JPH07109570A - Vacuum deposition device and production of magnetic recording medium - Google Patents

Vacuum deposition device and production of magnetic recording medium

Info

Publication number
JPH07109570A
JPH07109570A JP25416493A JP25416493A JPH07109570A JP H07109570 A JPH07109570 A JP H07109570A JP 25416493 A JP25416493 A JP 25416493A JP 25416493 A JP25416493 A JP 25416493A JP H07109570 A JPH07109570 A JP H07109570A
Authority
JP
Japan
Prior art keywords
vapor deposition
magnetic recording
recording medium
metal
drums
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25416493A
Other languages
Japanese (ja)
Inventor
Kaji Maezawa
可治 前澤
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25416493A priority Critical patent/JPH07109570A/en
Publication of JPH07109570A publication Critical patent/JPH07109570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To form the thin film of a ferromagnetic metal excellent in electromagnetic conversion characteristic with high vapor deposition efficiency by providing plural rotary drums to one vaporization source and specifying the angle between the center axis of each drum and horizontal. CONSTITUTION:Plural rotary drums 3 and 4 are provided in a vacuum deposition device. A metal vapor current is vaporized from one vaporization source toward the drums 3 and 4 and continuously laminated and deposited on a substrate such as a polymer film 1. The angle between the center axes of the drums 3 and 4 and horizontal is controlled to 0-75 deg.. A magnetic recording medium excellent in electromagnetic conversion characteristic and magnetic characteristic is mass-produced in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は量産性に優れた真空蒸着
装置とその装置を用いた高記録密度の金属薄膜型磁気記
録媒体の製造方法に関わり、産業上での利用分野は映像
機器及び情報機器分野等多岐にわたる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum vapor deposition apparatus excellent in mass productivity and a method for manufacturing a metal thin film type magnetic recording medium of high recording density using the apparatus. It covers a wide range of fields such as information equipment.

【0002】[0002]

【従来の技術】近年磁気記録媒体は磁気記録密度の向上
に見られるようにその技術的発展はめざましいものがあ
る。従来の磁気記録媒体の例としては、オ−デイオ、ビ
デオ用テ−プ材料に用いられる酸化鉄粉末、酸化クロム
粉末、純鉄粉末等を研磨剤、樹脂等のバインダ−と共に
高分子フイルム上に塗布した、塗布型の磁気記録媒体が
ある。
2. Description of the Related Art In recent years, the technical development of magnetic recording media has been remarkable as seen in the improvement of magnetic recording density. Examples of conventional magnetic recording media include audio, iron oxide powder, chrome oxide powder, pure iron powder, etc. used in video tape materials on a polymer film together with an abrasive, a binder such as a resin and the like. There is a coated magnetic recording medium coated.

【0003】しかし、従来の塗布型テ−プより保磁力、
記録密度電磁変換特性を改良するため、真空蒸着法、イ
オンプレイティング、スパッタリング法などでFe、N
i、Co、Cr等の磁性金属わ単独もしくは合金で高分
子フイルム上に蒸着する金属薄膜型磁気記録媒体の検討
がなされている。また斜方蒸着法よるオ−ディオ用、ビ
デオ用金属薄膜型磁気記録媒体が既に実用化されてい
る。
However, the coercive force of the conventional coating tape is
In order to improve the recording density electromagnetic conversion characteristics, Fe, N are used by vacuum deposition, ion plating, sputtering, etc.
Studies have been made on a metal thin film type magnetic recording medium in which a magnetic metal such as i, Co or Cr alone or an alloy thereof is vapor-deposited on a polymer film. Moreover, a metal thin film type magnetic recording medium for audio and video by the oblique evaporation method has already been put to practical use.

【0004】また、情報機器等コンピュ−タのメモリ−
として用いられるハ−ドディスク用磁気記録媒体はスパ
ッタ−法によりアルミニュウム、ガラス基板上にコバル
ト酸化物を蒸着する方法による。
Further, a memory of a computer such as an information device-
The magnetic recording medium for a hard disk used as is a method of depositing aluminum and cobalt oxide on a glass substrate by a sputtering method.

【0005】これらのメモリ−媒体においては今後記録
密度の向上と高画質化がますます要望され、そのために
さらにこれら従来の金属薄膜型磁気記録媒体の磁気特性
と電磁変換特性の大きな飛躍が期待されている。しか
し、金属薄膜型磁気記録媒体の最大の欠点として量産性
に問題があり、特に電磁変換特性の向上で蒸着効率の低
下をまねくことが多い。
In these memory media, further improvement in recording density and higher image quality will be demanded in the future, and for this reason, a great leap in magnetic characteristics and electromagnetic conversion characteristics of these conventional metal thin film magnetic recording media is expected. ing. However, the biggest drawback of the metal thin film type magnetic recording medium is a problem in mass productivity, and in particular, the improvement of electromagnetic conversion characteristics often leads to a decrease in vapor deposition efficiency.

【0006】従来の金属薄膜磁気記録媒体の製造装置お
よびその製造方法としては、(図3)に示すように連続
巻き取り真空蒸着装置を用いた製造方法が特にその生産
性において他を凌いでおり、現実的量産方法として非常
に有力である。次に製造装置、製造方法について述べ
る。高分子フイルム1を送り軸2にセットし、回転ドラ
ム3を経て巻取り軸5でまきとる。回転ドラムの下方か
らセラミックるつぼ7内の磁性金属8を電子銃10で溶
解し蒸発させ、高分子フイルム上に形成する。この時、
蒸着に不要な金属蒸気流は遮蔽板11、12でマスキン
グする。通常蒸着テ−プ(ME)は40度から90度位
の蒸着角成分を使用する。蒸着基板に使用する高分子フ
イルムは10μmのポリエチレンテレフタレート(PE
T)で、その表面に反応性蒸着法でコバルト酸化物の磁
性金属薄膜層1800Å前後をー20度のクーリングキ
ャンで蒸着する。
As a conventional apparatus for manufacturing a metal thin film magnetic recording medium and a method for manufacturing the same, a manufacturing method using a continuous winding vacuum vapor deposition apparatus as shown in FIG. 3 is particularly superior in productivity. , Is very effective as a realistic mass production method. Next, a manufacturing apparatus and a manufacturing method will be described. The polymer film 1 is set on the feed shaft 2, passed through the rotating drum 3, and wound by the winding shaft 5. The magnetic metal 8 in the ceramic crucible 7 is melted and evaporated by the electron gun 10 from below the rotating drum to form it on the polymer film. This time,
The metal vapor flow unnecessary for vapor deposition is masked by the shield plates 11 and 12. Generally, a vapor deposition tape (ME) uses a vapor deposition angle component of about 40 to 90 degrees. The polymer film used for the vapor deposition substrate is polyethylene terephthalate (PE
In T), a magnetic metal thin film layer 1800Å of cobalt oxide is vapor-deposited on the surface by a reactive vapor deposition method with a cooling can of -20 degrees.

【0007】[0007]

【発明が解決しようとする課題】今後ますますビデオ用
テ−プに於いては小型化、高画質化、情報機器において
は高記録密度化が要望される。一方、真空蒸着機を用い
た金属薄膜型磁気記録媒体の製造方法は斜方蒸着技術を
用いる限り磁気特性、電磁変換特性の向上とともに蒸着
効率が底下し生産性が著しく悪くなる。
In the future, there is a growing demand for downsizing and high image quality in video tapes and high recording density in information equipment. On the other hand, in the method of manufacturing a metal thin film type magnetic recording medium using a vacuum vapor deposition machine, as long as the oblique vapor deposition technique is used, the magnetic characteristics and electromagnetic conversion characteristics are improved, and the vapor deposition efficiency is lowered and the productivity is significantly deteriorated.

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
本発明は、真空蒸着装置内に複数の回転ドラムを設け、
一個の蒸発源でこの複数個の回転ドラムに金属蒸気流を
蒸発させ高分子フイルム等の基板に連続的に積層蒸着す
る。
In order to solve this problem, the present invention provides a plurality of rotating drums in a vacuum vapor deposition apparatus,
A single evaporation source evaporates a metal vapor stream on the plurality of rotating drums to successively stack and deposit on a substrate such as a polymer film.

【0009】[0009]

【作用】複数個の回転ドラムを有する真空蒸着装置を用
い、高分子フイルム上に強磁性金属薄膜層を形成するこ
とで、磁気特性、電磁変換特性のすぐれた金属薄膜型磁
気記録媒体を得る。特に複数個の回転ドラムで磁性金属
流を連続的に積層蒸着することで電磁変換特性と蒸着効
率が大幅に改善され、蒸着速度の向上と共に生産性も改
善される。
A ferromagnetic metal thin film layer is formed on a polymer film by using a vacuum vapor deposition apparatus having a plurality of rotating drums to obtain a metal thin film type magnetic recording medium having excellent magnetic characteristics and electromagnetic conversion characteristics. In particular, the electromagnetic conversion characteristics and the vapor deposition efficiency are greatly improved by continuously laminating the magnetic metal stream by a plurality of rotating drums, and the vapor deposition rate and productivity are also improved.

【0010】[0010]

【実施例】以下、本発明の装置の実施例について詳細に
説明する。
EXAMPLES Examples of the apparatus of the present invention will be described in detail below.

【0011】(実施例1)(図1)は本発明の実施例の
金属薄膜型蒸着テ−プをの製造する真空蒸着装置の外観
図を示す。蒸着装置の原理は高分子フイルム1を送り軸
2にセットし、回転ドラム(キャン)3、4と中間ロ−
ラ6を経て巻取り軸5で巻取る。下方よりセラミックる
つぼ7内の磁性金属8を電子ビ−ム10で溶解する。高
分子フイルム上1に酸素ガス9による反応性蒸着によ
り、Co蒸気流を酸素雰囲気中でコバルト酸化層を形成
する。その表面に反応性蒸着を用いた同様の方法でCo
の酸化膜を形成する。斜方蒸着の蒸着入射角としてそれ
ぞれ高入射角90度、低入射角40度で行った。蒸着に
不用な金属蒸気流はマスク11でそれぞれカットする。
また、遮蔽板12は蒸着時の金属蒸気流の不必要な部分
への回り込みを防ぐ。なお、回転ドラムは図2のように
ドラム間の中心軸と水平線に対する角度が0〜90度ま
で変えられるよう移動可能な構造になっており、マス
ク、遮蔽板もそれに応じて調整出来る。本発明の実施例
は主として45度の位置で行った。
(Embodiment 1) (FIG. 1) is an external view of a vacuum vapor deposition apparatus for producing a metal thin film type vapor deposition tape according to an embodiment of the present invention. The principle of the vapor deposition apparatus is that the polymer film 1 is set on the feed shaft 2 and the rotary drums (cans) 3 and 4 and the intermediate roll are used.
It winds up with the winding shaft 5 through the la 6. The magnetic metal 8 in the ceramic crucible 7 is melted by the electron beam 10 from below. A Co oxide layer is formed on the polymer film 1 by reactive vapor deposition of oxygen gas 9 with a Co vapor flow in an oxygen atmosphere. Co on the surface in a similar manner using reactive evaporation.
Forming an oxide film. The oblique incident angle was set to a high incident angle of 90 degrees and a low incident angle of 40 degrees. The mask 11 cuts off the metal vapor streams that are unnecessary for vapor deposition.
Further, the shielding plate 12 prevents the metal vapor flow from flowing into unnecessary portions during vapor deposition. The rotary drum has a movable structure such that the angle between the center axis between the drums and the horizontal line can be changed from 0 to 90 degrees as shown in FIG. 2, and the mask and the shielding plate can be adjusted accordingly. The examples of the present invention were performed primarily at the 45 degree position.

【0012】蒸着に使用した高分子基板として厚さ10
μmのポリエチレンテレフタレ−ト(PET)基板を用
い、磁性層を厚さ第1層目600Å、第2層目1200
Å、全厚1800Åとした。この時、電子ビーム蒸発源
からの平均膜堆積速度は3000nm/秒とし、回転ド
ラム3、4の温度設定をー20度とした。導入酸素量は
理論比から求めた。
The polymer substrate used for vapor deposition has a thickness of 10
Using a polyethylene terephthalate (PET) substrate with a thickness of μm, the magnetic layer has a thickness of 600 Å for the first layer and 1200 for the second layer.
Å, total thickness 1800Å. At this time, the average film deposition rate from the electron beam evaporation source was 3000 nm / sec, and the temperature of the rotating drums 3 and 4 was set to -20 degrees. The amount of oxygen introduced was calculated from the theoretical ratio.

【0013】(実施例2)(図1)の(実施例1)と同
様の蒸着装置で回転ドラムの水平線に対する相対位置を
45度、入り側回転ドラムを冷却キャン、出側回転ドラ
ムを加熱キャンを用い、冷却キャン側の蒸着はCo金属
蒸気流中に過剰の酸素ガスを導入し、非磁性のコバルト
酸化層を形成する。その表面に加熱キャンでコバルトー
酸素ガスの反応性蒸着法でコバルト酸化膜を形成する。
斜法蒸着の蒸着入射角として第1層目高入射角9O度、
底入射角20度、第2層目高入射角70度、低入射角3
0度で行った。
(Embodiment 2) In the same vapor deposition apparatus as in (Embodiment 1) of FIG. 1, the relative position of the rotary drum to the horizontal is 45 degrees, the inlet rotary drum is cooling can, and the outlet rotary drum is heating can. For the evaporation on the cooling can side, excess oxygen gas is introduced into the Co metal vapor stream to form a non-magnetic cobalt oxide layer. A cobalt oxide film is formed on the surface thereof by a heating can by a reactive vapor deposition method of cobalt-oxygen gas.
As the vapor deposition incident angle of the oblique vapor deposition, the high incident angle of the first layer is 90 degrees,
Bottom incident angle 20 °, second layer high incident angle 70 °, low incident angle 3
I went to 0 degrees.

【0014】高分子基板として厚さ7μmのポリエチレ
ンナフタレ−ト(PEN)基板を用い、磁性層を厚さ第
1層目100Å、第2層目1500Å、全厚1600Å
とした。この時、電子ビーム蒸発源からの平均膜堆積速
度は3000nm/秒とし、蒸着時の冷却キャン温度ー
20度、加熱キャンの温度設定を80度とした。酸素ガ
ス量は第一層目は理論比の10倍、第2層目は理論比か
ら求めた。
A polyethylene naphthalate (PEN) substrate having a thickness of 7 μm is used as the polymer substrate, and the magnetic layers are formed by the first layer having a thickness of 100Å, the second layer having a thickness of 1500Å, and the total thickness of 1600Å.
And At this time, the average film deposition rate from the electron beam evaporation source was 3000 nm / sec, the cooling can temperature during vapor deposition was 20 degrees, and the temperature of the heating can was set to 80 degrees. The amount of oxygen gas was calculated from the theoretical ratio for the first layer and 10 times the theoretical ratio.

【0015】(実施例3)(図1)の(実施例1)と同
様の蒸着装置で回転ドラムの水平線に対する相対位置を
図2のように30度、入り側回転ドラムを加熱キャン、
出側回転ドラムを加熱キャンを用いた。入り側回転ドラ
ムはCo−Cr金属蒸気流中を高入射角70度、底入射
角20度、加熱温度230度で第1層目を形成し、出側
回転ドラムでマスク角60〜30度の範囲で加熱温度2
30度で蒸着する。
(Embodiment 3) In the same vapor deposition apparatus as in (Embodiment 1) of FIG. 1, the relative position of the rotary drum to the horizontal line is 30 degrees as shown in FIG.
A heating can was used as the output rotary drum. The inlet side rotating drum forms the first layer in the Co-Cr metal vapor flow with a high incident angle of 70 degrees, a bottom incident angle of 20 degrees, and a heating temperature of 230 degrees, and the outlet side rotating drum has a mask angle of 60 to 30 degrees. Heating temperature in the range 2
Deposition at 30 degrees.

【0016】高分子基板として厚さ10μmのポリイミ
ド(PI)基板を用い、磁性層を厚さ第1層目300
Å、第2層目1500Å、全厚1800Åとした。この
時、電子ビーム蒸発源からの平均膜堆積速度は3000
nm/秒とした。
A polyimide (PI) substrate having a thickness of 10 μm is used as a polymer substrate, and a magnetic layer having a thickness of the first layer 300 is used.
Å, second layer 1500 Å, total thickness 1800 Å. At this time, the average film deposition rate from the electron beam evaporation source is 3000.
nm / sec.

【0017】以上の様な実施例による金属薄膜型磁気記
録媒体の性能と効果について述べる。8mmデッキによ
る電磁変換特性の評価結果と蒸着効率の測定結果を(表
1)に示す。
The performance and effect of the metal thin film type magnetic recording medium according to the above embodiment will be described. The evaluation results of the electromagnetic conversion characteristics and the measurement results of the vapor deposition efficiency by the 8 mm deck are shown in (Table 1).

【0018】[0018]

【表1】 [Table 1]

【0019】金属薄膜型磁気記録媒体の評価法は蒸着後
8mmテ−プにし、市販の8mmビデオデッキを評価装
置に改造し、メタルヘッドを用いて電磁変換特性を調べ
た。電磁変換特性は記録周波数7MHZ近傍の出力、C
/Nで評価し、従来例に対する相対出力として比較し
た。蒸着効率を比較するため蒸着前後のフイルム基板と
ルツボ内の磁性金属の重量変化を測定することで求め
た。また、蒸着効率を計算式Cos3θより求め実験値
との比較を行った。
The evaluation method of the metal thin film type magnetic recording medium was set to 8 mm tape after vapor deposition, a commercially available 8 mm video deck was modified into an evaluation device, and electromagnetic conversion characteristics were examined using a metal head. Electromagnetic conversion characteristics include output near recording frequency 7MHZ, C
/ N was evaluated and compared as a relative output with respect to the conventional example. In order to compare the deposition efficiency, it was determined by measuring the weight change of the magnetic metal in the film substrate and the crucible before and after the deposition. Further, the vapor deposition efficiency was obtained from the calculation formula Cos 3 θ and compared with the experimental value.

【0020】その結果、本発明の実施例では従来例と比
較して記録波長全域に渡って優れており、特に短波長領
域においてはC/Nで5dB以上改善されている。本発
明の実施例と従来例の電磁変換特性を見た場合短波長域
での出力はあまり変わらずノイズが低くその分C/Nと
して改善される。一方、本発明のもう一つの特徴である
蒸着効率は蒸着条件を従来例と同様の実施例1と比較し
た場合、蒸着効率は1.5倍向上しており、理論計算値
の1.6倍と一致していた。実施例2が実施例1より蒸
着効率が高いのは蒸着入射角の違いによる。しかし、実
施例2と実施例3と比較した場合実施例3のほうが蒸着
角として蒸着効率では不利であるにも関わらず変わらな
いのは2個の回転ドラムの相対位置が底角側に位置し、
蒸発源に近い位置関係にあるため蒸発レートの高い条件
下で蒸着するためである。
As a result, the embodiment of the present invention is superior to the conventional example over the entire recording wavelength, and in particular, in the short wavelength region, the C / N is improved by 5 dB or more. When looking at the electromagnetic conversion characteristics of the embodiment of the present invention and the conventional example, the output in the short wavelength region does not change much and the noise is low, and the C / N is improved accordingly. On the other hand, as for the vapor deposition efficiency which is another feature of the present invention, when the vapor deposition conditions are compared with those of Example 1 similar to the conventional example, the vapor deposition efficiency is improved by 1.5 times, which is 1.6 times the theoretical calculated value. Was in agreement. The reason that the vapor deposition efficiency of Example 2 is higher than that of Example 1 is due to the difference in vapor deposition incident angle. However, in comparison with the second and third embodiments, although the third embodiment has a poorer vapor deposition angle in terms of vapor deposition efficiency, the fact that it does not change is that the relative positions of the two rotary drums are located on the bottom angle side. ,
This is because vapor deposition is carried out under the condition of high evaporation rate because of the positional relationship close to the evaporation source.

【0021】本発明の磁気記録媒体の製造時に於いて
は、1つの蒸発源から蒸着金属を蒸着する場合、2個以
上の回転ドラムで蒸着膜の形成を連続的に行うことで電
磁変換特性と蒸着効率が大幅に改善される。
In the production of the magnetic recording medium of the present invention, when the vapor deposition metal is vapor-deposited from one vaporization source, the vapor-deposited film is continuously formed by two or more rotary drums to obtain the electromagnetic conversion characteristics. The vapor deposition efficiency is greatly improved.

【0022】[0022]

【発明の効果】以上の様に本発明の真空蒸着装置を用い
磁気記録媒体を製造すると、電磁変換特性のすぐれた蒸
着効率の高い量産性に富んだ磁気記録媒体を得ることが
出来る。
As described above, when a magnetic recording medium is manufactured using the vacuum vapor deposition apparatus of the present invention, it is possible to obtain a magnetic recording medium having excellent electromagnetic conversion characteristics, high vapor deposition efficiency, and high productivity.

【0023】これは、真空蒸着装置内に一個の蒸発源
で、2個以上のの回転ドラムを設けることで連続的に高
分子フイルム上に効率よく磁性金属を積層し大幅なノイ
ズ低減を行い、且つ従来利用できなかった金属蒸気流を
も蒸着することで蒸着効率の向上が達成できる。この場
合高分子フイルム上に積層する磁性金属は1層目から2
層目にすると+5dBのC/Nの改善と1.5倍の蒸着
効率の向上が見られる。また、回転ドラムの数を3個に
すること、即ち2層から3層に磁性金属層を増加させる
とC/Nで更に+1dB,蒸着効率で1.1倍の改善が
みられる。しかし、回転ドラムを増加する効果は4層位
から顕著に低下する。回転ドラムの相対位置に関しては
中心軸と水平線を結ぶ角が0度以下の場合磁性金属の結
晶粒の成長方向が反対になり、また75度以上になると
蒸着効率があまり向上しない。
This is one evaporation source in the vacuum vapor deposition apparatus, and by providing two or more rotating drums, the magnetic metal is efficiently laminated continuously on the polymer film to significantly reduce noise. In addition, the vapor deposition efficiency can be improved by vapor-depositing a metal vapor stream which has not been conventionally available. In this case, the magnetic metal laminated on the polymer film is
In the layer, an improvement in C / N of +5 dB and an improvement in vapor deposition efficiency of 1.5 times can be seen. Further, when the number of rotating drums is set to 3, that is, when the number of magnetic metal layers is increased from 2 to 3, the C / N is further improved by +1 dB and the vapor deposition efficiency is improved by 1.1 times. However, the effect of increasing the number of rotating drums is significantly reduced from the fourth layer. Regarding the relative position of the rotary drum, when the angle connecting the central axis and the horizontal line is 0 degrees or less, the growth direction of the crystal grains of the magnetic metal is opposite, and when it is 75 degrees or more, the vapor deposition efficiency is not improved so much.

【0024】なお、実施例で用いた高分子基板はポリエ
チレンテレフタレート、ポリアミド、ポリイミド、ポリ
塩化ビニル、ポリエチレンナフタレート、ポリカーボネ
ート、セルローズトリアセテート等が利用できる。
As the polymer substrate used in the examples, polyethylene terephthalate, polyamide, polyimide, polyvinyl chloride, polyethylene naphthalate, polycarbonate, cellulose triacetate and the like can be used.

【0025】磁性金属はCo、Ni、Fe、Crを単独
或いは混合の形で、金属もしくは金属化合物の形で用い
ることが出来る。しかし、本発明の実施に当たってCo
金属を中心とした磁性金属金属薄膜が最も電磁変換特
性、磁気特性に優れていた。
As the magnetic metal, Co, Ni, Fe and Cr may be used alone or in a mixed form, in the form of a metal or a metal compound. However, in implementing the present invention, Co
The magnetic metal-metal thin film centered on metal was the most excellent in electromagnetic conversion characteristics and magnetic characteristics.

【0026】その他、蒸着時の入射角、蒸着温度、蒸着
膜厚、酸素ガス導入など本発明を実施するにあたり本発
明の製造法に限定することなく他の方法も可能である。
本発明の真空蒸着装置は磁気記録媒体の製造に限らず、
コンデンサ、包装紙、金糸銀紙、液晶配向膜、そのほか
の各種機能性薄膜にも応用できることは言うまでもな
い。
In addition to the above, the present invention is not limited to the production method of the present invention, such as the incident angle at the time of vapor deposition, the vapor deposition temperature, the vapor deposition film thickness, and the introduction of oxygen gas.
The vacuum vapor deposition apparatus of the present invention is not limited to the manufacture of magnetic recording media,
It goes without saying that it can be applied to capacitors, wrapping paper, gold / silver paper, liquid crystal alignment film, and various other functional thin films.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体の製造装置と製造方法の
第1の実施例を示す図
FIG. 1 is a diagram showing a first embodiment of a magnetic recording medium manufacturing apparatus and manufacturing method according to the present invention.

【図2】本発明の磁気記録媒体の製造装置と製造方法の
第2の実施例を示す図
FIG. 2 is a diagram showing a second embodiment of a magnetic recording medium manufacturing apparatus and manufacturing method according to the present invention.

【図3】従来の磁気記録媒体の製造方法を示す図FIG. 3 is a diagram showing a conventional method of manufacturing a magnetic recording medium.

【符号の説明】[Explanation of symbols]

1 高分子フイルム 2 送り軸 3 回転ドラム 4 回転ドラム 5 巻取軸 6 中間ローラ 7 るつぼ 8 磁性金属 9 酸素ガスノズル 10 電子銃 11 マスク 12 遮蔽板 1 polymer film 2 feed shaft 3 rotary drum 4 rotary drum 5 winding shaft 6 intermediate roller 7 crucible 8 magnetic metal 9 oxygen gas nozzle 10 electron gun 11 mask 12 shield plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】1個の蒸発源に対し2個以上の回転ドラム
を有し、前記回転ドラムが冷却または加熱機構を持ち、
2個の回転ドラムの中心軸と水平線のなす角が0度から
75度の範囲にあることを特徴とする真空蒸着装置。
1. An evaporation source has two or more rotating drums, and the rotating drums have a cooling or heating mechanism.
A vacuum vapor deposition apparatus characterized in that an angle between a central axis of two rotating drums and a horizontal line is in a range of 0 to 75 degrees.
【請求項2】請求項1の蒸着装置で高分子フイルム上に
強磁性金属薄膜層を連続に積層することを特徴とする磁
気記録媒体の製造方法。
2. A method of manufacturing a magnetic recording medium, wherein a ferromagnetic metal thin film layer is continuously laminated on a polymer film by the vapor deposition apparatus of claim 1.
【請求項3】強磁性金属薄膜層がCo金属化合物である
ことを特徴とする請求項2記載の磁気記録媒体の製造方
法。
3. The method of manufacturing a magnetic recording medium according to claim 2, wherein the ferromagnetic metal thin film layer is a Co metal compound.
JP25416493A 1993-10-12 1993-10-12 Vacuum deposition device and production of magnetic recording medium Pending JPH07109570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25416493A JPH07109570A (en) 1993-10-12 1993-10-12 Vacuum deposition device and production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25416493A JPH07109570A (en) 1993-10-12 1993-10-12 Vacuum deposition device and production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH07109570A true JPH07109570A (en) 1995-04-25

Family

ID=17261126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25416493A Pending JPH07109570A (en) 1993-10-12 1993-10-12 Vacuum deposition device and production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07109570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus

Similar Documents

Publication Publication Date Title
WO1992016938A1 (en) Vertical magnetic recording medium and its manufacturing method
US5370928A (en) Magnetic recording medium
JPH07109570A (en) Vacuum deposition device and production of magnetic recording medium
JPH08129736A (en) Magnetic recording medium
JPH01264632A (en) Method and apparatus for producing magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JP2976699B2 (en) Magnetic recording medium and manufacturing method thereof
JP3139181B2 (en) Manufacturing method of magnetic recording medium
JPH08129748A (en) Magnetic recording medium
JPH06195672A (en) Magnetic recording medium and its production
JP2756241B2 (en) Magnetic recording media
JP3491778B2 (en) Magnetic recording media
JPH0536068A (en) Magnetic recording medium and production thereof
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP2977618B2 (en) Magnetic recording method
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS63102028A (en) Production of magnetic recording medium
JPS6111919A (en) Magnetic recording medium
JPH0536053A (en) Magnetic recording medium and production thereof
JPH05159287A (en) Production of magnetic recording medium
JPS6194238A (en) Preparation of magnetic recording medium
JPH07224375A (en) Vacuum deposition device and production of metallic thin-film magnetic recording medium
JPH06111272A (en) Magnetic recording medium and its manufacture
JPS58199440A (en) Manufacture of magnetic recording medium
JPH11191213A (en) Magnetic recording medium, device and method for manufacturing it