、蓋付き容器は炉内を水平に移動するので連続的に窒
化ホウ素を製造することが可能である。
Further, if the heating furnace is of a type such as a horizontal tunnel furnace, the container with a lid moves horizontally in the furnace, so that it is possible to continuously produce boron nitride.

そして上記記載の通り蓋付き容器の周囲は容易に酸化性
ガス雰囲気とすることができるので、従って、原料ホウ
素化合物と原料含窒素化合物との反応及び、過剰の原料
含窒素化合物の分解によって生成した有害ガスは、蓋付
き容器外に排出され燃焼無害化されるので排ガスの処理
も必要としない。
And as described above, since the surrounding of the lidded container can be easily made into an oxidizing gas atmosphere, therefore, it is generated by the reaction of the raw material boron compound and the raw material nitrogen-containing compound and the decomposition of the excess raw material nitrogen-containing compound. Hazardous gas is discharged to the outside of the container with the lid and burned to be harmless, so that it is not necessary to treat the exhaust gas.

本発明では、原料ホウ素化合物と原料含窒素化合物との
混合物の加熱は600〜1600℃、好ましくは800〜1300℃の
温度で実施される。加熱温度が600℃未満では窒化ホウ
素の生成反応が遅く不都合であり、1600℃を越える温度
では単なる熱エネルギの損失であるばかりでなく、装置
の耐熱性も配慮する必要がある。
In the present invention, the mixture of the raw material boron compound and the raw material nitrogen-containing compound is heated at a temperature of 600 to 1600 ° C, preferably 800 to 1300 ° C. If the heating temperature is lower than 600 ° C, the boron nitride formation reaction is slow, which is inconvenient. If the heating temperature exceeds 1600 ° C, not only the loss of heat energy but also the heat resistance of the device must be considered.

上記加熱において、その加熱時間は容器の形状、容積等
によって異なるが、通常1〜10時間が適当である。
In the above heating, the heating time varies depending on the shape, volume, etc. of the container, but is usually 1 to 10 hours.

かくして得られた窒化ホウ素は、冷却後例えば特開昭61
−63505号公報記載の方法の如く、希塩酸、希硫酸等の
希鉱酸で洗浄後水洗することにより、容易に高純度とす
ることができるのである。
The boron nitride thus obtained is, for example, after cooling, as disclosed in JP-A-61-61.
High purity can be easily obtained by washing with a dilute mineral acid such as dilute hydrochloric acid or dilute sulfuric acid and then washing with water as in the method described in JP-A-63505.

〔作用〕[Action]

本発明の方法に従えば、原料ホウ素化合物と原料含窒素
化合物との混合物の加熱は、従来公知の方法の如く還元
性ガスまたは不活性ガスないし非酸化性ガスの雰囲気下
で行なう必要はなく、更に従来公知の方法では不可能で
あった、酸化性ガス雰囲気下でも好適に実施することが
できる。
According to the method of the present invention, the heating of the mixture of the raw material boron compound and the raw material nitrogen-containing compound does not need to be performed under an atmosphere of a reducing gas or an inert gas or a non-oxidizing gas as in a conventionally known method, Further, it can be suitably carried out even in an oxidizing gas atmosphere, which was not possible by the conventionally known method.

その理由は、本発明では原料ホウ素化合物と原料含窒素
化合物の混合物は蓋付き容器内で加熱されるが、該容器
内はこの加熱によって発生する分解ガスで充満される。
そしてこの分解ガスは非酸化性ガスまたは還元性ガスで
あるので、従って本発明では上記加熱時に不活性ガスま
たは還元性ガスないし非酸化性ガスを流通させる必要は
なく、該蓋付き容器の周囲も酸化性ガス雰囲気とするこ
とが可能となるのである。
The reason is that, in the present invention, the mixture of the raw material boron compound and the raw material nitrogen-containing compound is heated in the container with the lid, but the inside of the container is filled with the decomposition gas generated by this heating.
Since this decomposed gas is a non-oxidizing gas or a reducing gas, therefore, in the present invention, it is not necessary to circulate an inert gas or a reducing gas or a non-oxidizing gas during the heating, and the surroundings of the lidded container are also It is possible to make an oxidizing gas atmosphere.

〔実施例〕〔Example〕

以下実施例により本発明を更に具体的に説明する。尚、
実施例において部及び%は特記する以外は重量基準を表
わす。
The present invention will be described in more detail with reference to the following examples. still,
In the examples, parts and% are based on weight, unless otherwise specified.

実施例1 原料ホウ素化合物として粉末状無水ホウ砂201gと原料含
窒素化合物として粉末状尿素360gをよく混合し(N/B原
子比=3.0)、この混合物を第1図に示す形状の内容積
1のアルミナ質ルツボに入れ、このルツボをプロパン
バーナー付き燃焼炉中に静置した。しかる後プロパンを
燃焼させ炉内を徐々に昇温後、上記ルツボを約1000℃で
4時間加熱した。加熱終了後該ルツボを放冷し粉末状の
内容物を取り出した。次にこの粉末を上水及び濃度5%
の硝酸水溶液で洗浄後、120℃で4時間乾燥して91gの粉
末を得た(ホウ素の収率95%)。
Example 1 201 g of powdered anhydrous borax as a raw material boron compound and 360 g of powdered urea as a raw material nitrogen-containing compound were mixed well (N / B atomic ratio = 3.0), and the mixture was mixed with an internal volume of 1 shown in FIG. The crucible was placed in an alumina crucible, and the crucible was allowed to stand in a combustion furnace equipped with a propane burner. Thereafter, propane was burned to gradually raise the temperature in the furnace, and then the crucible was heated at about 1000 ° C. for 4 hours. After completion of heating, the crucible was allowed to cool and the powdery contents were taken out. Next, this powder is treated with tap water and a concentration of 5%.
It was washed with an aqueous nitric acid solution and dried at 120 ° C. for 4 hours to obtain 91 g of powder (yield of boron: 95%).

この粉末をX線回折装置にて分析したところ、第5図の
如き回折線図が得られ、窒化ホウ素であることが確認さ
れた。また得られた窒化ホウ素を原子吸光分析装置で分
析した結果は、ナトリウム、鉄、シリカ、カルシウムな
どの不純物は夫々0.1%以下であり、この粉末は高純度
の窒化ホウ素であった。
When this powder was analyzed by an X-ray diffractometer, a diffraction diagram as shown in FIG. 5 was obtained, and it was confirmed that the powder was boron nitride. The obtained boron nitride was analyzed by an atomic absorption spectrometer, and impurities such as sodium, iron, silica, and calcium were 0.1% or less, respectively, and the powder was highly pure boron nitride.

尚、上記ルツボの加熱中に発生する尿素の分解ガスは、
炉内で焼却され、炉の排ガス中に有機物は全く検出され
なかった。
The decomposition gas of urea generated during heating of the crucible is
It was incinerated in the furnace and no organic matter was detected in the exhaust gas from the furnace.

実施例2 原料ホウ素化合物として粉末状の無水ホウ砂402gと原料
含窒素化合物として粉末状のメラミン504gをよく混合し
(N/B原子比=3.0)、この混合物を第2図に示す形状の
内容積2のコージライト質ルツボに入れ、このルツボ
を台車に乗せた状態で内部温度が約800℃に保持された
ブタン燃焼方式トンネルキルンに該台車を送り込み、キ
ルン内の滞留時間が約4時間になるように台車速度を制
御し、上記ルツボを加熱した。トンネルキルンから取り
出された台車上のルツボは、実施例1と同様に放冷後粉
末状の内容物を取り出し、次いでこの粉末を上水及び濃
度3%の硫酸水溶液で洗浄後、120℃で4時間乾燥して1
84gの粉末を得た(ホウ素の収率93%)。
Example 2 402 g of powdered anhydrous borax as a raw material boron compound and 504 g of powdered melamine as a raw material nitrogen-containing compound were well mixed (N / B atomic ratio = 3.0), and the mixture was shaped as shown in FIG. Put it in the cordierite crucible of product 2 and send it to a butane combustion type tunnel kiln whose internal temperature is kept at about 800 ℃ with the crucible placed on the carriage, and the residence time in the kiln is about 4 hours. The trolley speed was controlled so that the above, and the crucible was heated. The crucible on the trolley taken out from the tunnel kiln was allowed to cool and the powdery contents were taken out in the same manner as in Example 1, then the powder was washed with tap water and a 3% strength aqueous sulfuric acid solution, and then at 4 ° C at 120 ° C. Dried for 1 hour
84 g of powder was obtained (boron yield 93%).

この粉末をX線回折装置及び原子吸光分析装置で分析し
たところ、実施例1と同様、ナトリウム、鉄、シリカ、
カルシウム等の不純物は夫々0.1%以下であり、高純度
の窒化ホウ素が得られた。
When this powder was analyzed by an X-ray diffractometer and an atomic absorption spectrometer, sodium, iron, silica,
Impurities such as calcium were less than 0.1%, respectively, and high-purity boron nitride was obtained.

尚、トンネルキルンの排ガス中の有機物は全く検出され
なかった。
No organic matter was detected in the exhaust gas from the tunnel kiln.

実施例3〜15 夫々粉末状の原料ホウ素化合物と原料含窒素化合物を表
−1に示す割合で混合し、これを内容積2の第1図〜
第4図に示す形状のコージライト質のルツボに入れ、以
下実施例2と同一の方法で窒化ホウ素を得た。尚、ルツ
ボの加熱条件及び窒化ホウ素の収得量は表−1に示す通
りであった。
Examples 3 to 15 Raw material boron compounds in powder form and raw material nitrogen-containing compounds were mixed at the ratios shown in Table 1, and the mixture was mixed with the internal volume 2 shown in FIG.
It was placed in a cordierite crucible having the shape shown in FIG. 4, and boron nitride was obtained in the same manner as in Example 2 below. The heating conditions of the crucible and the amount of boron nitride obtained were as shown in Table 1.

得られた窒化ホウ素をX線回折装置及び原子吸光分析装
置で分析した結果は、何れも高純度のものであった。ま
たトンネルキルンの排ガス中には何れも有機物は全く検
出されなかった。
The results of analyzing the obtained boron nitride with an X-ray diffractometer and an atomic absorption spectrometer were all of high purity. No organic matter was detected in the exhaust gas from the tunnel kiln.

〔発明の効果〕 以上詳細に説明した如く、窒化ホウ素を製造する従来の
方法は、ホウ酸、無水ホウ酸、ホウ酸塩類またはこれら
のホウ素化合物とメラミン、尿素等の含窒素化合物を、
還元性ガスまたは不活性ガスないし非酸化性ガス雰囲気
中で加熱する方法であるのに対し、本発明の方法は原料
ホウ素化合物と原料含窒素化合物との混合物を耐熱性の
蓋付き容器に入れ、上記の如き還元性ガス等を流通させ
ることなく該蓋付き容器を加熱する方法であり、特に
は、該蓋付き容器の周囲が酸化性ガス雰囲気で実施され
る。
[Effects of the Invention] As described in detail above, the conventional method for producing boron nitride is boric acid, boric anhydride, borate compounds or a boron-containing compound and melamine, a nitrogen-containing compound such as urea,
In contrast to the method of heating in a reducing gas or an inert gas or non-oxidizing gas atmosphere, the method of the present invention puts a mixture of a raw material boron compound and a raw material nitrogen-containing compound in a heat-resistant lidded container, This is a method of heating the lidded container without circulating the reducing gas or the like as described above, and in particular, the surrounding of the lidded container is carried out in an oxidizing gas atmosphere.

従って、本発明の方法では還元性ガス等は不要であり、
このことは単にこれのみにとどまることなく、下記する
如き種々の大きな効果をもたらすものである。すなわ
ち、従来の方法では加熱炉は気密性を必要とするため複
雑な構造を必要とし、しかも加熱炉は外部から電気的な
ヒーター等で加熱する方式であるため熱効率が悪いとい
う問題があった。また、排ガスは有害な含窒素ガスを含
んでいるので、排ガス処理もしなければならないという
問題もある。
Therefore, the method of the present invention does not require reducing gas,
This is not limited to this, and brings various great effects as described below. That is, the conventional method has a problem that the heating furnace requires airtightness and thus requires a complicated structure, and the heating furnace is a method of heating with an electric heater or the like from the outside, resulting in poor thermal efficiency. Further, since the exhaust gas contains harmful nitrogen-containing gas, there is also a problem that the exhaust gas must be treated.

これに対し本発明の方法は上記の如き方法であるので、
耐熱性の蓋付き容器の加熱にはプロパン、ブタン、灯
油、重油等の安価な燃料の燃焼ガスで良く、加熱炉の構
造も簡単で大型化が容易であり、下記する連続式で生産
できる点と相まって大量生産が可能となる。また熱効率
も従来の加熱炉に比べ大幅にアップされる。しかも上記
燃料を空気過剰の状態で燃焼させれば、燃焼ガスは容易
に酸化性ガスとすることができるので、上記加熱による
反応及び過剰の含窒素化合物の熱分解によって発生する
含窒素有害ガスは、分解され無害化されるので排ガス処
理も不要である。
On the other hand, since the method of the present invention is the method as described above,
Combustion gas of inexpensive fuel such as propane, butane, kerosene, heavy oil, etc. can be used for heating the heat-resistant lidded container, and the structure of the heating furnace is simple and the size can be easily increased. Combined with this, mass production becomes possible. Also, the thermal efficiency is significantly improved compared to the conventional heating furnace. Moreover, if the fuel is burned in an air-excessive state, the combustion gas can be easily converted into an oxidizing gas. Therefore, the nitrogen-containing harmful gas generated by the reaction due to the heating and the thermal decomposition of the excess nitrogen-containing compound is Since it is decomposed and rendered harmless, no exhaust gas treatment is required.

また加熱炉は例えば水平式トンネル炉等の形式のものを
採用すれば容易に連続式とすることができ、作業効率の
大幅な向上を図ることができる。
Moreover, if a heating furnace such as a horizontal tunnel furnace is adopted, the heating furnace can be easily made continuous and the working efficiency can be greatly improved.

尚、かくして得られた窒化ホウ素は、前述の通り希鉱酸
で洗浄後水洗するという簡単な精製方法を実施すれば、
高純度の品質とすることができる。
Incidentally, the boron nitride thus obtained is subjected to a simple purification method of washing with dilute mineral acid followed by washing with water as described above,
It can be of high purity quality.

本発明は以上記載の通り、従来公知の方法に比べ種々の
利点があり、その結果安価でかつ大量に高純度の窒化ホ
ウ素の製造を可能としたもので、その経済的効果は極め
て大なるものである。
INDUSTRIAL APPLICABILITY As described above, the present invention has various advantages as compared with the conventionally known methods, and as a result, it is possible to inexpensively produce a large amount of high-purity boron nitride, and the economical effect thereof is extremely large. Is.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図は、本発明の実施に使用する耐熱性の蓋
付き容器の形状を示す各縦断面図であり、第5図は実施
例1で得られた窒化ホウ素のX線回折線図を示す。 図において、 1……容器、2……蓋 を示す。
1 to 4 are vertical cross-sectional views showing the shape of a heat-resistant container with a lid used for carrying out the present invention, and FIG. 5 is an X-ray diffraction of the boron nitride obtained in Example 1. A diagram is shown. In the figure, 1 ... container, 2 ... lid are shown.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ホウ酸類、無水ホウ酸及びホウ酸塩類から
選ばれた1種以上のホウ素化合物とNH2基を有する有機
化合物との混合物を耐熱性の蓋付き容器に入れ、不活性
ガスまたは還元性ガスを流通させることなく該蓋付き容
器を加熱することを特徴とする窒化ホウ素の製造法。
1. A mixture of at least one boron compound selected from boric acid, boric anhydride, and borate and an organic compound having an NH 2 group is placed in a heat-resistant lidded container, and an inert gas or A method for producing boron nitride, which comprises heating the container with a lid without circulating a reducing gas.
【請求項2】耐熱性の蓋付き容器の周囲が酸化性ガス雰
囲気である特許請求の範囲第1項に記載の方法。
2. The method according to claim 1, wherein the heat-resistant container with a lid is surrounded by an oxidizing gas atmosphere.
【請求項3】ホウ酸塩がアンモニウム塩、ナトリウム
塩、カリウム塩、マグネシウム塩、カルシウム塩の何れ
か一種以上である特許請求の範囲第1項ないし第2項に
記載の方法。
3. The method according to claim 1 or 2, wherein the borate is one or more of ammonium salt, sodium salt, potassium salt, magnesium salt and calcium salt.
【請求項4】NH2基を有する有機化合物が尿素、メラミ
ン、メロン、メレム、ジシアンジアミド、グアニジン及
びその塩類、アンメリド、アセトグアナミン、塩酸メラ
ミンの何れか一種以上である特許請求の範囲第1項ない
し第3項に記載の方法。
4. The organic compound having an NH 2 group is any one or more of urea, melamine, melon, melem, dicyandiamide, guanidine and salts thereof, ammelide, acetoguanamine, and melamine hydrochloride. The method according to item 3.
JP17475187A 1987-07-15 1987-07-15 Boron Nitride Manufacturing Method Expired - Lifetime JPH07110763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17475187A JPH07110763B2 (en) 1987-07-15 1987-07-15 Boron Nitride Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17475187A JPH07110763B2 (en) 1987-07-15 1987-07-15 Boron Nitride Manufacturing Method

Publications (2)

Publication Number Publication Date
JPS6418907A JPS6418907A (en) 1989-01-23
JPH07110763B2 true JPH07110763B2 (en) 1995-11-29

Family

ID=15984046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17475187A Expired - Lifetime JPH07110763B2 (en) 1987-07-15 1987-07-15 Boron Nitride Manufacturing Method

Country Status (1)

Country Link
JP (1) JPH07110763B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914151A (en) * 2012-11-20 2013-02-06 昆山市大金机械设备厂 Molten metal retainer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528669A (en) * 2014-12-03 2015-04-22 营口天元化工研究所股份有限公司 Synthesis method for hexagonal boron nitride
CN110255511B (en) * 2019-07-29 2023-09-26 上海科技大学 Preparation method of nitrogen-containing compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914151A (en) * 2012-11-20 2013-02-06 昆山市大金机械设备厂 Molten metal retainer

Also Published As

Publication number Publication date
JPS6418907A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
Selvaduray et al. Aluminium nitride: review of synthesis methods
Lee et al. Combustion synthesis of Si3N4 powder
Cano et al. Self-propagating high temperature-synthesis of Si3N4: role of ammonium salt addition
KR900700184A (en) Apparatus and method for producing uniform and fine boron-containing ceramic powder
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
CN108529576B (en) Silicon nitride and preparation method thereof
Braaten et al. The possible reduction of alumina to aluminum using hydrogen
US8192522B2 (en) Chemical process for generating energy
JPH07110763B2 (en) Boron Nitride Manufacturing Method
CN113353898A (en) Microwave molten salt method for preparing hexagonal boron nitride
US3023115A (en) Refractory material
Yu Carbothermic synthesis of titanium diboride: upgrade
CN1696076A (en) Method for synthesizing alpha-phase silicon nitride powder by temperature-controlled combustion
JP3164621B2 (en) Manufacturing method of boron nitride
US3316062A (en) Method of purifying titanium diboride
Chen et al. Cost effective combustion synthesis of silicon nitride
Yang et al. Effects of diazenedicarboxamide additive on the content of α-Si3N4 synthesized by combustion method
US5053365A (en) Method for the low temperature preparation of amorphous boron nitride using alkali metal and haloborazines
JP2635712B2 (en) Method for producing low crystalline boron nitride powder
Jung Use of melamine in the nitridation of aluminum oxide to aluminum nitride
JPH01203205A (en) Production of boron nitride powder
Ahn et al. Synthesis of AlN particles by chemical route for thermal interface material
Crosbie Preparation of silicon nitride powders
JPH05170407A (en) Production of boron nitride
Khrushchev Kinetics and mechanism of reaction between silicon carbide and silica

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20071129