JPH07110459A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH07110459A
JPH07110459A JP27892693A JP27892693A JPH07110459A JP H07110459 A JPH07110459 A JP H07110459A JP 27892693 A JP27892693 A JP 27892693A JP 27892693 A JP27892693 A JP 27892693A JP H07110459 A JPH07110459 A JP H07110459A
Authority
JP
Japan
Prior art keywords
light
optical fiber
plate
waveguide
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27892693A
Other languages
Japanese (ja)
Other versions
JP3492736B2 (en
Inventor
Shinji Iwatsuka
信治 岩塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP27892693A priority Critical patent/JP3492736B2/en
Priority to US08/320,816 priority patent/US5499307A/en
Publication of JPH07110459A publication Critical patent/JPH07110459A/en
Application granted granted Critical
Publication of JP3492736B2 publication Critical patent/JP3492736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable easy assembly with low loss and less polarization dispersion without adjustment by inserting an element combined with a first double refractive plate, half-wave length plate and Faraday rotor and a second double refractive plate into groove parts at three points. CONSTITUTION:Optical fibers 1, 2 arranged in parallel in proximity to each other are cut at separate three points and are thereby formed with the groove parts. The first double refractive plate 5, the half-wave length plate 6 and the Faraday rotor 7 of a rotating angle 45 deg. in tight contact therewith and the second double refractive plate 8 are inserted into these groove parts. The double refractive plates 5, 8 are so constituted that the ordinary light of the incident light thereon advances rectilinearly and that the extraordinary light is axially misaligned and is emitted to another optical fiber. The half-wave length plate and the Faraday rotor 7 are adhered and integrated and are so constituted that the plane of polarization rotates 90 deg. with respect to the forward direction light transmitted as the ordinary light or extraordinary light through the double refractive plate 5 and that the plane of polarization does not rotate with respect to the backward direction light transmitted as the ordinary light or extraordinary light through the double refractive plate 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光アイソレータに関し、
特に複屈折結晶による偏光分離素子を利用した偏波無依
存型の光アイソレータに関する。
BACKGROUND OF THE INVENTION The present invention relates to an optical isolator,
In particular, the present invention relates to a polarization-independent optical isolator using a polarization splitting element made of a birefringent crystal.

【0002】[0002]

【従来の技術】光アイソレータは、通常、偏光子、レン
ズ、ファラデー回転子、複屈折素子、1/2波長板等の
個々のバルクの光学素子を組み合わせて構成されるた
め、部品点数が多く且つ大型となると共に、素子の相互
関係の調整が複雑になるなどの問題がある。これに対し
て導波路または光ファイバに直接光アイソレータを組み
込んで光アイソレータを小型化することが提案されてい
る。
2. Description of the Related Art An optical isolator usually has a large number of parts because it is constructed by combining individual bulk optical elements such as a polarizer, a lens, a Faraday rotator, a birefringent element, and a half-wave plate. There is a problem that the device becomes large and the adjustment of the mutual relation of the elements becomes complicated. On the other hand, it has been proposed to directly incorporate an optical isolator into a waveguide or an optical fiber to reduce the size of the optical isolator.

【0003】特公平3−22962号公報には、1本の
光ファイバを一か所以上で切断してそこに誘電体金属多
層膜偏光子、ファラデー回転子板等を直接挿入一体化す
ることによりファイバ一体型の光アイソレータが記載さ
れている。本発明でもこの技術を利用するが、同公報の
ものは偏波依存性である。
In Japanese Patent Publication No. 3-22962, one optical fiber is cut at one or more places, and a dielectric metal multilayer film polarizer, a Faraday rotator plate, etc. are directly inserted and integrated therein. A fiber integrated optical isolator is described. The present invention also utilizes this technique, but the one disclosed in the publication is polarization-dependent.

【0004】特開平3−171103、特開平3−19
6115号等には、光導波路に偏光分離素子を挿入して
入射光の偏光を2分離して2本の導波路に導き、これら
2本の導波路に挿入されたファアラデー回転子及び1/
2波長板に導き、次いで合成用の偏光分離素子により偏
光を合成するようにした偏波無依存光アイソレータが記
載されている。しかし、この装置では偏光分離用及び合
成用の偏光分離素子の製作が困難である。
JP-A-3-171103 and JP-A-3-19
In No. 6115, a polarization separation element is inserted in an optical waveguide to separate the polarized light of incident light into two waveguides, which are guided to two waveguides, and a Faraday rotator and 1/1 inserted in these two waveguides.
A polarization-independent optical isolator is described, which is guided to a two-wave plate and then combined by a polarization separating element for combining. However, with this device, it is difficult to manufacture polarization separation elements for polarization separation and synthesis.

【0005】特開平4−307512号及び特開平4−
349421号には1本の光ファイバを基板に埋め込
み、光ファイバを斜めに切断するスリットを基板に形成
してそこに光アイソレータ素子(3枚のビームスプリッ
タとファラデー回転子、或いは2枚のビームスプリッタ
と1/2波長板とファラデー回転子)が埋め込まれた偏
波無依存光アイソレータが記載されている。光ファイバ
の端面の角度と光アイソレータ素子中の各素子の厚さ等
は、ファイバ傾斜端面から出た光の傾きが各素子により
相殺され、光が見かけ上光ファイバを直進するように定
められると共に、斜め切断のため各素子の端面で反射し
た光が入射側に戻らないようになっている。この技術で
は無調整で容易に組み込み可能な光アイソレータが提供
できるが、光アイソレータ素子がすべて一体化されてい
るために全厚が厚くなり、回折損失が大きくなる欠点が
ある。
JP-A-4-307512 and JP-A-4-307512
In 349421, one optical fiber is embedded in a substrate, and a slit for obliquely cutting the optical fiber is formed in the substrate, and an optical isolator element (three beam splitters and a Faraday rotator, or two beam splitters) is provided there. And a polarization independent optical isolator in which a half-wave plate and a Faraday rotator are embedded. The angle of the end face of the optical fiber and the thickness of each element in the optical isolator element are determined so that the inclination of the light emitted from the fiber inclined end surface is canceled by each element and the light apparently goes straight through the optical fiber. The light reflected by the end face of each element is prevented from returning to the incident side due to the oblique cutting. Although this technique can provide an optical isolator that can be easily incorporated without adjustment, it has a drawback that the total thickness is increased and diffraction loss is increased because all the optical isolator elements are integrated.

【0006】[0006]

【発明が解決しようとする課題】特開平4−30751
2号及び特開平4−349421号に記載された技術で
は、損失が大きくなる欠点がある。
[Patent Document 1] Japanese Patent Application Laid-Open No. 4-30751
The techniques described in Japanese Patent Laid-Open No. 4-349421 and Japanese Patent Laid-Open No. 4-349421 have a drawback that the loss becomes large.

【0007】[0007]

【課題を解決するための手段】本発明は、2本の平行な
直線状導波路または光ファイバの途中に3か所の溝部を
形成し、これらの溝に第1の複屈折板、1/2波長板と
ファラデー回転子を組み合わせた素子、及び第2の複屈
折板を挿入し、順方向の光は偏波に依存しないで一方の
導波路または光ファイバから入射し、他方の導波路また
は光ファイバに出射するように構成し、戻り光は前記一
方の導波路または光ファイバには戻らないように構成し
た偏波無依存光アイソレータを提供する。この構成によ
ると、複屈折板を別々にスリットに挿入したために低損
失となり、無調整で容易に組立が可能であり、また一方
の光ファイバから他方の光ファイバへ出射するために2
つの偏波の光路長が等しくできるので偏波分散(偏波に
依存した位相差が生じる現象)が低下する
According to the present invention, three parallel groove portions are formed in the middle of two parallel linear waveguides or optical fibers, and the first birefringent plate, 1 / An element combining a two-wave plate and a Faraday rotator and a second birefringent plate are inserted so that light in the forward direction enters from one waveguide or an optical fiber without depending on polarization, and the other waveguide or Provided is a polarization-independent optical isolator configured to be emitted to an optical fiber and not to return light to the one waveguide or the optical fiber. According to this configuration, since the birefringent plates are separately inserted into the slits, the loss is low, the assembly can be easily performed without adjustment, and the light is emitted from one optical fiber to the other optical fiber.
Since the optical path lengths of the two polarizations can be made equal, polarization dispersion (a phenomenon that a phase difference depending on the polarization occurs) decreases.

【0008】より好ましい構成では、2枚の複屈折板と
1/2波長板とファラデー回転子とは導波路または光フ
ァイバに対して斜めに配置され、一方の導波路または光
ファイバに入射した光は、第1の複屈折板を光が透過す
る際に、異常光が直進し、常光が軸ずれして他方の導波
路または光ファイバに進み、第2の複屈折板を光が透過
する際に、異常光が直進し、常光が軸ずれして、すべて
の光が他方の導波路または光ファイバに進むよう構成さ
れていることを特徴とする。この構成によると、複屈折
板と1/2波長板とファラデー回転子の面で反射する光
は導波路または光ファイバからはずれた方向に向かい入
射方向に戻らないので反射減衰量が大きくなる利点が得
られる。
In a more preferable configuration, the two birefringent plates, the half-wave plate and the Faraday rotator are arranged obliquely with respect to the waveguide or the optical fiber, and the light incident on one of the waveguides or the optical fiber is arranged. Means that when the light passes through the first birefringent plate, the extraordinary light travels straight, the ordinary ray shifts its axis to the other waveguide or optical fiber, and the light passes through the second birefringent plate. In addition, it is characterized in that the extraordinary light travels straight, the ordinary light is decentered, and all the light travels to the other waveguide or optical fiber. According to this structure, the light reflected by the surfaces of the birefringent plate, the half-wave plate, and the Faraday rotator does not return to the incident direction in the direction away from the waveguide or the optical fiber, so that the return loss becomes large. can get.

【0009】[0009]

【作用】図1を参照して本発明の基本原理を説明する。
コア3、4をそれぞれ有する光ファイバ1、2は近接し
て平行に配置されている。光ファイバ1、2は別々の3
か所で切断されて溝部が形成され、それらの溝部に第1
の複屈折板5、1/2波長板6、これに密着した回転角
度45°のファラデー回転子7、及び第2の複屈折板8
が挿入されている。複屈折板5、8は、入射した光のう
ち常光が直進し異常光が軸はずれとなって別の光ファイ
バへ出射するように構成される。この代わりに、以下の
実施例に示すように、入射した光のうち異常光が直進
し、常光が軸はずれとなって他方の光ファイバに出射す
るように構成されてもよい。この場合には複屈折板5、
8の入射面は条件を満足するような角度に傾斜させる必
要がある。1/2波長板6、ファラデー回転子7は接着
一体化されており複屈折板5と常光もしくは異常光で透
過した順方向の光に対しては、偏波面が90度回転し、
複屈折板8を常光もしくは異常光で透過した逆方向の光
に対しては偏波面が回転しないように構成されてる。
The basic principle of the present invention will be described with reference to FIG.
The optical fibers 1 and 2 each having the cores 3 and 4 are arranged in close proximity to each other. Optical fibers 1 and 2 are separate 3
Grooves are formed by cutting in places, and the first grooves are formed in the grooves.
Birefringent plate 5, half-wave plate 6, Faraday rotator 7 having a rotation angle of 45 ° and a second birefringent plate 8 closely attached to the birefringent plate 5.
Has been inserted. The birefringent plates 5 and 8 are configured such that ordinary light of the incident light travels straight and extraordinary light is off-axis and is emitted to another optical fiber. Instead of this, as shown in the following embodiments, the extraordinary light of the incident light may go straight, and the ordinary light may be off-axis and emitted to the other optical fiber. In this case, the birefringent plate 5,
It is necessary to incline the incident surface of No. 8 at an angle that satisfies the conditions. The half-wave plate 6 and the Faraday rotator 7 are bonded and integrated, and the plane of polarization is rotated by 90 degrees with respect to the birefringent plate 5 and light in the forward direction transmitted by ordinary or extraordinary light.
The plane of polarization is configured not to rotate with respect to light in the opposite direction that has passed through the birefringent plate 8 as ordinary light or extraordinary light.

【0010】本発明の光アイソレータの作用を説明する
と、図1(a)のように、順方向の光に対しては、光フ
ァイバ1から入射した光は第1の複屈折板5で2つに分
かれ、例えば常光は直進して光ファイバ1を進み1/2
波長板6及びファラデー回転子7を透過し偏波面が90
度回転し、異常光となった光は第2の複屈折板8で軸ず
れを起こして光ファイバ2に出射する。一方、第1の複
屈折板5を出射した異常光は光ファイバ2を進み1/2
波長板6及びファラデー回転子7を透過し偏波面が90
度回転し、常光となった光は第2の複屈折板8を直進し
て光ファイバ2に出射する。このように、本発明による
と偏波無依存の光アイソレータが得られる。また、2つ
の偏光の光路差は0であるので位相の偏波分散がない。
The operation of the optical isolator of the present invention will be described. As shown in FIG. 1A, for the light in the forward direction, the light incident from the optical fiber 1 is divided into two by the first birefringent plate 5. For example, ordinary light goes straight on and goes along the optical fiber 1 for 1/2.
The plane of polarization passes through the wave plate 6 and the Faraday rotator 7 and is 90
The light, which has been rotated by a degree and becomes an extraordinary light, causes an axis shift in the second birefringent plate 8 and is emitted to the optical fiber 2. On the other hand, the extraordinary light emitted from the first birefringent plate 5 travels through the optical fiber 2 and becomes 1/2
The plane of polarization passes through the wave plate 6 and the Faraday rotator 7 and is 90
The light that has been rotated by a degree and becomes ordinary light travels straight through the second birefringent plate 8 and is emitted to the optical fiber 2. Thus, according to the present invention, a polarization-independent optical isolator can be obtained. Further, since the optical path difference between the two polarized lights is 0, there is no phase polarization dispersion.

【0011】図1(b)のように、逆方向の光に対して
は、光ファイバ2からの戻り光は第2の複屈折板8で2
つに分かれ、常光は直進して光ファイバ2を進み、ファ
ラデー回転子7及び1/2波長板6を透過しても常光で
あり、第2の複屈折板8を経て光ファイバ2を直進す
る。一方、第2の複屈折板8を出射した異常光は光ファ
イバ2を進みファラデー回転子7及び1/2波長板6を
透過しても異常光のままであるから、第1の複屈折板5
で軸ずれを起こして、光ファイバ1には出射しない。
As shown in FIG. 1B, with respect to the light in the opposite direction, the return light from the optical fiber 2 is 2 by the second birefringent plate 8.
Ordinary light travels straight through the optical fiber 2 and passes through the Faraday rotator 7 and the half-wave plate 6 and is still ordinary, and travels straight through the optical fiber 2 through the second birefringent plate 8. . On the other hand, the extraordinary light emitted from the second birefringent plate 8 remains as extraordinary light even if it travels through the optical fiber 2 and passes through the Faraday rotator 7 and the half-wave plate 6. 5
The optical axis 1 is misaligned and the light is not emitted to the optical fiber 1.

【0012】次に、本発明の光アイソレータが低損失で
ある理由を説明する。導波路または光ファイバに溝部を
形成した際に生じる回折損失L(単位dB)は、溝幅d
が大きくないときの近似式として
Next, the reason why the optical isolator of the present invention has a low loss will be described. The diffraction loss L (unit: dB) that occurs when a groove is formed in the waveguide or the optical fiber is the groove width d.
As an approximate expression when is not large

【数1】L=0.11λ22 /w4 (式1) で表される。λは光の波長、wは導波路または光ファイ
バの実効スポットサイズまたは光ファイバのスポットサ
イズ(半径)、dは実効的な溝幅であり、溝幅を挿入さ
れる物質の屈折率で割った値である。特開平4−307
512号及び特開平4−349421号に示された従来
例では、第1の複屈折板、1/2波長板、ファラデー回
転子、第2の複屈折板を一体化しているため、式1で示
されるdが大きくなり、損失が増大してしまう。これに
対して、本発明では2本の光ファイバまたは導波路を使
用すると共に素子を別々に挿入しているために損失を低
減できる。例えば、第1の複屈折板、第2の複屈折板を
それぞれ厚さ850μmのルチル板とし、ファラデー回
転子を厚さ350μmののBi置換ガーネット、1/2
波長板を厚さ92μmの水晶板、w=20μm、λ=
1.55μmの場合、上記の従来例では損失L=1.4
dBとなるが、本発明では損失がL=0.5dBと大幅
に低減できる。
## EQU1 ## L = 0.11λ 2 d 2 / w 4 (Equation 1) λ is the wavelength of light, w is the effective spot size of the waveguide or optical fiber or the spot size (radius) of the optical fiber, d is the effective groove width, and the groove width is divided by the refractive index of the material to be inserted. It is a value. Japanese Patent Laid-Open No. 4-307
In the conventional example shown in Japanese Patent Application Laid-Open No. 512-512, and Japanese Patent Application Laid-Open No. 4-349421, the first birefringent plate, the half-wave plate, the Faraday rotator, and the second birefringent plate are integrated. The indicated d becomes large and the loss increases. On the other hand, in the present invention, since two optical fibers or waveguides are used and the elements are separately inserted, the loss can be reduced. For example, the first birefringent plate and the second birefringent plate are rutile plates each having a thickness of 850 μm, and the Faraday rotator is a Bi-substituted garnet having a thickness of 350 μm.
The wave plate is a quartz plate with a thickness of 92 μm, w = 20 μm, λ =
In the case of 1.55 μm, the loss L = 1.4 in the above conventional example.
However, in the present invention, the loss can be greatly reduced to L = 0.5 dB.

【0013】[0013]

【実施例】【Example】

実施例1 図2は本発明の好ましい実施例を示す。この例が図1と
違う点は光ファイバ1、2に斜めの溝部が形成され、そ
れらの溝部に第1の複屈折板15、1/2波長板16、
これに密着した回転角度45°のファラデー回転子1
7、及び第2の複屈折板18が挿入されている点であ
る。ここで複屈折板15、18を異常光が直進するよう
に斜め角度が設定されている。この時常光は軸ずれを生
じて他方の光ファイバに入射する。また、複屈折板が傾
斜しているために、複屈折板の面からの反射光は入射側
の光ファイバに戻ることはないので、反射減衰量を大き
くすることができる。今一例として、光ファイバの屈折
率を1.45とし、複屈折板としてルチル平行平板を使
用し、C軸をルチル板の入出射面に対して45度の角度
に配置し、常光の屈折率2.44、異常光の屈折率2.
69とすると、入射角12.3°のとき図2のように異
常光が直進する。
Embodiment 1 FIG. 2 shows a preferred embodiment of the present invention. This example is different from FIG. 1 in that the optical fibers 1 and 2 are formed with slanting grooves, and the first birefringent plate 15 and the half-wave plate 16 are formed in these grooves.
Faraday rotator 1 with a rotation angle of 45 °
7 and the second birefringent plate 18 is inserted. Here, the oblique angle is set so that the extraordinary light travels straight through the birefringent plates 15 and 18. At this time, the ordinary light is shifted in axis and enters the other optical fiber. Further, since the birefringent plate is inclined, the reflected light from the surface of the birefringent plate does not return to the optical fiber on the incident side, so that the return loss can be increased. As an example, the refractive index of the optical fiber is 1.45, a rutile parallel plate is used as a birefringent plate, and the C axis is arranged at an angle of 45 degrees with respect to the entrance / exit surface of the rutile plate, and the refractive index of ordinary light is set. 2.44, refractive index of extraordinary light
If the incident angle is 69, the extraordinary light goes straight as shown in FIG. 2 when the incident angle is 12.3 °.

【0014】実施例2 図3は図2に示した実施例1の光ファイバの代わりに、
薄膜技術を利用して基板20に平行な光導波路1、2を
作り込み、これらの導波路を斜めに切断する溝部を3か
所に設け、それらの溝部に実施例1と同様な関係を満足
するような厚さの第1の複屈折板15、1/2波長板1
6、これに密着した回転角度45°のファラデー回転子
17、及び第2の複屈折板18を挿入する。この例の光
アイソレータは実施例1と同様に機能する。
Example 2 FIG. 3 is a schematic diagram of the optical fiber of Example 1 shown in FIG.
The optical waveguides 1 and 2 parallel to the substrate 20 are formed by using thin film technology, and groove portions for obliquely cutting these waveguides are provided at three places, and the groove portions satisfy the same relationship as that of the first embodiment. First birefringent plate 15 and half-wave plate 1 having a thickness
6, the Faraday rotator 17 having a rotation angle of 45 ° and the second birefringent plate 18 which are in close contact with this are inserted. The optical isolator of this example functions similarly to the first embodiment.

【0015】実施例1、2の光アイソレータの動作にお
いて、光ファイバ1または光導波路1に入射した順方向
の光のうち異常光は第1の複屈折板15を直進し、次い
で1/2波長板16、ファラデー回転子17を経て常光
になり、最後に第2の複屈折板18で軸ずれして光ファ
イバ2または導波路2に出射する。一方、光ファイバ1
または導波路1に入射した順方向の光のうち常光は第1
の複屈折板15で軸ずれして光ファイバ2または光導波
路2に導かれ、次いで1/2波長板16、ファラデー回
転子17を経て異常光になり、最後に第2の複屈折板1
8を直進し、光ファイバ2または光導波路2に出射す
る。複屈折板の各面は導波路または光ファイバに対して
傾斜しているからこれらの面での反射光は入射側の光フ
ァイバ1または導波路1に戻ることはない。逆方向の光
に対しては、光ファイバ2からの戻り光は第2の複屈折
板18で2つに分かれ、異常光は直進して光ファイバ2
を進み、ファラデー回転子7及び1/2波長板6を透過
しても異常光であり、第1の複屈折板15を経て光ファ
イバ2または導波路2を直進する。一方、第2の複屈折
板8で軸はずれとなった常光は光ファイバ1または導波
路1を進み1/2波長板6及びファラデー回転子7を透
過しても常光のままであるから、第1の複屈折板15で
軸ずれを起こして、光ファイバ1または導波路1には出
射しない。
In the operation of the optical isolators of the first and second embodiments, out of the light in the forward direction incident on the optical fiber 1 or the optical waveguide 1, the extraordinary light travels straight through the first birefringent plate 15 and then has a half wavelength. After passing through the plate 16 and the Faraday rotator 17, the light becomes ordinary light, and finally the second birefringent plate 18 shifts the axis to emit the light to the optical fiber 2 or the waveguide 2. On the other hand, optical fiber 1
Or, of the light in the forward direction incident on the waveguide 1, the ordinary light is the first light.
Is guided to the optical fiber 2 or the optical waveguide 2 with its axis deviated by the birefringent plate 15, and then passes through the half-wave plate 16 and the Faraday rotator 17 to become extraordinary light, and finally, the second birefringent plate 1
8 goes straight and is emitted to the optical fiber 2 or the optical waveguide 2. Since each surface of the birefringent plate is inclined with respect to the waveguide or the optical fiber, the reflected light on these surfaces does not return to the optical fiber 1 or the waveguide 1 on the incident side. With respect to the light in the opposite direction, the return light from the optical fiber 2 is split into two by the second birefringent plate 18, and the extraordinary light goes straight to the optical fiber 2
Is an extraordinary ray even after passing through the Faraday rotator 7 and the half-wave plate 6, and goes straight through the optical fiber 2 or the waveguide 2 via the first birefringent plate 15. On the other hand, the ordinary light that has become off-axis in the second birefringent plate 8 remains ordinary light even after traveling through the optical fiber 1 or the waveguide 1 and passing through the half-wave plate 6 and the Faraday rotator 7. The birefringence plate 15 of No. 1 causes an axis shift and does not emit to the optical fiber 1 or the waveguide 1.

【0016】[0016]

【効果】本発明によると光ファイバまたは光導波路と一
体化した無調整で容易に組み立て可能な偏波無依存の光
アイソレータが得られる。また、本発明では2本のファ
イバまたは2つの光導波路を使用し、更に、別々の溝部
に別々の素子を挿入するので光の回折損失が少ない。そ
の上、2つの偏波の光路差は0であるので位相の偏波分
散が少ない。更に、素子を斜めに配置することにより反
射減衰量を大きくすることができる。
According to the present invention, a polarization-independent optical isolator that is integrated with an optical fiber or an optical waveguide and can be easily assembled without adjustment is obtained. Further, in the present invention, two fibers or two optical waveguides are used, and further, different elements are inserted in different groove portions, so that light diffraction loss is small. Moreover, since the optical path difference between the two polarized waves is 0, the phase polarization dispersion is small. Further, by arranging the elements obliquely, the return loss can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明の第1の実施例による光アイソレータを
示す図である。
FIG. 2 is a diagram showing an optical isolator according to a first embodiment of the present invention.

【図3】本発明の第2の実施例による光アイソレータを
示す図である。
FIG. 3 is a diagram showing an optical isolator according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2:導波路(光ファイバまたは光導波路) 5、15:第1の複屈折板 6、16:1/2波長板 7、17:ファラデー回転子 8、18:第2の複屈折板 20:基板 1, 2: Waveguide (optical fiber or optical waveguide) 5, 15: First birefringent plate 6, 16: 1/2 wavelength plate 7, 17: Faraday rotator 8, 18: Second birefringent plate 20 :substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2本の平行な直線状導波路または光ファ
イバの途中に3か所の溝部を形成し、これらの溝に第1
の複屈折板、1/2波長板とファラデー回転子を組み合
わせた素子、及び第2の複屈折板を挿入し、順方向の光
は偏波に依存しないで一方の導波路または光ファイバか
ら入射し、他方の導波路または光ファイバに出射するよ
うに構成し、戻り光は前記一方の導波路または光ファイ
バには戻らないように構成した偏波無依存光アイソレー
タ。
1. Three parallel groove portions are formed in the middle of two parallel linear waveguides or optical fibers, and the first groove is formed in these grooves.
Birefringent plate, an element that combines a half-wave plate and a Faraday rotator, and a second birefringent plate are inserted, and light in the forward direction is incident from one waveguide or optical fiber without depending on polarization. A polarization-independent optical isolator configured so as to be emitted to the other waveguide or the optical fiber, and return light not to be returned to the one waveguide or the optical fiber.
【請求項2】 2枚の複屈折板と1/2波長板とファラ
デー回転子とを導波路または光ファイバに対して斜めに
配置し、一方の導波路または光ファイバに入射した光
は、第1の複屈折板を光が透過する際に、異常光が直進
し、常光が軸ずれして他方の導波路または光ファイバに
進み、第2の複屈折板を光が透過する際に、異常光が直
進し、常光が軸ずれして、すべての光が他方の導波路ま
たは光ファイバに進むよう構成されていることを特徴と
する請求項1の光アイソレータ。
2. Two birefringent plates, a half-wave plate, and a Faraday rotator are arranged obliquely with respect to a waveguide or an optical fiber, and the light incident on one of the waveguides or the optical fiber is When the light passes through the first birefringent plate, the extraordinary light goes straight, and the ordinary light shifts its axis to the other waveguide or optical fiber, and when the light passes through the second birefringent plate, the abnormal light goes out. 2. The optical isolator according to claim 1, wherein the light travels straight and the ordinary light is off-axis so that all the light travels to the other waveguide or optical fiber.
JP27892693A 1993-10-13 1993-10-13 Optical isolator Expired - Fee Related JP3492736B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27892693A JP3492736B2 (en) 1993-10-13 1993-10-13 Optical isolator
US08/320,816 US5499307A (en) 1993-10-13 1994-10-11 Optical isolator and polarization splitter therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27892693A JP3492736B2 (en) 1993-10-13 1993-10-13 Optical isolator

Publications (2)

Publication Number Publication Date
JPH07110459A true JPH07110459A (en) 1995-04-25
JP3492736B2 JP3492736B2 (en) 2004-02-03

Family

ID=17604009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27892693A Expired - Fee Related JP3492736B2 (en) 1993-10-13 1993-10-13 Optical isolator

Country Status (1)

Country Link
JP (1) JP3492736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481716B1 (en) * 2002-12-12 2005-04-11 학교법인 청석학원 Light isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481716B1 (en) * 2002-12-12 2005-04-11 학교법인 청석학원 Light isolator

Also Published As

Publication number Publication date
JP3492736B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
US5499307A (en) Optical isolator and polarization splitter therefor
JP2774467B2 (en) Polarization independent optical isolator
US6249619B1 (en) Optical isolator
CA2270733A1 (en) Optical attenuator
US5151955A (en) Optical isolator
US5377040A (en) Polarization independent optical device
US5999313A (en) Optical device having function of optical circulator
JP2002023111A (en) Polarizing beam splitter/combiner
JPH0990279A (en) Polarization independent type optical isolator and optical circulator
US6246518B1 (en) Reflection type optical isolator
JPH07191280A (en) Optical isolator
JP3161885B2 (en) Optical isolator
JP3228773B2 (en) Optical isolator
JP3492736B2 (en) Optical isolator
JPS6255766B2 (en)
JPH0667118A (en) Optical coupler
KR20060058773A (en) In-line optical isolator
JPH085977A (en) Variable wavelength liquid crystal optical filter
JP2004226599A (en) Polarized light separating and composing device
JP3263501B2 (en) Polarization separation element
JPH11160653A (en) Optical circulator
JPH10339848A (en) Polarization independent optical isolator
JP3202000B2 (en) Operation method of optical isolator
JP2000284225A (en) Optical isolator
JPH05241104A (en) Polarized light rotating mirror

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031014

LAPS Cancellation because of no payment of annual fees