JP3263501B2 - Polarization separation element - Google Patents

Polarization separation element

Info

Publication number
JP3263501B2
JP3263501B2 JP27892593A JP27892593A JP3263501B2 JP 3263501 B2 JP3263501 B2 JP 3263501B2 JP 27892593 A JP27892593 A JP 27892593A JP 27892593 A JP27892593 A JP 27892593A JP 3263501 B2 JP3263501 B2 JP 3263501B2
Authority
JP
Japan
Prior art keywords
waveguide
birefringent
sin
parallel plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27892593A
Other languages
Japanese (ja)
Other versions
JPH07110412A (en
Inventor
信治 岩塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP27892593A priority Critical patent/JP3263501B2/en
Priority to US08/320,816 priority patent/US5499307A/en
Publication of JPH07110412A publication Critical patent/JPH07110412A/en
Application granted granted Critical
Publication of JP3263501B2 publication Critical patent/JP3263501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は特定の偏光を分離する偏
光分離素子、特に導波路型光学部品において使用するの
に適する偏光分離素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarized light separating element for separating specific polarized light, and more particularly to a polarized light separating element suitable for use in a waveguide type optical component.

【0002】[0002]

【従来の技術】偏光分離素子を利用した導波路型光学部
品は公知であり、光ファイバーを使用した光通信の光ス
イッチ、サーキュレータ、アイソレータ等に応用されて
いる。光スイッチ、サーキュレータ、アイソレータ等の
光学装置は、通常、偏光子、レンズ、ファラデー回転
子、複屈折素子、1/2波長板等の個々のバルクの光学
素子を組み合わせて構成されるため、部品点数が多く且
つ大型となると共に、素子の相互関係の調整が複雑にな
るなどの問題がある。これに対して導波路型光学部品
は、薄膜技術を利用して一枚の基板に導波路とファラデ
ー素子あるいは1/2波長板等を組み込むので、レンズ
は不要となり、全体に小型化するが、製造が極めて困難
である。そこで光ファイバー等の導波路を利用したりあ
るいは薄膜技術により基板上に導波路を形成し、あるい
は基板に光ファイバーを埋め込んで導波路を形成し、導
波路の一部にスリットを形成してそこに所定の偏光分離
素子、ファラデー回転子、1/2波長板等を挿入するこ
とが提案されている。このような技術は、例えば特開平
2−18525号や特開平3−171103号等に示さ
れている。
2. Description of the Related Art Waveguide-type optical components using a polarization splitting element are known, and are applied to optical switches, circulators, isolators, and the like for optical communication using optical fibers. Optical devices such as optical switches, circulators, and isolators are usually configured by combining individual bulk optical elements such as a polarizer, a lens, a Faraday rotator, a birefringent element, and a half-wave plate. However, there are problems such as the increase in the size and the size, and the complicated adjustment of the mutual relationship between the elements. On the other hand, a waveguide type optical component incorporates a waveguide and a Faraday element or a half-wave plate or the like on a single substrate using thin film technology, so that a lens is not required and the entire size is reduced. Very difficult to manufacture. Therefore, a waveguide such as an optical fiber is used or a waveguide is formed on a substrate by thin film technology, or an optical fiber is embedded in the substrate to form a waveguide, and a slit is formed in a part of the waveguide, and a predetermined slit is formed therein. It has been proposed to insert a polarization separation element, a Faraday rotator, a half-wave plate, and the like. Such a technique is disclosed in, for example, JP-A-2-18525 and JP-A-3-171103.

【0003】特開平2−18525号には、基板上に2
入力、2出力の4端子導波路を形成し、入力側の2本の
導波路の交差部にスリットを形成して偏光を分離する偏
光分離膜を挿入し、出力側の2本の導波路の交差部にも
スリットを形成して偏光を合成する偏光分離膜を挿入
し、両偏光分離膜の間に2本の導波路の中間にスリット
を形成して磁気光学素子(ファラデー回転子)及び1/
2波長板を挿入し、磁界を反転させて任意の入力を任意
の出力に結合する光スイッチが記載されている。一方、
特開平3−171103号は特開平2−18525号の
偏光分離膜の代わりに導波路の交差部の実効屈折率を制
御することにより偏光分離素子を実現している。
[0003] Japanese Patent Application Laid-Open No. Hei 2-18525 discloses that two
An input and output four-terminal waveguide is formed, a slit is formed at the intersection of the two input-side waveguides, and a polarization separation film for separating polarized light is inserted. A slit is also formed at the intersection, and a polarization separation film for synthesizing polarized light is inserted. A slit is formed between the two polarization separation films in the middle of the two waveguides to form a magneto-optical element (Faraday rotator) /
An optical switch is described in which a two-wave plate is inserted and a magnetic field is inverted to couple an arbitrary input to an arbitrary output. on the other hand,
Japanese Patent Application Laid-Open No. Hei 3-171103 realizes a polarization splitting element by controlling the effective refractive index at the intersection of waveguides instead of the polarization splitting film of Japanese Patent Application Laid-Open No. Hei 2-18525.

【0004】[0004]

【発明が解決しようとする課題】上記の文献に示されて
いる導波路型光学部品は、従来のバルク型光学部品と比
較して小型化が可能であり、光軸調整が容易となるた
め、特性が安定すると共に、量産化が可能となる。しか
しながら、これらの文献に示された偏光分離素子は導波
路の交差部が必要であり、この交差部を精度良く製造す
ることは極めて困難であった。したがって、本発明の目
的は導波路に交差部を必要としない偏光分離素子を提供
することにある。
The waveguide type optical component disclosed in the above-mentioned document can be downsized and the optical axis can be easily adjusted as compared with the conventional bulk type optical component. The characteristics are stabilized and mass production becomes possible. However, the polarization separation elements disclosed in these documents require an intersection of waveguides, and it has been extremely difficult to manufacture this intersection with high accuracy. Accordingly, it is an object of the present invention to provide a polarization splitting element that does not require an intersection in a waveguide.

【0005】[0005]

【課題を解決するための手段】本発明は、少なくとも2
本の平行な直線状導波路に、斜めに複屈折板を挿入し、
複屈折板を光が透過する際に、異常光が直進し、常光が
軸ずれして別の導波路に進むように構成したことを特徴
とする偏光分離素子である。なお入射側の導波路は出射
側よりも1本少なくても良い。
SUMMARY OF THE INVENTION The present invention provides at least two
A birefringent plate is inserted obliquely into the parallel straight waveguides of the book,
A polarization splitting element characterized in that when light passes through a birefringent plate, extraordinary light goes straight, and ordinary light goes off-axis and goes to another waveguide. The number of waveguides on the incident side may be one less than that on the exit side.

【0006】[0006]

【作用】図1を参照して本発明の基本原理を説明する。
図1において複屈折板1は光学軸が紙面内にあるように
配置される。図1(a)のように入射光が複屈折板の面
に垂直に入射するように複屈折板を配置すると、常光O
は直進し、異常光Eは軸ずれを生じる。したがって、常
光Oと異常光Eが混合状態で入射すると偏光が分離す
る。しかしながら、複屈折板の面で反射して戻り光が生
じる問題となる。そこで、図1(b)のように、複屈折
板を斜めに配置すると、異常光Eが直進する或る入射角
θinが存在する。この時常光Oは屈折の法則により軸ず
れを生じる。したがって、この配置においては常光Oと
異常光Eが混合状態で入射すると直進する異常光と軸ず
れした常光に分離するが、反射光は入射方向に戻ること
はない。本発明はこの現象を利用する。すなわち、2本
の平行な導波路の間に図1(b)の条件を満足するよう
に複屈折板を斜めに挿入し、且つ2本の導波路の間隔を
図1(b)に示す常光の軸ずれ量に設定する。このよう
に構成すると異常光は直進し、常光は別の導波路に進む
ため、偏光分離素子として機能すると共に、斜めに複屈
折板を配置した複屈折板の入射面及び出射面で反射した
光は元の導波路には戻らない。
The basic principle of the present invention will be described with reference to FIG.
In FIG. 1, the birefringent plate 1 is arranged so that the optical axis is in the plane of the paper. When the birefringent plate is arranged so that the incident light is perpendicularly incident on the surface of the birefringent plate as shown in FIG.
Travels straight, and the extraordinary light E causes an axis shift. Therefore, when the ordinary light O and the extraordinary light E enter in a mixed state, the polarization is separated. However, there is a problem that reflected light is generated by reflection on the surface of the birefringent plate. Therefore, when the birefringent plate is arranged obliquely as shown in FIG. 1B, there is a certain incident angle θ in at which the extraordinary light E goes straight. At this time, the ordinary light O causes an axis shift due to the law of refraction. Therefore, in this arrangement, when the ordinary light O and the extraordinary light E enter in a mixed state, they are separated into the extraordinary light that goes straight and the ordinary light whose axis is shifted, but the reflected light does not return in the incident direction. The present invention takes advantage of this phenomenon. That is, a birefringent plate is obliquely inserted between the two parallel waveguides so as to satisfy the condition of FIG. 1B, and the distance between the two waveguides is the ordinary light shown in FIG. Set to the amount of axis deviation. With this configuration, the extraordinary light travels straight, and the ordinary light travels to another waveguide. Therefore, the extraordinary light functions as a polarization splitting element, and the light reflected on the entrance surface and the exit surface of the birefringent plate in which the birefringent plate is arranged diagonally. Does not return to the original waveguide.

【0007】図1(b)において、複屈折板平行平板の
入射面の法線ベクトルと入射光のなす角度をθin、複屈
折平行平板の光学軸と入射光のなす角度をθC (図のよ
うに法線ベクトルと反対側に向いている場合を正とす
る)、入射側の領域の屈折率をnin、複屈折板の常光の
屈折率をnO 、複屈折板の異常光の屈折率をnE とした
ときに、異常光が図1(b)のように直進する条件は次
式で表される。
In FIG. 1B, the angle between the normal vector of the plane of incidence of the birefringent parallel plate and the incident light is θ in , and the angle between the optical axis of the birefringent parallel plate and the incident light is θ C (see FIG. 1B). , The refractive index of the region on the incident side is n in , the refractive index of ordinary light of the birefringent plate is n O , and the refractive index of extraordinary light of the birefringent plate is When the refractive index is n E , the condition that the extraordinary light travels straight as shown in FIG. 1B is expressed by the following equation.

【数5】tanθin=A/[√B(nin−√B)] ここでA=(nO 2 −nE 2)cosθC sinθC B=nE 2sin2 θC +nO 2cosθC 今一例として、導波路の屈折率を1.45とし、複屈折
板としてルチル平行平板を使用し、常光の屈折率nO
2.44、異常光の屈折率nE =2.69、光学軸の方
向θC =32.7°とすると、上式より、入射角θin
12.3°のとき図1(b)のように異常光が直進す
る。なお、この時、ルチルの光学軸はルチル板の入射面
の法線ベクトルに対しθin+θC =45°傾いている。
一方、常光は屈折の法則により入射光に対してθin−θ
O の角度で進む。ここにθO =sin-1[(nin/n
O )sinθin]である。複屈折平行平板の厚さをtと
すると出射光の入射光に対する軸ずれは
Tan θ in = A / [√B (n in -√B)] where A = (n O 2 −n E 2 ) cos θ C sin θ C B = n E 2 sin 2 θ C + n O 2 cos θ C As an example, the refractive index of the waveguide is set to 1.45, a rutile parallel plate is used as the birefringent plate, and the refractive index of ordinary light n O =
Assuming that 2.44, the refractive index of extraordinary light n E = 2.69, and the direction of the optical axis θ C = 32.7 °, the incident angle θ in =
When the angle is 12.3 °, the extraordinary light goes straight as shown in FIG. At this time, the optical axis of the rutile is inclined by θ in + θ C = 45 ° with respect to the normal vector of the incident surface of the rutile plate.
On the other hand, ordinary light is θ in −θ with respect to incident light according to the law of refraction.
Proceed at the O angle. Where θ O = sin −1 [(n in / n
O ) sin θ in ]. Assuming that the thickness of the birefringent parallel plate is t, the axis deviation of the emitted light with respect to the incident light is

【数6】sin(θin−θO )t/cosθO であり、導波路をこの間隔で配置しておけば入射光は出
射側の導波路に導かれる。例えば上の例では常光は入射
光に対し5°の角度で進み、ルチル板1mm当たり88
μmの軸ずれが生じる。2本の導波路を88μmの間隔
で形成し、その間に斜め角度θin=12.3°で光学軸
がθC =32.7°の厚さ1mmのルチル板を挿入する
ことにより、異常光が直進し、常光が軸ずれし別の導波
路を進むように機能する。
(6) sin (θ in −θ O ) t / cos θ O If the waveguides are arranged at this interval, the incident light is guided to the output side waveguide. For example, in the above example, ordinary light travels at an angle of 5 ° with respect to incident light, and 88 ° per mm of rutile plate.
An axis shift of μm occurs. By forming two waveguides at an interval of 88 μm and inserting a 1 mm thick rutile plate between them with an oblique angle θ in = 12.3 ° and an optical axis θ C = 32.7 °, extraordinary light is generated. Functions to travel straight, and the ordinary light is shifted in axis and travels through another waveguide.

【0008】[0008]

【実施例の説明】以下、本発明の実施例を詳しく説明す
る。 実施例1 図2は本発明の第1の実施例による偏光分離素子を例示
する。10は基板であり、その上に薄膜技術により直線
状の第1の導波路11及び第2の導波路12が形成され
る。基板10には導波路11、12を切断するスリット
14が斜めに形成され、このスリットには、図1に関連
して説明したように、異常光が直進する条件を満足させ
るような角度、及び常光が軸ずれして他方の導波路12
に導かれるような厚さの複屈折板13が挿入され固定さ
れている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. Embodiment 1 FIG. 2 illustrates a polarization beam splitting device according to a first embodiment of the present invention. Reference numeral 10 denotes a substrate on which linear first waveguides 11 and second waveguides 12 are formed by thin film technology. A slit 14 for cutting the waveguides 11 and 12 is formed in the substrate 10 at an angle. As described with reference to FIG. 1, the slit 14 has an angle that satisfies the condition that the extraordinary light travels straight. Ordinary light is misaligned and the other waveguide 12
Is inserted and fixed.

【0009】動作において、導波路11に入射した光の
うち、異常光Eは複屈折板13を直進して導波路11に
導波され、常光Oは複屈折板13で軸ずれして導波路1
2に導波される。複屈折板の各面は導波路に対して傾斜
しているから反射光は入射側の導波路に戻ることはな
い。光アイソレータに応用する場合には入射側の導波路
12は不要であるが、用途にしたがって使用することも
できる。
In operation, of the light incident on the waveguide 11, the extraordinary light E travels straight through the birefringent plate 13 and is guided to the waveguide 11, and the ordinary light O is deviated from the axis by the birefringent plate 13 and is guided by the waveguide. 1
2 is guided. Since each surface of the birefringent plate is inclined with respect to the waveguide, the reflected light does not return to the waveguide on the incident side. When applied to an optical isolator, the waveguide 12 on the incident side is unnecessary, but can be used according to the application.

【0010】実施例2 図3は本発明の第2の実施例による偏光分離素子を例示
する。この例では導波路として基板に埋め込んだ第1の
光ファイバ21及び第2の光ファイバ22を使用する。
導波路21、22にはそれらを斜めに切断するスリット
24が形成され、このスリットには、図1に示したよう
な、異常光Eが直進する条件を満足させるような角度、
及び常光Oが軸ずれして他方の光ファイバ22に導かれ
るような厚さの複屈折板23が挿入され固定されてい
る。光ファイバ21、22のコア25は複屈折板23の
両側で拡大したコア26を有することにより、光の損失
を防止することができる。この実施例の偏光分離素子は
実施例1のものと同様に動作する。
Embodiment 2 FIG. 3 illustrates a polarization beam splitter according to a second embodiment of the present invention. In this example, a first optical fiber 21 and a second optical fiber 22 embedded in a substrate are used as waveguides.
Slits 24 are formed in the waveguides 21 and 22 to cut them obliquely. These slits have an angle, as shown in FIG. 1, which satisfies the condition that the extraordinary light E travels straight.
Further, a birefringent plate 23 having a thickness such that the ordinary light O is guided to the other optical fiber 22 with the axis shifted is inserted and fixed. Since the cores 25 of the optical fibers 21 and 22 have the cores 26 expanded on both sides of the birefringent plate 23, loss of light can be prevented. The polarization beam splitter of this embodiment operates in the same manner as that of the first embodiment.

【0011】実施例3 図4は本発明の第3の実施例を示す。この例は3以上の
導波路を使用するものであり、基板30に直線状の第
1、第2・・・第5の導波路31、32、・・・35が
形成される。基板30は導波路31、32、・・・35
を斜めに切断するスリット34が形成され、このスリッ
トには、図1に示したように、導波路31、32、・・
・35に入射した異常光Eが直進する条件を満足させる
ような角度、及び導波路31、・・・34に入射した常
光Oが軸ずれしてそれぞれ隣接した導波路32、・・・
35に導かれるような厚さの複屈折板23が挿入され固
定されている。なお、導波路としては図3のように光フ
ァイバを使用したものでも良い。
Embodiment 3 FIG. 4 shows a third embodiment of the present invention. In this example, three or more waveguides are used, and first, second,..., Fifth waveguides 31, 32,. The substrate 30 includes waveguides 31, 32,.
Are formed, and the slits 34 are formed in the slits as shown in FIG.
An angle that satisfies the condition for the extraordinary light E incident on 35 to travel straight, and the waveguides 32,... Adjacent to each other with the ordinary light O incident on the waveguides 31,.
A birefringent plate 23 having a thickness guided to 35 is inserted and fixed. The waveguide may be one using an optical fiber as shown in FIG.

【0012】動作において、特定の導波路に入射した光
のうち、異常光は直進し、常光は隣接した導波路に導か
れる。すなわち、図4の入力端子1A・・・5Aのいず
れかに入射した光のうち異常光はそれぞれ1B・・・5
Bへ直進し、常光はそれぞれ出力端子2B〜6Bに導か
れる。一方、複屈折板23の面での反射光は入射側に戻
ることはない。この例は光サーキュレータ、光スイッチ
等に使用できる。
In operation, of light incident on a specific waveguide, extraordinary light goes straight, and ordinary light is guided to an adjacent waveguide. That is, among the light incident on any of the input terminals 1A to 5A in FIG.
B, the ordinary light is guided to the output terminals 2B to 6B, respectively. On the other hand, the reflected light on the surface of the birefringent plate 23 does not return to the incident side. This example can be used for an optical circulator, an optical switch, and the like.

【0013】[0013]

【効果】本発明によると、従来のように交差部が必要で
なく、平行な直線状の導波路により構成し得るので製作
が非常に容易となる。また斜めに複屈折板を配置したた
め反射減衰量が大きく(反射戻り光が少なく)なる。
According to the present invention, there is no need for an intersection as in the prior art, and the waveguide can be constituted by parallel linear waveguides, so that the manufacture is very easy. Further, since the birefringent plate is disposed obliquely, the return loss is large (the amount of reflected return light is small).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明の第1の実施例による偏光分離素子を示
す図である。
FIG. 2 is a diagram illustrating a polarization splitting device according to a first embodiment of the present invention.

【図3】本発明の第2の実施例による偏光分離素子を示
す図である。
FIG. 3 is a view illustrating a polarization beam splitter according to a second embodiment of the present invention.

【図4】本発明の第3の実施例による偏光分離素子を示
す図である。
FIG. 4 is a view illustrating a polarization beam splitter according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10、30:基板 11、12、22、23、31、32、33、34、3
5、36:導波路 13、23、33:複屈折板 14、24、34:スリット
10, 30: substrate 11, 12, 22, 23, 31, 32, 33, 34, 3
5, 36: waveguide 13, 23, 33: birefringent plate 14, 24, 34: slit

フロントページの続き (56)参考文献 特開 平5−34650(JP,A) 特開 平2−219003(JP,A) 特開 平4−307512(JP,A) 特開 平5−232322(JP,A) 特開 平5−93924(JP,A) 特開 平6−175070(JP,A) 特開 平6−18940(JP,A) 特開 平5−142498(JP,A) 特開 平4−349421(JP,A) 特開 平5−151634(JP,A) 特開 平5−66363(JP,A) 特開 平4−264516(JP,A) 実公 昭53−50448(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) G02B 6/12 - 6/14 G02B 5/30 G02B 27/28 Continuation of front page (56) References JP-A-5-34650 (JP, A) JP-A-2-219003 (JP, A) JP-A-4-307512 (JP, A) JP-A-5-232322 (JP) JP-A-5-93924 (JP, A) JP-A-6-175070 (JP, A) JP-A-6-18940 (JP, A) JP-A-5-142498 (JP, A) JP-A-4-349421 (JP, A) JP-A-5-151634 (JP, A) JP-A-5-66363 (JP, A) JP-A-4-264516 (JP, A) Jikken Sho 53-50448 (JP, A Y2) (58) Field surveyed (Int. Cl. 7 , DB name) G02B 6/12-6/14 G02B 5/30 G02B 27/28

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも2本の平行な直線状光導波路
に、斜めに複屈折平行平板を挿入してなり、前記導波路
が作る平面と複屈折平行平板の入射面の法線ベクトルと
が平行となり、複屈折板の光学軸も前記平面に平行とな
り、且つ次の関係式 【数1】tanθin=A/[√B(nin−√B)] (ここでA=(nO 2 −nE 2)cosθC sinθC B=nE 2sin2 θC +nO 2cosθCin:導波路の屈折率 nO :複屈折平行平板の常光の屈折率 nE :複屈折平行平板の異常光の屈折率 θin:導波路と複屈折平行平板の入射面の法線ベクトル
とのなす角 θC :導波路と複屈折平行平板の光学軸とのなす角(θ
inと反対側を正とする)) をほぼ満足する偏光分離素子。
A birefringent parallel plate is obliquely inserted into at least two parallel linear optical waveguides, and a plane formed by the waveguide is parallel to a normal vector of an incident surface of the birefringent parallel plate. And the optical axis of the birefringent plate is also parallel to the plane, and the following relational expression: tan θ in = A / [√B (n in -√B)] (where A = (n O 2 − n E 2 ) cos θ C sin θ C B = n E 2 sin 2 θ C + n O 2 cos θ C n in : refractive index of waveguide n O : refractive index of ordinary light of birefringent parallel plate n E : refractive index of birefringent parallel plate Refractive index of extraordinary light θ in : Angle between waveguide and normal vector of incident surface of birefringent parallel plate θ C : Angle between waveguide and optical axis of birefringent parallel plate (θ
in a polarization separating element opposite to the positive)) almost satisfied.
【請求項2】 2本の導波路の間隔dを 【数2】d=sin(θin−θO )t/cosθO (ここでθO =sin-1[(nin/nO )sinθin
t=複屈折平行平板の厚さ) をほぼ満足するように設定した請求項1の偏光分離素
子。
2. The distance d between two waveguides is expressed as follows: d = sin (θ in −θ O ) t / cos θ O (where θ O = sin −1 [(n in / n O ) sin θ) in ]
2. The polarization splitting element according to claim 1, wherein t = thickness of the birefringent parallel plate is substantially satisfied.
【請求項3】 入射側に少なくとも1本、出射側に入射
側と整列してそれらよりもよりも一本多い平行な直線状
光導波路に、斜めに複屈折平行平板を挿入してなり、前
記導波路が作る平面と複屈折平行平板の入射面の法線ベ
クトルとが平行となり、複屈折板の光学軸も前記平面に
平行となり、且つ次の関係式 【数3】tanθin=A/[√B(nin−√B)] (ここでA=(nO 2 −nE 2)cosθC sinθC B=nE 2sin2 θC +nO 2cosθCin:導波路の屈折率 nO :複屈折平行平板の常光の屈折率 nE :複屈折平行平板の異常光の屈折率 θin:導波路と複屈折平行平板の入射面の法線ベクトル
とのなす角 θC :導波路と複屈折平行平板の光学軸とのなす角(θ
inと反対側を正とする)) をほぼ満足する偏光分離素子。
3. A parallel birefringent flat plate obliquely inserted into at least one parallel linear optical waveguide aligned with the incident side on the incident side and one more than the incident side on the exit side, The plane formed by the waveguide is parallel to the normal vector of the plane of incidence of the birefringent parallel plate, the optical axis of the birefringent plate is also parallel to the plane, and the following relation: tan θ in = A / [ √B (n in −√B)] (where A = (n O 2 −n E 2 ) cos θ C sin θ C B = n E 2 sin 2 θ C + n O 2 cos θ C in : the refractive index of the waveguide n O : refractive index of ordinary light of the birefringent parallel plate n E : refractive index of extraordinary light of the birefringent parallel plate θ in : angle formed between the waveguide and the normal vector of the incident surface of the birefringent parallel plate θ C : conductivity The angle (θ) between the waveguide and the optical axis of the birefringent parallel plate
in a polarization separating element opposite to the positive)) almost satisfied.
【請求項4】 2本の導波路の間隔dを 【数4】d=sin(θin−θO )t/cosθO (ここでθO =sin-1[(nin/nO )sinθin
t=複屈折平行平板の厚さ) をほぼ満足するように設定した請求項3の偏光分離素
子。
The distance d between the two waveguides is expressed as follows: d = sin (θ in −θ O ) t / cos θ O (where θ O = sin −1 [(n in / n O ) sin θ) in ]
4. The polarization beam splitter according to claim 3, wherein t is substantially satisfied.
【請求項5】 導波路を光ファイバで構成した請求項1
ないし4のいずれかに記載の偏光分離素子。
5. The optical waveguide according to claim 1, wherein the waveguide comprises an optical fiber.
5. The polarization beam splitter according to any one of items 1 to 4.
JP27892593A 1993-10-13 1993-10-13 Polarization separation element Expired - Fee Related JP3263501B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27892593A JP3263501B2 (en) 1993-10-13 1993-10-13 Polarization separation element
US08/320,816 US5499307A (en) 1993-10-13 1994-10-11 Optical isolator and polarization splitter therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27892593A JP3263501B2 (en) 1993-10-13 1993-10-13 Polarization separation element

Publications (2)

Publication Number Publication Date
JPH07110412A JPH07110412A (en) 1995-04-25
JP3263501B2 true JP3263501B2 (en) 2002-03-04

Family

ID=17603998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27892593A Expired - Fee Related JP3263501B2 (en) 1993-10-13 1993-10-13 Polarization separation element

Country Status (1)

Country Link
JP (1) JP3263501B2 (en)

Also Published As

Publication number Publication date
JPH07110412A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
US5682446A (en) Polarization mode dispersion-free circulator
US5499307A (en) Optical isolator and polarization splitter therefor
US4548478A (en) Optical device
JP2710451B2 (en) Polarization independent optical isolator
US5848203A (en) Polarization-independent optical isolator
EP0525208A1 (en) Optical isolator
NL7905972A (en) OPTICAL NON-RECIPROKE DEVICE.
US5923470A (en) Polarization beam splitter
US6249619B1 (en) Optical isolator
EP0489315A2 (en) Optical isolator
EP0661579B1 (en) Optical isolator without polarization mode dispersion
EP0100178B1 (en) Polarizing elements
US20060018597A1 (en) Liquid crystal grating coupling
JPH05297321A (en) Unpolarized wave dispersion type optical isolator
EP0552783B1 (en) Optical isolator device
EP0782029A1 (en) Optical appatatus
US6002512A (en) Optical circulator using latchable garnet
US5377040A (en) Polarization independent optical device
US5559633A (en) Optical isolator with reduced relative walk-off
JP3263501B2 (en) Polarization separation element
US6476967B2 (en) Compact optical circulator with three ports
JP2905847B2 (en) Optical isolator device
JP3492736B2 (en) Optical isolator
JP2846382B2 (en) Optical isolator
JPH0451214A (en) Optical isolator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

LAPS Cancellation because of no payment of annual fees