JPH07110313A - Biosensor and manufacture thereof - Google Patents

Biosensor and manufacture thereof

Info

Publication number
JPH07110313A
JPH07110313A JP5252857A JP25285793A JPH07110313A JP H07110313 A JPH07110313 A JP H07110313A JP 5252857 A JP5252857 A JP 5252857A JP 25285793 A JP25285793 A JP 25285793A JP H07110313 A JPH07110313 A JP H07110313A
Authority
JP
Japan
Prior art keywords
layer
electrode
electron acceptor
enzyme
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5252857A
Other languages
Japanese (ja)
Other versions
JP3214188B2 (en
Inventor
Mariko Miyahara
万里子 宮原
Toshihiko Yoshioka
俊彦 吉岡
Satoko Fujisawa
里子 藤澤
Tomohiro Yamamoto
智浩 山本
Makoto Ikeda
信 池田
Shiro Nankai
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25285793A priority Critical patent/JP3214188B2/en
Publication of JPH07110313A publication Critical patent/JPH07110313A/en
Application granted granted Critical
Publication of JP3214188B2 publication Critical patent/JP3214188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To obtain a quick and highly accurate sensor by arranging a layer mainly composed of an enzyme modified with a lipid of an amphipathic medium and a reaction layer comprising a layer mainly composed of an electron acceptor in an electrode system comprising a measuring electrode and a counter electrode provided on an insulating substrate. CONSTITUTION:Leads 2 and 3 are formed on an insulating substrate 1 by a screen printing with a silver paste. A measuring electrode 4 is printed by a conductive carbon paste, an insulation layer 6 by an insulating paste and a counter electrode 5 with a conductive carbon paste separately. Then, an aqueous solution of carboxymethyl cellulose(CMC) is dropped on an electrode system comprising the measuring electrode 4 and a counter electrode and dried to form a CMC layer. As electron acceptor. potassium ferricyanide is dissolved into a phosphoric acid buffer solution containing about 0.5wt.% of CMC. dropped and dried to form a first layer 7. Then, a benzene solution of glucose oxidase modified with amphipathic lipid is dropped on the layer 7 and dried to form a second layer 8. Thus. a highly accurate sensor can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料液中の特定成分に
ついて迅速かつ高精度な定量を実施することができ、更
に保存信頼性の高いバイオセンサおよびその製造法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor which enables rapid and highly accurate quantification of a specific component in a sample liquid and has high storage reliability, and a method for producing the same.

【0002】[0002]

【従来の技術】これまで、試料液中の特定成分につい
て、迅速かつ高精度な定量を実施可能な方式としては、
特開平3−202764号公報に開示されているバイオ
センサがある。
2. Description of the Related Art Hitherto, as a method capable of performing a rapid and highly accurate quantification of a specific component in a sample solution,
There is a biosensor disclosed in JP-A-3-20276.

【0003】以下、同バイオセンサについて説明する。
図3は同バイオセンサの一例を示す断面図である。絶縁
性の基板1上にスクリーン印刷等の方法で測定極4およ
び対極5からなる電極系を形成し、更に、絶縁層6を形
成した後に、上記電極系上に親水性高分子と酸化還元酵
素と電子受容体からなる反応層25を形成したものであ
る。
The biosensor will be described below.
FIG. 3 is a sectional view showing an example of the biosensor. After forming an electrode system consisting of the measurement electrode 4 and the counter electrode 5 on the insulating substrate 1 by a method such as screen printing, and further forming an insulating layer 6, a hydrophilic polymer and a redox enzyme are formed on the electrode system. And a reaction layer 25 composed of an electron acceptor.

【0004】基質を含む試料液を反応層25上へ滴下す
ると反応層が溶解し、酵素と基質が反応し、更に電子受
容体が還元される。酵素反応終了後、この還元された電
子受容体を電気化学的に酸化し、このとき得られる酸化
電流値から試料液中の基質濃度を求めるものである。
When the sample solution containing the substrate is dropped onto the reaction layer 25, the reaction layer is dissolved, the enzyme reacts with the substrate, and the electron acceptor is further reduced. After the completion of the enzymatic reaction, this reduced electron acceptor is electrochemically oxidized, and the concentration of the substrate in the sample solution is determined from the oxidation current value obtained at this time.

【0005】[0005]

【発明が解決しようとする課題】このような従来の構成
のバイオセンサでは、酵素と電子受容体とが同一反応層
中に存在するため、試料液が供給されると速やかに反応
開始されるという利点があった。しかしながら、酵素は
生体材料であるため電子受容体等の化学化合物との混在
状態では酵素の活性が低下し、センサの応答特性が低下
する。そこで、酵素と電子受容体を別々の層へ分離させ
る構成が考えられるが、酵素および電子受容体は何れも
水溶性であるため、完全な分離状態にすることが困難で
あった。
In the biosensor having such a conventional structure, since the enzyme and the electron acceptor are present in the same reaction layer, the reaction is promptly started when the sample solution is supplied. There was an advantage. However, since the enzyme is a biomaterial, the activity of the enzyme decreases when mixed with a chemical compound such as an electron acceptor, and the response characteristics of the sensor decrease. Therefore, a structure in which the enzyme and the electron acceptor are separated into separate layers is conceivable, but it is difficult to achieve a completely separated state because both the enzyme and the electron acceptor are water-soluble.

【0006】本発明は従来の構成のバイオセンサの利点
を活かしつつ、このような問題点を解決するもので、迅
速かつ高精度で保存信頼性の高いバイオセンサを提供す
るものである。
The present invention solves such a problem while taking advantage of the biosensor having the conventional structure, and provides a biosensor which is quick, highly accurate, and has high storage reliability.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、絶縁性の基板上に少なくとも測定極と対極
からなる電極系を設け、前記電極系に両親媒性の脂質で
修飾された酵素を主体とする層と、電子受容体を主体と
する層の二層からなる反応層を設けたものである。
In order to solve the above problems, the present invention provides an electrode system comprising at least a measuring electrode and a counter electrode on an insulating substrate, and the electrode system is modified with an amphipathic lipid. In addition, a reaction layer composed of two layers, that is, a layer mainly containing an enzyme and a layer mainly containing an electron acceptor is provided.

【0008】[0008]

【作用】両親媒性の脂質で修飾されることによって酵素
は有機溶媒に可溶、水に不溶になる。そのため、有機溶
剤に溶解している両親媒性の脂質で修飾された酵素を含
む溶液を電極上に滴下し乾燥して形成した層と、電子受
容体を含む水溶液を滴下し乾燥して形成した層をいずれ
の順序で設けても、各々の層に含まれている酵素および
電子受容体が影響を受けることなく、均一な層を作製す
ることが可能である。従って、混在物による酵素の活性
低下が阻止されるため、本発明の構成のバイオセンサは
高い保存信頼性が得られる。
[Function] The enzyme becomes soluble in an organic solvent and insoluble in water by being modified with an amphipathic lipid. Therefore, a layer containing a solution containing an enzyme modified with an amphipathic lipid dissolved in an organic solvent was dropped on an electrode and dried, and an aqueous solution containing an electron acceptor was dropped and dried. When the layers are provided in any order, it is possible to form a uniform layer without affecting the enzyme and the electron acceptor contained in each layer. Therefore, the decrease in enzyme activity due to the inclusion is prevented, and thus the biosensor having the constitution of the present invention has high storage reliability.

【0009】[0009]

【実施例】以下、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0010】(実施例1)図1は本発明のバイオセンサ
の一実施例として作製したグルコースセンサの断面図で
ある。また図2は図1の分解斜視図である。
Example 1 FIG. 1 is a sectional view of a glucose sensor manufactured as an example of the biosensor of the present invention. 2 is an exploded perspective view of FIG.

【0011】以下、グルコースセンサの作製方法につい
て説明する。ポリエチレンテレフタレートからなる絶縁
性の基板1に、スクリーン印刷により銀ペ−ストを印刷
しリ−ド2、3を形成した。次に、樹脂バインダーを含
む導電性カーボンペーストを用いて電極系のうち測定極
4を、続いて絶縁性ペーストからなる絶縁層6をそれぞ
れ印刷した。
The method of manufacturing the glucose sensor will be described below. Silver paste was printed on the insulating substrate 1 made of polyethylene terephthalate by screen printing to form leads 2 and 3. Next, using a conductive carbon paste containing a resin binder, the measuring electrode 4 of the electrode system was printed, and subsequently the insulating layer 6 made of an insulating paste was printed.

【0012】絶縁層6は測定極4の露出部分の面積(約
1mm2)を一定とし、かつリ−ド2、3を部分的に覆
っている。最後に測定極と同一のカーボンペーストを用
いて対極5を印刷した。
The insulating layer 6 keeps the exposed area (about 1 mm 2 ) of the measuring electrode 4 constant and partially covers the leads 2 and 3. Finally, the counter electrode 5 was printed using the same carbon paste as the measuring electrode.

【0013】次に、前記電極系上に親水性高分子として
カルボキシメチルセルロ−ス(以下CMCと略す)の
0.5wt%水溶液を滴下、乾燥させてCMC層を形成
した。つづいて、前記CMC層上に電子受容体としてフ
ェリシアン化カリウム33mgをCMC0.5wt%を
含むリン酸緩衝液(0.2M:K2HPO4−0.2M:
KH2PO4)1mlに溶解させた溶液を4μl滴下し、
50℃の温風乾燥器中で10分間乾燥させて第一層7を
形成した。次に、両親媒性の脂質で修飾したグルコース
オキシダーゼ(EC1.1.3.4:以下GODと略
す)750Uをベンゼン1mlに溶解させた溶液を第一
層上に4μl滴下し室温で乾燥させて第二層8を形成し
た。ここで、両親媒性の脂質で酵素を修飾する方法につ
いて簡単に説明する。GODを0.1MKClを含む酢
酸緩衝液(0.02M:CH3COOH−0.02M:
CH3COOK)に溶解させた溶液を、両親媒性の脂質
の水溶液に混合し4℃で24時間静置した後、凍結乾燥
法により分離し脂質修飾酵素を得る。
Next, a 0.5 wt% aqueous solution of carboxymethyl cellulose (hereinafter abbreviated as CMC) as a hydrophilic polymer was dropped on the electrode system and dried to form a CMC layer. Then, a phosphate buffer solution (0.2M: K2HPO4 -0.2M :) containing 33 mg of potassium ferricyanide as an electron acceptor on the CMC layer and containing 0.5 wt% of CMC.
KH2PO4) 4 μl of a solution dissolved in 1 ml,
The first layer 7 was formed by drying in a warm air dryer at 50 ° C. for 10 minutes. Next, 4 μl of a solution prepared by dissolving 750 U of glucose oxidase (EC 1.1.3.4: hereinafter abbreviated as GOD) 750 U modified with an amphipathic lipid in 1 ml of benzene was dropped on the first layer and dried at room temperature. The second layer 8 was formed. Here, a method for modifying an enzyme with an amphipathic lipid will be briefly described. Acetate buffer containing 0.1 M KCl of GOD (0.02M: CH3COOH-0.02M:
The solution dissolved in CH3COOK) is mixed with an aqueous solution of amphipathic lipid and left standing at 4 ° C for 24 hours, and then separated by freeze-drying to obtain a lipid-modifying enzyme.

【0014】これら第一層、第二層からなる反応層は直
径約3.6mmのほぼ円形であり、対極の外周部に略一
致している。
The reaction layer composed of the first layer and the second layer has a substantially circular shape with a diameter of about 3.6 mm and substantially coincides with the outer peripheral portion of the counter electrode.

【0015】上記の反応層形成工程において、リン酸塩
および電子受容体の混合溶液を滴下すると、親水性高分
子からなるCMC層は一度溶解し、その後の乾燥過程で
混合された形で第一層7を形成する。従って、試料溶液
との溶解反応も迅速に行なわれる。また、親水性の層を
形成した後、両親媒性の脂質で修飾された酵素の有機溶
媒溶液を滴下するので、酵素を脂質で修飾した際に残っ
ている脂質を分離精製する必要がない。
In the above reaction layer forming step, when a mixed solution of a phosphate and an electron acceptor is dropped, the CMC layer composed of the hydrophilic polymer is once dissolved and then mixed in the subsequent drying process to form the first mixture. Form the layer 7. Therefore, the dissolution reaction with the sample solution is also rapidly performed. Moreover, since the organic solvent solution of the enzyme modified with the amphipathic lipid is dropped after forming the hydrophilic layer, it is not necessary to separate and purify the remaining lipid when the enzyme is modified with the lipid.

【0016】なお、上記実施例では両親媒性の脂質で修
飾した酵素を用いたが、酵素を修飾後未使用の脂質も含
めて有機溶媒に溶解させ抽出する手法で分離された酵素
を用いても、同様の工程で反応層を作製することがで
き、高精度なバイオセンサを得られることができた。
Although the enzyme modified with an amphipathic lipid was used in the above-mentioned examples, the enzyme separated by a method of dissolving the enzyme including the unused lipid after the modification in an organic solvent and extracting the enzyme was used. Also, a reaction layer could be prepared in the same process, and a highly accurate biosensor could be obtained.

【0017】前記のようにして反応層を形成した後、カ
バー10およびスペーサー9を図2中、一点鎖線で示す
ような位置関係をもって接着した。カバーに透明な材料
を用いると、反応層の状態や試料液の導入状況を外部か
ら極めて容易に確認することが可能である。
After forming the reaction layer as described above, the cover 10 and the spacer 9 were adhered in a positional relationship as shown by the one-dot chain line in FIG. If a transparent material is used for the cover, the state of the reaction layer and the introduction state of the sample solution can be confirmed very easily from the outside.

【0018】また、カバーを装着するとカバーとスペー
サーによって出来る空間部の毛細管現象によって、試料
液はセンサ先端の試料供給孔11に接触させるだけの簡
易操作で容易に反応層部分へ導入される。
Further, when the cover is attached, the sample liquid is easily introduced into the reaction layer portion by a simple operation of bringing the sample liquid into contact with the sample supply hole 11 at the tip of the sensor due to the capillary phenomenon in the space formed by the cover and the spacer.

【0019】試料液の供給量はカバーとスペーサーによ
って生じる空間容積に依存するため、予め定量する必要
がない。さらに、測定中の試料液の蒸発を最小限に抑え
ることができ、精度の高い測定が可能となる。
Since the amount of the sample solution supplied depends on the space volume generated by the cover and the spacer, it is not necessary to quantify it in advance. Furthermore, evaporation of the sample liquid during measurement can be minimized, and highly accurate measurement can be performed.

【0020】上記のように作製したグルコースセンサ
に、試料液としてグルコース水溶液3μlを試料供給孔
12より供給した。試料液は毛細管現象によって速やか
に空気孔12部分まで達し、電極系上の反応層が溶解し
た。
3 μl of an aqueous glucose solution was supplied as a sample solution from the sample supply hole 12 to the glucose sensor manufactured as described above. The sample liquid quickly reached the air holes 12 by the capillary phenomenon, and the reaction layer on the electrode system was dissolved.

【0021】試料液を供給してから一定時間後に電極系
の対極5を基準にして測定極4にアノード方向へ+0.
5Vのパルス電圧を印加し、5秒後の電流値を測定した
ところ、試料液中のグルコース濃度に比例した応答電流
値が得られた。
After a lapse of a certain time from the supply of the sample solution, the counter electrode 5 of the electrode system is used as a reference and the measurement electrode 4 is moved to the anode direction +0.
When a pulse voltage of 5 V was applied and the current value after 5 seconds was measured, a response current value proportional to the glucose concentration in the sample solution was obtained.

【0022】反応層が試料液に溶解すると、試料液中の
グルコースはGODによる酸化を受ける。GODによる
酸化反応で移動した電子によってフェリシアン化カリウ
ムがフェロシアン化カリウムに還元される。次に、前記
のパルス電圧の印加により、生成したフェロシアン化カ
リウムの酸化電流が得られ、この電流値は基質であるグ
ルコースの濃度に対応する。
When the reaction layer is dissolved in the sample solution, glucose in the sample solution is oxidized by GOD. The electrons transferred by the oxidation reaction by GOD reduce potassium ferricyanide to potassium ferrocyanide. Next, by applying the above-mentioned pulse voltage, an oxidation current of the produced potassium ferrocyanide is obtained, and this current value corresponds to the concentration of glucose as a substrate.

【0023】(実施例2)上記実施例1と第一層7およ
び第二層8の組成以外は全て同じであるので、ここでは
省略して第1層7および第二層8に関してのみ説明す
る。
(Embodiment 2) Since the first embodiment is the same as the first embodiment except for the composition of the first layer 7 and the second layer 8, it is omitted here and only the first layer 7 and the second layer 8 will be described. .

【0024】上記(実施例1)と同様に作製した電極系
上にCMC0.5wt%水溶液を滴下、乾燥させてCM
C層を形成した。次に、前記CMC層上に両親媒性の脂
質で修飾したGOD750Uをベンゼン1mlに溶解さ
せた溶液を4μl滴下し室温で乾燥させて第一層7を形
成した。このとき使用する両親媒性の脂質で修飾された
酵素は、実施例1で記述した方法で得られたものである
が、次に電子受容体を含む水溶液を展開する工程がある
ので、酵素を修飾する際に使用されなかった過剰の脂質
は水洗、凍結乾燥を繰り返すことによって除去しておく
必要がある。続いて電子受容体としてフェリシアン化カ
リウム33mgをCMC0.5wt%を含むリン酸緩衝
液(0.2M:K2HPO4−0.2M:KH2PO4;p
H=7.4)1mlに溶解させた溶液を4μl滴下し、
50℃の温風乾燥器中で10分間乾燥させて第二層8を
形成した。これら第一層、第二層からなる反応層の外周
部分は直径約3.6mmであり、対極の直径に略一致し
ている。
A 0.5 wt% CMC aqueous solution was dropped on the electrode system prepared in the same manner as in the above (Example 1) and dried to prepare CM.
The C layer was formed. Next, 4 μl of a solution of GOD750U modified with an amphipathic lipid in 1 ml of benzene was dropped on the CMC layer and dried at room temperature to form the first layer 7. The amphipathic lipid-modified enzyme used at this time was obtained by the method described in Example 1. However, since there is a step of developing an aqueous solution containing an electron acceptor, It is necessary to remove excess lipid not used for modification by repeatedly washing with water and freeze-drying. Subsequently, a phosphate buffer solution containing 0.2 mg of potassium ferricyanide as an electron acceptor and 0.5 wt% of CMC (0.2 M: K 2 HPO 4 -0.2 M: KH 2 PO 4; p
H = 7.4) 4 μl of a solution dissolved in 1 ml was dropped,
The second layer 8 was formed by drying in a warm air dryer at 50 ° C. for 10 minutes. The outer peripheral portion of the reaction layer composed of the first layer and the second layer has a diameter of about 3.6 mm, which is substantially the same as the diameter of the counter electrode.

【0025】実施例1に対し、実施例2では電極系表面
と電子受容体を含む層が離れているのでフェリシアン化
カリウム、H2PO4-のような酸化能を有する物質の化
学的作用による電極系の特性変化が起こり難くなるもの
と考えられ、その結果、高精度なセンサ応答を有するバ
イオセンサを得ることができる。
In contrast to Example 1, in Example 2, since the surface of the electrode system and the layer containing the electron acceptor are separated, the characteristics of the electrode system due to the chemical action of substances having an oxidizing ability such as potassium ferricyanide and H2PO4-. It is considered that the change is unlikely to occur, and as a result, a biosensor having a highly accurate sensor response can be obtained.

【0026】上記のように作製したグルコースセンサ
に、試料液としてグルコースス水溶液3μlを試料供給
孔11より供給した。試料液は毛細管現象によって速や
かに空気孔12部分まで達し、電極系上の反応層が溶解
した。
To the glucose sensor manufactured as described above, 3 μl of an aqueous glucose solution was supplied as a sample solution from the sample supply hole 11. The sample liquid quickly reached the air holes 12 by the capillary phenomenon, and the reaction layer on the electrode system was dissolved.

【0027】試料液を供給してから一定時間後に電極系
の対極5を基準にして測定極4にアノード方向へ+0.
5Vのパルス電圧を印加し、5秒後の電流値を測定した
ところ、試料液中のグルコース濃度に比例した応答電流
値が得られた。
After a fixed time from the supply of the sample solution, the counter electrode 5 of the electrode system was used as a reference and the measurement electrode 4 was moved to the anode direction +0.
When a pulse voltage of 5 V was applied and the current value after 5 seconds was measured, a response current value proportional to the glucose concentration in the sample solution was obtained.

【0028】また上記実施例では親水性高分子としてC
MCを用いたが、これに限定されることはなく、他のセ
ルロース系、ビニルアルコール系、ビニルピロリドン
系、ゼラチン系、アクリル酸塩系、デンプン系、無水マ
レイン酸系、アクリルアミド系などをそれぞれ用いても
同様の効果が得られた。
In the above embodiment, C is used as the hydrophilic polymer.
Although MC was used, the present invention is not limited thereto, and other cellulose-based, vinyl alcohol-based, vinylpyrrolidone-based, gelatin-based, acrylate-based, starch-based, maleic anhydride-based, acrylamide-based, etc. are used respectively. However, the same effect was obtained.

【0029】一方、電子受容体としては、上記実施例の
フェリシアン化カリウム以外に、p−ベンゾキノン、フ
ェロセン化合物なども使用できる。
On the other hand, as the electron acceptor, p-benzoquinone, a ferrocene compound, etc. can be used in addition to the potassium ferricyanide in the above-mentioned examples.

【0030】さらに、上記実施例では測定極と対極から
なる2電極系について述べたが、参照電極を加えた3電
極方式とするとより精度の高い測定が可能である。
Further, in the above embodiment, the two-electrode system consisting of the measurement electrode and the counter electrode was described, but the three-electrode system including the reference electrode enables more accurate measurement.

【0031】[0031]

【発明の効果】以上のように本発明によると、高い信頼
性を有するバイオセンサを得ることができる。
As described above, according to the present invention, a highly reliable biosensor can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のバイオセンサであるグルコースセンサ
の断面図
FIG. 1 is a sectional view of a glucose sensor which is a biosensor of the present invention.

【図2】本発明のバイオセンサの一実施例として作製し
たグルコースセンサのうち反応層を除き、図1の斜め上
方向からみた分解斜視図
FIG. 2 is an exploded perspective view of the glucose sensor manufactured as an example of the biosensor of the present invention, except for the reaction layer, which is viewed obliquely from above in FIG.

【図3】従来のバイオセンサの一実施例ととして作製し
たグルコースセンサの断面図
FIG. 3 is a cross-sectional view of a glucose sensor manufactured as an example of a conventional biosensor.

【符号の説明】[Explanation of symbols]

1 絶縁性の基板 2、3 リード 4 測定極 5 対極 6 絶縁層 7 第一層 8 第二層 9 スペーサー 10 カバー 11 試料供給孔 12 空気孔 25 反応層 1 Insulating Substrate 2, 3 Lead 4 Measuring Electrode 5 Counter Electrode 6 Insulating Layer 7 First Layer 8 Second Layer 9 Spacer 10 Cover 11 Sample Supply Hole 12 Air Hole 25 Reaction Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 智浩 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 池田 信 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 南海 史朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohiro Yamamoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 72) Inventor Shiro Nankai 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の基板上に形成した測定極と対極を
主体とする電極系と前記電極系上に形成した反応層から
なり、前記反応層が両親媒性の脂質で修飾された酵素を
主たる成分とする層および電子受容体を主たる成分とす
る層の少なくとも2層を形成することを特徴とするバイ
オセンサ。
1. An enzyme comprising an electrode system mainly composed of a measuring electrode and a counter electrode formed on an insulating substrate and a reaction layer formed on the electrode system, the reaction layer being modified with an amphipathic lipid. A biosensor, wherein at least two layers of a layer containing ??? as a main component and a layer containing an electron acceptor as a main component are formed.
【請求項2】絶縁性の基板上に少なくとも作用極および
対極を主体とする電極系を設ける工程、前記絶縁性の基
板上に親水性高分子の水溶液を展開し乾燥させる工程、
前記親水性高分子層上に電子受容体を含む水溶液を展開
し乾燥させて親水性高分子と電子受容体を含む第一層を
設ける工程、前記第一層上に酵素を含む有機溶媒溶液を
展開し乾燥させて酵素を含む第二層を設ける工程を順次
経過して製造することを特徴とするバイオセンサの製造
法。
2. A step of providing an electrode system mainly composed of at least a working electrode and a counter electrode on an insulating substrate, a step of spreading an aqueous solution of a hydrophilic polymer on the insulating substrate and drying the same.
A step of providing an aqueous solution containing an electron acceptor on the hydrophilic polymer layer and drying it to provide a first layer containing a hydrophilic polymer and an electron acceptor, and an organic solvent solution containing an enzyme on the first layer. A method for manufacturing a biosensor, which comprises sequentially developing and drying to provide a second layer containing an enzyme.
【請求項3】絶縁性の基板上に少なくとも作用極および
対極を主体とする電極系を設ける工程、前記絶縁性の基
板上に親水性高分子の水溶液を展開し乾燥させる工程、
前記親水性高分子層上に酵素を含む有機溶媒溶液を展開
し乾燥させて酵素を含む第一層を設ける工程、前記第一
層上に電子受容体を含む水溶液を展開し乾燥させて電子
受容体を含む第二層を設ける工程を順次経過して製造す
ることを特徴とするバイオセンサの製造法。
3. A step of providing an electrode system mainly composed of at least a working electrode and a counter electrode on an insulating substrate, a step of spreading an aqueous solution of a hydrophilic polymer on the insulating substrate and drying the same.
A step of developing an organic solvent solution containing an enzyme on the hydrophilic polymer layer and drying the solution to form a first layer containing the enzyme; developing an aqueous solution containing an electron acceptor on the first layer and drying the solution to obtain an electron acceptor A method for manufacturing a biosensor, which comprises sequentially manufacturing a step of providing a second layer including a body.
JP25285793A 1993-10-08 1993-10-08 Biosensor and manufacturing method thereof Expired - Fee Related JP3214188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25285793A JP3214188B2 (en) 1993-10-08 1993-10-08 Biosensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25285793A JP3214188B2 (en) 1993-10-08 1993-10-08 Biosensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07110313A true JPH07110313A (en) 1995-04-25
JP3214188B2 JP3214188B2 (en) 2001-10-02

Family

ID=17243142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25285793A Expired - Fee Related JP3214188B2 (en) 1993-10-08 1993-10-08 Biosensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3214188B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103003A1 (en) * 2001-06-15 2002-12-27 Matsushita Electric Industrial Co., Ltd. Lipid-modified enzymes, process for producing the same and biosensor
WO2004102176A1 (en) * 2003-05-15 2004-11-25 Matsushita Electric Industrial Co., Ltd. Sensor
WO2008007499A1 (en) * 2006-07-13 2008-01-17 Panasonic Corporation Electrochemical immunoassay chip
JP4856697B2 (en) * 2006-03-17 2012-01-18 グンゼ株式会社 Biosensor manufacturing method and biosensor
CN103412012A (en) * 2013-03-28 2013-11-27 利多(香港)有限公司 Biosensor
CN103454321A (en) * 2013-03-28 2013-12-18 利多(香港)有限公司 Biosensor and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103003A1 (en) * 2001-06-15 2002-12-27 Matsushita Electric Industrial Co., Ltd. Lipid-modified enzymes, process for producing the same and biosensor
WO2004102176A1 (en) * 2003-05-15 2004-11-25 Matsushita Electric Industrial Co., Ltd. Sensor
US7550290B2 (en) 2003-05-15 2009-06-23 Panasonic Corporation Sensor
JP4856697B2 (en) * 2006-03-17 2012-01-18 グンゼ株式会社 Biosensor manufacturing method and biosensor
WO2008007499A1 (en) * 2006-07-13 2008-01-17 Panasonic Corporation Electrochemical immunoassay chip
US7585400B2 (en) 2006-07-13 2009-09-08 Panasonic Corporation Chip for electrochemical immunoassay
CN103412012A (en) * 2013-03-28 2013-11-27 利多(香港)有限公司 Biosensor
CN103454321A (en) * 2013-03-28 2013-12-18 利多(香港)有限公司 Biosensor and manufacturing method thereof
WO2014153969A1 (en) * 2013-03-28 2014-10-02 利多(香港)有限公司 Biosensor
WO2014153968A1 (en) * 2013-03-28 2014-10-02 利多(香港)有限公司 Biosensor and manufacturing method therefor
US10209214B2 (en) 2013-03-28 2019-02-19 Leadway (Hk) Limited Biosensor

Also Published As

Publication number Publication date
JP3214188B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP3487396B2 (en) Biosensor and manufacturing method thereof
JP3027306B2 (en) Biosensor and manufacturing method thereof
JP2760234B2 (en) Substrate concentration measurement method
JP3297630B2 (en) Biosensor
JP3375040B2 (en) Substrate quantification method
JP2517153B2 (en) Biosensor and manufacturing method thereof
JP2502666B2 (en) Biosensor and manufacturing method thereof
JP2502635B2 (en) Biosensor
JPH09243591A (en) Biosensor
JPH0816664B2 (en) Biosensor and manufacturing method thereof
JPH07110313A (en) Biosensor and manufacture thereof
JP3272882B2 (en) Biosensor and manufacturing method thereof
JPH0820400B2 (en) Biosensor
JP2004264247A (en) Biosensor
JPH10232219A (en) Cholesterol sensor and its manufacture
JP3611268B2 (en) Biosensor and manufacturing method thereof
JP3745452B2 (en) Biosensor and manufacturing method thereof
JP3070818B2 (en) Biosensor and manufacturing method thereof
JP3333183B2 (en) Biosensor
JP3158762B2 (en) Fructose sensor
JP3370414B2 (en) Manufacturing method of biosensor
JPH0288960A (en) Electrode for enzyme sensor and enzyme sensor
JP3163218B2 (en) Biosensor manufacturing method
JPH08145938A (en) Biosensor and its production method
JP3222985B2 (en) Biosensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees