JPH07109186B2 - Injection control device for accumulator fuel injection device for diesel engine - Google Patents

Injection control device for accumulator fuel injection device for diesel engine

Info

Publication number
JPH07109186B2
JPH07109186B2 JP63206880A JP20688088A JPH07109186B2 JP H07109186 B2 JPH07109186 B2 JP H07109186B2 JP 63206880 A JP63206880 A JP 63206880A JP 20688088 A JP20688088 A JP 20688088A JP H07109186 B2 JPH07109186 B2 JP H07109186B2
Authority
JP
Japan
Prior art keywords
valve
pressure
chamber
injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63206880A
Other languages
Japanese (ja)
Other versions
JPH01159440A (en
Inventor
正寛 明田
昌一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63206880A priority Critical patent/JPH07109186B2/en
Publication of JPH01159440A publication Critical patent/JPH01159440A/en
Publication of JPH07109186B2 publication Critical patent/JPH07109186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、ディーゼルエンジン用蓄圧式燃料噴射装置の
噴射制御装置に関し、特に、噴射開始時期の制御精度を
高められるとともに、プレ噴射とメイン噴射との2段噴
射ができ、しかも、その2段噴射が低負荷領域でも実現
できるようにした、ディーゼルエンジン用蓄圧式燃料噴
射装置の噴射時期制御装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection control device for a pressure-accumulation fuel injection device for a diesel engine, and more particularly to improving the control accuracy of the injection start timing, pre-injection and main injection. The present invention relates to an injection timing control device for a pressure-accumulation fuel injection device for a diesel engine, which can perform two-stage injection with the above and can realize the two-stage injection even in a low load region.

<従来技術> 一般に、ディーゼルエンジン用蓄圧式燃料噴射装置は、
例えば第1図あるいは第6図に示すように、蓄圧式燃料
噴射器7と、これに燃料を供給する燃料供給系とを備え
ている。
<Prior Art> Generally, a pressure accumulating fuel injection device for a diesel engine is
For example, as shown in FIG. 1 or FIG. 6, a pressure accumulation type fuel injector 7 and a fuel supply system for supplying fuel to this are provided.

上記蓄圧式燃料噴射器7とは、例えば700〜1200気圧と
いうような高圧で蓄圧貯留された燃料を噴射する燃料噴
射器であって、例えば第1図、第2図、第6図に示すよ
うに、外部から燃料を受け入れる燃料入口11と、これに
順次接続された閉弁圧室12、逆止弁13、燃料蓄圧貯留室
14、噴射弁15及び噴射孔16と、閉弁バネ43とを有し、上
記噴射弁15が燃料蓄圧貯留室14の内圧により開弁付勢さ
れる一方、閉弁バネ43の付勢力及び閉弁圧室12の内圧に
より閉弁付勢されるように構成されている。そして、こ
の燃料噴射弁15は、燃料蓄圧貯留室14の内圧に対抗する
閉弁バネ43により噴射弁15が閉弁されている状態で燃料
供給系から例えば700〜1200気圧の高圧の燃料を燃料入
口11、閉弁圧室12及び逆止弁13を介して燃料蓄圧貯留室
14に圧入した後、閉弁圧室12の内圧を圧抜きすることに
より燃料蓄圧貯留室14の内圧からなる開弁力よりも閉弁
圧室12の内圧及び閉弁バネ43の付勢力からなる閉弁力を
弱くして噴射弁15を開弁させ、噴射孔16から燃料を噴射
させるように構成されている。
The pressure-accumulation fuel injector 7 is a fuel injector that injects fuel that has been accumulated and accumulated at a high pressure such as 700 to 1200 atm, and is, for example, as shown in FIG. 1, FIG. 2, and FIG. A fuel inlet 11 for receiving fuel from the outside, a valve closing pressure chamber 12, a check valve 13, and a fuel pressure accumulating chamber which are sequentially connected to the fuel inlet 11.
14, the injection valve 15 and the injection hole 16, and the valve closing spring 43, the injection valve 15 is urged to open the valve by the internal pressure of the fuel pressure accumulating storage chamber 14, while the urging force and closing of the valve closing spring 43. The valve pressure chamber 12 is configured to be biased to be closed by the internal pressure of the valve chamber 12. The fuel injection valve 15 is a fuel supply system that injects high-pressure fuel of, for example, 700 to 1200 atm while the injection valve 15 is closed by a valve closing spring 43 that opposes the internal pressure of the fuel pressure accumulating chamber 14. Fuel pressure storage chamber through inlet 11, valve closing pressure chamber 12 and check valve 13
After press-fitting in 14, the internal pressure of the valve closing pressure chamber 12 is depressurized so that the internal pressure of the valve closing pressure chamber 12 and the urging force of the valve closing spring 43 are more than the valve opening force of the internal pressure of the fuel pressure accumulating chamber 14. The injection valve 15 is opened by weakening the valve closing force, and the fuel is injected from the injection hole 16.

尚、上記燃料供給系は、所定のタイミングで蓄圧式燃料
噴射器7に上記のような高圧で燃料を圧入するために、
次のように構成されるのが通例である。すなわち、第1
図及び第6図に示すように、燃料タンク1から燃料を燃
料ポンプ(フィードポンプ)2で汲み出し汲み出された
燃料の圧力を調圧装置3で例えばエンジン回転数に対応
して調圧し、更に調量装置4でエンジンの負荷状態に対
応して調量してから圧送ポンプ(トランスファポンプ)
5で圧送し、圧送ポンプ5から吐出された燃料を燃料噴
射ポンプ6で例えば700〜1200気圧というような所定圧
以上の高圧に加圧して蓄圧式燃料噴射器7に圧入するよ
うに構成されている。また、上記燃料噴射ポンプ6は、
通常、プランジャポンプで構成され、圧送ポンプ5側へ
の逆流を防止するためにプランジャ8が出入りするポン
プ室9の上流側に入口弁10を備え、ポンプ室9の出口側
は蓄圧式燃料噴射器7の燃料入口11に接続される。
The fuel supply system is designed to inject fuel at a high pressure as described above into the pressure-accumulation fuel injector 7 at a predetermined timing.
It is usually configured as follows. That is, the first
As shown in FIGS. 6 and 6, fuel is pumped out of a fuel tank 1 by a fuel pump (feed pump) 2 and the pressure of the pumped fuel is regulated by a pressure regulator 3 in accordance with, for example, the engine speed. A pressure pump (transfer pump) after the amount is adjusted by the metering device 4 according to the load condition of the engine.
5, the fuel discharged from the pressure-feeding pump 5 is pressurized by the fuel injection pump 6 to a high pressure of a predetermined pressure or higher such as 700 to 1200 atm, and is injected into the pressure-accumulation fuel injector 7. There is. Further, the fuel injection pump 6 is
Normally, a plunger pump is provided, and an inlet valve 10 is provided on the upstream side of a pump chamber 9 through which the plunger 8 moves in and out in order to prevent reverse flow to the pressure pump 5, and the outlet side of the pump chamber 9 is a pressure accumulation type fuel injector. 7 is connected to the fuel inlet 11.

ところで、上記のように構成されたディーゼルエンジン
用蓄圧式燃料噴射装置においては、所定のタイミングに
閉弁圧室の内圧を圧抜きして噴射弁15を開弁させるよう
に構成した噴射制御装置が必要とされる。
By the way, in the pressure-accumulation fuel injection device for diesel engine configured as described above, the injection control device configured to open the injection valve 15 by depressurizing the internal pressure of the valve closing pressure chamber at a predetermined timing. Needed.

従来、蓄圧式燃料噴射装置の噴射制御装置としては、上
記の燃料噴射ポンプ6が兼用されている。即ち、蓄圧式
燃料噴射器7に燃料を蓄圧した後にプランジャ8をポン
プ室9から退出させることによりポンプ室9の容積を増
大させ、入口弁10と逆止弁13との間に区画された閉弁圧
室12、燃料入口11及びポンプ室9の内圧が減圧され、開
弁力よりも閉弁力を減少させて噴射弁15を開弁させるよ
うに構成されている。
Conventionally, the above fuel injection pump 6 is also used as an injection control device of a pressure accumulation type fuel injection device. That is, the volume of the pump chamber 9 is increased by retracting the plunger 8 from the pump chamber 9 after the fuel is accumulated in the pressure-accumulation fuel injector 7, and the closed space defined between the inlet valve 10 and the check valve 13 is increased. The internal pressures of the valve pressure chamber 12, the fuel inlet 11 and the pump chamber 9 are reduced, and the valve closing force is reduced rather than the valve opening force to open the injection valve 15.

<発明が解決しようとする課題> このような従来の蓄圧式燃料噴射装置の燃料噴射制御装
置では、プランジャ8が受けるポンプ室9の内圧に対抗
するためにプランジャ9を駆動するカムあるいはこれに
連動する伝動機構との間にある程度大きな接触面積を与
える必要がある。従って、プランジャ8を急激に上昇さ
せるようなカムプロフィルを形成することが困難であ
り、プランジャの上昇速度を高速化する上で大きな制限
が課せられることになる。また、プランジャ8の慣性に
よってもプランジャ8の上昇速度に一定の制限が与えら
れる。プランジャ8の上昇速度に制限が与えられるとい
うことは、ポンプ室9の容積の拡大率に大きな制限が与
えられ、閉弁圧室12の内圧の減圧勾配を一定以上急にで
きず、例えばプランジャ8とこれを駆動する駆動装置あ
るいは駆動装置内の部品どうしの打撃による機械振動等
の何らかの理由によって生じる噴射開始時期の制御のば
らつきの範囲が大きくなる。
<Problems to be Solved by the Invention> In such a fuel injection control device for a conventional pressure-accumulation fuel injection device, a cam that drives the plunger 9 in order to counteract the internal pressure of the pump chamber 9 received by the plunger 8 or an interlocking with the cam. It is necessary to provide a relatively large contact area with the power transmission mechanism. Therefore, it is difficult to form a cam profile that causes the plunger 8 to rise rapidly, which imposes a great limitation in increasing the rate of rise of the plunger. Further, the inertia of the plunger 8 also gives a certain limit to the rising speed of the plunger 8. The restriction on the rising speed of the plunger 8 imposes a large restriction on the expansion rate of the volume of the pump chamber 9, and the pressure reduction gradient of the internal pressure of the valve closing pressure chamber 12 cannot be made steeper than a certain level. In addition, the range of variation in control of the injection start timing caused by some reason such as mechanical vibration due to impact between the drive device that drives the drive device and components in the drive device becomes large.

そこで、本発明者は、鋭意研究を進めた結果、かかる従
来の問題点を解決し、噴射開始時期制御の制御精度を高
めるようにしたディーゼルエンジン用蓄圧式燃料噴射装
置の噴射制御装置(以下、先行発明と言う)を本発明に
先立って発明した。
Therefore, as a result of intensive research, the inventor of the present invention has solved the conventional problems and improved the injection start timing control accuracy by controlling the injection control device of the accumulator type fuel injection device for diesel engines (hereinafter, Prior invention) was invented prior to the present invention.

即ち、この先行発明では、第8図に示すように、蓄圧式
燃料噴射器7の閉弁圧室12に噴射開始指令弁(ここでは
燃料噴射ポンプ6の入口弁10が兼用されている)を介し
て圧抜路17を接続する一方、上記入口弁兼噴射開始指令
弁10を所定のタイミングで開閉する噴射開始指令手段18
を設ける、という技術的手段が講じられている。
That is, in this prior invention, as shown in FIG. 8, an injection start command valve (here, the inlet valve 10 of the fuel injection pump 6 is also used) is provided in the valve closing pressure chamber 12 of the pressure accumulating fuel injector 7. Injection start command means 18 for opening and closing the inlet valve / injection start command valve 10 at a predetermined timing while connecting the pressure release path 17 via
The technical measure is taken to provide.

この先行発明では、入口弁兼噴射開始指令弁10がその上
流側の流路の内圧で閉弁付勢されるスプール弁で構成さ
れ、噴射開始指令手段18がクランク軸に連動連結された
タイミング設定弁19と、このタイミング設定弁19を介し
て入口弁兼噴射開始指令弁10の上流側の流路に接続され
る減圧室20とを備え、燃料噴射ポンプ6から蓄圧式燃料
噴射器7に燃料を圧入した後に所定のクランク軸角度で
タイミング設定弁19を開弁させることにより入口弁兼噴
射開始指令弁10の上流側の流路と減圧室20とを連通させ
て入口弁兼噴射開始指令弁10の上流側の流路の内圧を減
圧し、入口弁兼噴射開始指令弁10を開弁させてポンプ室
9及び閉弁圧室12の内圧を減圧させるように構成されて
いる。
In this prior invention, the inlet valve / injection start command valve 10 is composed of a spool valve that is biased to be closed by the internal pressure of the flow passage on the upstream side thereof, and the injection start command means 18 is linked to the crankshaft to set the timing. A valve 19 and a decompression chamber 20 connected to the upstream side flow path of the inlet valve / injection start command valve 10 via the timing setting valve 19 are provided, and the fuel injection pump 6 supplies fuel to the pressure accumulation type fuel injector 7. After press-fitting the valve, the timing setting valve 19 is opened at a predetermined crankshaft angle to connect the upstream side flow path of the inlet valve / injection start command valve 10 and the decompression chamber 20 to make the inlet valve / injection start command valve The internal pressure of the flow passage on the upstream side of 10 is reduced, the inlet valve / injection start command valve 10 is opened, and the internal pressures of the pump chamber 9 and the valve closing pressure chamber 12 are reduced.

この場合、噴射開始指令手段18で所定のタイミングに入
口弁兼噴射開始指令弁10を開弁させることにより閉弁圧
室12の内圧を減圧させるので、上記の従来例よりも急激
に閉弁圧室12の内圧を減圧させることができ、エンジン
の高速化を図るうえで一層有利になるうえ、噴射開始の
タイミングを燃料供給系のみで簡単に制御できる利点が
ある。
In this case, since the injection start command means 18 opens the inlet valve / injection start command valve 10 at a predetermined timing to reduce the internal pressure of the valve closing pressure chamber 12, the valve closing pressure is sharper than the above-mentioned conventional example. It is possible to reduce the internal pressure of the chamber 12, which is more advantageous for increasing the engine speed, and there is an advantage that the injection start timing can be easily controlled only by the fuel supply system.

また、入口弁兼噴射開始指令弁10あるいはタイミング設
定弁19の弁孔の形状を適宜設定することにより入口弁兼
噴射開始指令弁10の開弁量を入口弁兼噴射開始指令弁10
のスプールのストロークによって変化させ、ポンプ室9
及び閉弁圧室12の内圧の減圧を経時的に制御し、噴射開
始から着火までの着火後れ期間内には噴射弁の開弁量を
小さく抑えてプレ噴射として燃料噴射量を少なくし、着
火時以降に噴射弁を急激に全開させてメイン噴射として
多量の燃料を短時間内に噴射するようにできる。そし
て、このようなプレ噴射とメイン噴射との2段噴射を実
現することにより、着火時の爆発力を弱くしてディーゼ
ルノックの発生を防止することができる。
Further, by appropriately setting the shape of the valve hole of the inlet valve / injection start command valve 10 or the timing setting valve 19, the opening amount of the inlet valve / injection start command valve 10 can be changed.
Change according to the stroke of the spool of the pump chamber 9
And controlling the pressure reduction of the internal pressure of the valve closing pressure chamber 12 with time, and reducing the fuel injection amount as pre-injection by suppressing the valve opening amount of the injection valve small within the ignition late period from the injection start to the ignition, After the ignition, the injection valve can be rapidly fully opened to inject a large amount of fuel as the main injection within a short time. Then, by realizing such two-stage injection of pre-injection and main injection, it is possible to weaken the explosive force at the time of ignition and prevent the occurrence of diesel knock.

この先行発明においては、入口弁兼噴射開始指令弁10が
蓄圧式燃料噴射器7の近傍に設けられるのに対して、タ
イミング設定弁19は、これとクランク軸との連動機構を
簡単にするために、クランク軸(あるいはこれに連動連
結された動弁カム軸等の回転軸)の軸端部に支持され、
蓄圧式燃料噴射器7が取り付けられるシリンダヘッドか
らかなり離れた位置に配置されている。また、減圧室20
も、タイミング設定弁19との距離を短くするために、例
ればタイミング設定弁19に内蔵する等、蓄圧式燃料噴射
器7から離れた位置に配置される。
In this prior invention, the inlet valve / injection start command valve 10 is provided in the vicinity of the pressure accumulation type fuel injector 7, whereas the timing setting valve 19 is for simplifying the interlocking mechanism between this and the crankshaft. Is supported on the shaft end of the crankshaft (or a rotary shaft such as a valve camshaft linked to the crankshaft),
The pressure-accumulation fuel injector 7 is arranged at a position considerably distant from the cylinder head to which the fuel injector 7 is attached. In addition, the decompression chamber 20
Also, in order to shorten the distance from the timing setting valve 19, for example, it is installed in the timing setting valve 19 and is arranged at a position away from the pressure accumulation type fuel injector 7.

しかしながら、このように閉弁圧室12から減圧室20まで
の経路長さが長いとこれらの間の流路抵抗が大きくな
り、入口弁兼噴射開始指令弁10の開弁後のポンプ室9、
燃料入口11及び閉弁圧室12の内圧の減圧勾配が比較的緩
慢になって、制御感度を高める上で、また、噴射弁15の
開弁開始時期制御のばらつきの範囲を狭くして制御精度
を高める上でなお不満が残されることが分かった。
However, if the path length from the valve closing pressure chamber 12 to the pressure reducing chamber 20 is long in this way, the flow path resistance between them becomes large, and the pump chamber 9 after the inlet valve / injection start command valve 10 is opened,
The pressure reduction gradient of the internal pressures of the fuel inlet 11 and the valve closing pressure chamber 12 becomes relatively slow to improve the control sensitivity, and the range of variation in the valve opening start timing control of the injection valve 15 is narrowed to control accuracy. It turns out that there is still dissatisfaction with raising the level.

そこで、本発明者は更にこの先行発明を改良して、エン
ジンの高速化を図るうえで有利であり、しかも、噴射開
始時期の制御精度を高められるようにしたディーゼルエ
ンジン用蓄圧式燃料噴射装置の噴射制御装置(以下、改
良発明という)を発明した。この改良発明では、第1図
ないし第3図に示すように、蓄圧式燃料噴射器7の閉弁
圧室12にこれの間近に配置された噴射開始指令弁21と噴
射開始用減圧室22とを順に接続し、上記噴射開始指令弁
21を所定の噴射開始時に開弁させる噴射開始指令手段18
が設けられる。尚、第1図ないし第3図に示す例では、
噴射開始指令弁21が入口弁10と機能的に独立した構成と
なっているが、噴射開始指令弁21と入口弁10とを互いに
兼用させることも可能である。
Therefore, the present inventor has further improved this prior invention, which is advantageous in increasing the speed of the engine, and moreover, the accumulator fuel injection device for a diesel engine, which is capable of enhancing the control accuracy of the injection start timing. Invented an injection control device (hereinafter referred to as an improved invention). In this improved invention, as shown in FIG. 1 to FIG. 3, an injection start command valve 21 and an injection start decompression chamber 22 which are arranged in the valve closing pressure chamber 12 of the pressure accumulating fuel injector 7 are provided close to the valve closing pressure chamber 12. Are connected in order, and the injection start command valve
Injection start command means 18 for opening 21 at the start of predetermined injection
Is provided. Incidentally, in the example shown in FIGS. 1 to 3,
Although the injection start command valve 21 is configured to be functionally independent of the inlet valve 10, the injection start command valve 21 and the inlet valve 10 may be combined.

この改良発明では、閉弁圧室12から噴射開始用減圧室22
との距離が短いのでこれらの間の流路抵抗が小さく、噴
射開始指令弁21の開弁後の閉弁圧室12の減圧勾配が急に
なり、制御感度が高められてエンジンの高速化を図る上
で有利になり、又、噴射開始時期のばらつきも小さくで
きる。
In this improved invention, the injection start decompression chamber 22 is opened from the valve closing pressure chamber 12.
Since the distance between the injection start command valve 21 and the injection start command valve 21 is small, the pressure decrease gradient in the valve closing pressure chamber 12 becomes steep, and the control sensitivity is increased to speed up the engine. This is advantageous in terms of achievement, and the variation in injection start timing can be reduced.

この改良発明において、噴射開始用減圧室22を噴射開始
指令手段18の減圧室20とは独立に設けることが考えられ
る。
In this improved invention, it is conceivable to provide the decompression chamber 22 for injection start independently of the decompression chamber 20 of the injection start command means 18.

しかしながら、この場合には、プランジャ8の圧入行程
において閉弁圧室12と噴射開始用減圧室22とが一時的に
連通して比較的高圧の燃料が噴射開始用減圧室22に封じ
込められ、後に噴射開始時期制御のために噴射開始指令
弁21が開弁された時に、特に、低負荷領域では閉弁圧室
12の内圧と噴射開始用減圧室22の内圧の差が比較的小さ
くなり、閉弁圧室12が充分に減圧されず、噴射開始時期
が遅れて、有効なプレ噴射ができず、ディーゼルノック
が発生するおそれが生じてくる。
However, in this case, in the press-fitting stroke of the plunger 8, the valve closing pressure chamber 12 and the injection start decompression chamber 22 are temporarily communicated with each other, and relatively high pressure fuel is confined in the injection start decompression chamber 22. When the injection start command valve 21 is opened to control the injection start timing, especially in the low load region, the valve closing pressure chamber is closed.
The difference between the internal pressure of 12 and the internal pressure of the injection start decompression chamber 22 becomes relatively small, the valve closing pressure chamber 12 is not sufficiently decompressed, the injection start timing is delayed, effective pre-injection cannot be performed, and diesel knock occurs. It may occur.

本発明は、上記の事情を考慮してなされたものであっ
て、エンジンの高速化を図るうえで有利であり、しか
も、噴射開始時期の制御精度を高められるとともに、プ
レ噴射とメイン噴射との2段噴射ができ、しかも、その
2段噴射が低負荷領域においても実現できるようにし
た、ディーゼルエンジン用蓄圧式燃料噴射装置の噴射制
御装置を提供することを目的とするものである。
The present invention has been made in consideration of the above circumstances, is advantageous in achieving high-speed engine operation, and is capable of improving the control accuracy of the injection start timing, as well as pre-injection and main injection. It is an object of the present invention to provide an injection control device for a pressure-accumulation fuel injection device for a diesel engine, which can perform two-stage injection and can realize the two-stage injection even in a low load region.

<課題を解決するための手段> 本発明に係るディーゼルエンジン用蓄圧式燃料噴射装置
の噴射制御装置は、例えば、第1図ないし第3図に示す
ように、ディーゼルエンジン用蓄圧式燃料噴射装置に蓄
圧式燃料噴射器7と、これに燃料を供給する燃料供給系
とを設け、上記蓄圧式燃料噴射器7は燃料入口11と、こ
れに順次接続された閉弁圧室12、逆止弁13、燃料蓄圧貯
留室14、噴射弁15及び噴射孔16と、閉弁バネ43とを有
し、上記噴射弁15は燃料蓄圧貯留室14の内圧により開弁
付勢される一方、閉弁バネ43の付勢力及び閉弁圧室12の
内圧により閉弁付勢されるように構成し、燃料供給系か
ら燃料を燃料入口11、閉弁圧室12及び逆止弁13を介して
燃料蓄圧貯留室14に圧入した後、所定のタイミングに上
記閉弁圧室12の内圧を圧抜きすることにより上記噴射弁
15の閉弁付勢力を開弁付勢力よりも弱めて噴射弁15を開
弁させるように構成したディーゼルエンジン用蓄圧式燃
料噴射装置の噴射制御装置を前提としている。
<Means for Solving the Problems> An injection control device of a pressure-accumulation fuel injection device for a diesel engine according to the present invention can be applied to a pressure-accumulation fuel injection device for a diesel engine as shown in FIGS. 1 to 3, for example. A pressure accumulation type fuel injector 7 and a fuel supply system for supplying fuel to the pressure accumulation type fuel injector 7 are provided, and the pressure accumulation type fuel injector 7 has a fuel inlet 11, a valve closing pressure chamber 12 and a check valve 13 sequentially connected thereto. , The fuel pressure accumulating chamber 14, the injection valve 15 and the injection hole 16, and a valve closing spring 43. The injection valve 15 is urged to open by the internal pressure of the fuel pressure accumulating chamber 14 while the valve closing spring 43. And the internal pressure of the valve closing pressure chamber 12, the fuel is accumulated from the fuel supply system through the fuel inlet 11, the valve closing pressure chamber 12 and the check valve 13. After being press-fitted into the injection valve 14, the internal pressure of the valve closing pressure chamber 12 is released at a predetermined timing so that the injection valve
It is premised on an injection control device of a pressure-accumulation fuel injection device for a diesel engine configured to open the injection valve 15 by weakening the valve closing biasing force of 15 than the valve opening biasing force.

そして、かかる構成を備えたディーゼルエンジン用蓄圧
式燃料噴射装置の噴射制御装置において、上記の目的を
達成するために、第1図ないし第4図あるいは第5図に
示すように、次のように構成したことを特徴とする。
Then, in the injection control device of the pressure-accumulation type fuel injection device for a diesel engine having such a configuration, in order to achieve the above object, as shown in FIG. 1 to FIG. 4 or FIG. It is characterized by being configured.

すなわち、上記蓄圧式燃料噴射器(7)の閉弁圧室(1
2)に、これの間近に配置された噴射開始指令弁(21)
と小容積の噴射開始用減圧室(22)とを順に接続し、 上記噴射開始指令弁(21)には、入口弁(10)を介して
燃料噴射ポンプ(6)および閉弁圧室(12)に接続さ
れ、その内圧で噴射開始指令弁(21)および入口弁(1
0)の弁体(29)を閉弁付勢する受圧室(36)と、その
弁体(29)を開弁付勢する開弁圧室(35)とを設け、 上記噴射開始指令弁(21)を所定の着火用燃料噴射開始
時に開弁させるとともに、この開弁後に入口弁(10)を
開弁させる噴射開始指令手段(18)を設け、この噴射開
始指令手段(18)には、燃料噴射ポンプ(6)から蓄圧
式燃料噴射器(7)に燃料を圧入した後の所定の時点で
開弁されるタイミング設定弁(19)と、このタイミング
設定弁(19)を介して上記受圧室(36)に連通される減
圧室(20)とを設け、 このタイミング設定弁(19)の開弁により、受圧室(3
6)を減圧室(20)に連通させて、受圧室(36)の内圧
を減圧することにより、先ず、噴射開始指令弁(21)を
開弁圧室(35)の内圧で開弁させ、上記閉弁圧室(12)
の内圧を噴射開始用減圧室(22)へ減圧し、次いで、入
口弁(10)を開弁圧室(35)の内圧で開弁させ、上記閉
弁圧室(12)の内圧を上記減圧室(20)へ圧抜きするよ
うに構成し、 上記タイミング設定弁(19)をエンジンのクランク軸に
連動連結し、 上記噴射開始用減圧室(22)を微小通路(60)を介して
受圧室(36)に連通し、 燃料圧入行程(C)において、上記プランジャ(8)の
吐出作動により、受圧室(36)の圧力を高めて、入口弁
(10)を閉じた後、噴射開始指令弁(21)を閉じた閉弁
時点(f)から、着火用燃料噴射行程(D)において、
噴射開始指令手段(18のタイミング設定弁(19)の開弁
作動により、受圧室(36)の圧力(P0)を減圧室(20)
へ減圧して、噴射開始指令弁(21)を開弁させる開弁時
点(k)までの期間を蓄圧期間(t1)とし、 上記微小通路(60)は、この蓄圧期間(t1)内におい
て、噴射開始用減圧室(22)の圧力(P4)を受圧室(3
6)へ逃がして、噴射開始用減圧室(22)の圧力(P4
を受圧室(36)の圧力(P0)にまで低下させるように構
成した 事を特徴とする。
That is, the valve closing pressure chamber (1
2), the injection start command valve (21) placed close to this
And a small volume injection decompression chamber (22) are connected in sequence, and the injection start command valve (21) is connected to the fuel injection pump (6) and the valve closing pressure chamber (12) via the inlet valve (10). ), The injection start command valve (21) and the inlet valve (1
The pressure receiving chamber (36) for urging the valve body (29) of (0) to close and the valve opening pressure chamber (35) for urging the valve body (29) to open are provided, and the injection start command valve ( 21) is opened at the start of fuel injection for a predetermined ignition, and after this opening, injection start command means (18) for opening the inlet valve (10) is provided, and this injection start command means (18) includes A timing setting valve (19) that is opened at a predetermined time point after fuel is injected from the fuel injection pump (6) to the pressure accumulation type fuel injector (7), and the above pressure reception via this timing setting valve (19). A pressure reducing chamber (20) communicating with the chamber (36) is provided, and by opening this timing setting valve (19), the pressure receiving chamber (3
6) is communicated with the decompression chamber (20) to reduce the internal pressure of the pressure receiving chamber (36), so that the injection start command valve (21) is first opened with the internal pressure of the valve opening pressure chamber (35), Valve closing pressure chamber (12)
The internal pressure of the valve to the injection decompression chamber (22), then the inlet valve (10) is opened with the internal pressure of the valve opening pressure chamber (35), and the internal pressure of the valve closing pressure chamber (12) is reduced to the above pressure. The pressure setting chamber (20) is depressurized to the chamber (20), the timing setting valve (19) is linked to the crankshaft of the engine, and the injection starting decompression chamber (22) is received through the minute passage (60). (36), in the fuel injection stroke (C), the pressure of the pressure receiving chamber (36) is increased by the discharge operation of the plunger (8), the inlet valve (10) is closed, and then the injection start command valve From the valve closing time (f) when (21) is closed, in the fuel injection stroke (D) for ignition,
The pressure (P 0 ) in the pressure receiving chamber (36) is reduced by the opening operation of the injection start command means (18 timing setting valve (19)).
The period up to the valve opening time (k) at which the injection start command valve (21) is opened by depressurizing to is the pressure accumulation period (t 1 ), and the minute passage (60) is within this pressure accumulation period (t 1 ). The pressure (P 4 ) in the injection decompression chamber (22) at the pressure receiving chamber (3
6), and the pressure (P 4 ) in the injection decompression chamber (22)
Is configured to be reduced to the pressure (P 0 ) of the pressure receiving chamber (36).

<発明の作用および効果> 本発明は、上記のように構成したことから、次のように
作用して、効果を奏する。
<Operation and Effect of the Invention> Since the present invention is configured as described above, the following operation and effects are achieved.

(イ) 着火用燃料噴射によるディーゼルノックの防止 (C) 燃料圧入 第4図に示す燃料圧入行程(C)では、プランジャ
(8)が図外の燃料噴射カムで上死点から下死点へ向か
って吐出駆動され始めると、ポンプ室(9)内の燃料の
圧力(P1)は上昇していく。この燃料は、まず、入口弁
(10)を通り、受圧室(36)へ圧入されて、入口弁(1
0)および噴射開始指令弁(21)を閉弁させる。次い
で、逆止弁(13)を押し開いて、燃料蓄圧貯留室(14)
に圧入される。
(A) Prevention of diesel knock by fuel injection for ignition (C) Fuel injection In the fuel injection process (C) shown in FIG. 4, the plunger (8) moves from top dead center to bottom dead center with a fuel injection cam (not shown). When the discharge driving is started toward, the fuel pressure (P 1 ) in the pump chamber (9) rises. This fuel first passes through the inlet valve (10) and is press-fitted into the pressure receiving chamber (36).
0) and the injection start command valve (21) are closed. Then, the check valve (13) is pushed open to open the fuel pressure accumulating chamber (14).
Is pressed into.

(D) 着火用燃料噴射 着火用燃料噴射行程(D)では、タイミング設定弁(1
9)が開くと、受圧室(36)の圧力(P0)がタイミング
設定弁(19)から減圧室(20)へ逃がされて圧力低下し
て行き、弁体(29)が開弁圧室(35)の圧力(P0′)で
開弁側へ移動させられて行く。
(D) Ignition fuel injection In the ignition fuel injection process (D), the timing setting valve (1
When 9) is opened, the pressure (P 0 ) in the pressure receiving chamber (36) is released from the timing setting valve (19) to the pressure reducing chamber (20) and the pressure decreases, and the valve disc (29) opens. It is moved to the valve opening side by the pressure (P 0 ′) in the chamber (35).

先ず、噴射開始指令弁(21)を開弁し、閉弁圧室(12)
の圧力(P1)が噴射開始指令弁(21)から噴射開始用減
圧室(22)へ逃がされて圧力低下して行き、噴射弁(1
5)の閉弁力が開弁力よりも弱くなった時点で噴射弁(1
5)が開弁され、燃料蓄圧貯留室(14)内の燃料が噴射
孔(16)から噴射されて、着火用燃料噴射が始まる。
First, the injection start command valve (21) is opened and the valve closing pressure chamber (12) is closed.
Pressure (P 1 ) is released from the injection start command valve (21) to the injection start decompression chamber (22) to decrease the pressure, and the injection valve (1
When the valve closing force of 5) becomes weaker than the valve opening force, the injection valve (1
5) is opened, the fuel in the fuel pressure accumulating chamber (14) is injected from the injection hole (16), and the fuel injection for ignition is started.

噴射開始用減圧室(22)が小容積であるため、閉弁圧室
(12)の圧力(P1)は少し低下するに止まる。着火用燃
料噴射が進み、燃料蓄圧貯留室(14)の圧力(P2)が少
し低下したときに、噴射弁(15)の開弁力が閉弁力より
も弱くなって、噴射弁(15)が閉弁され、着火用燃料噴
射が終わる。
Since the injection-starting decompression chamber (22) has a small volume, the pressure (P 1 ) in the valve closing pressure chamber (12) only slightly drops. When the fuel injection for ignition progresses and the pressure (P 2 ) in the fuel pressure accumulating chamber (14) slightly decreases, the valve opening force of the injection valve (15) becomes weaker than the valve closing force, and the injection valve (15) ) Is closed, and fuel injection for ignition ends.

この着火用燃料噴射が終了した時点から所定時間が経過
するまでは、噴射弁(15)が閉じられていて、燃料噴射
が中断される。
The injection valve (15) is closed and the fuel injection is interrupted until a predetermined time elapses after the ignition fuel injection is completed.

(E) 主燃料噴射 主燃料噴射行程(E)では、上記着火用燃料噴射行程
(D)での弁体(29)の開弁側への移動が引き続き進行
して、上記着火用燃料噴射の終了後、所定時間が経過し
た時点で、入口弁(10)が開弁する。すると、閉弁圧室
(12)の圧力(P1)が、入口弁(10)・タイミング設定
弁(19)を経て、減圧室(20)へ逃がされて、もう一度
圧力低下して行き、噴射弁(15)の閉弁力が開弁力より
も弱くなって、噴射弁(15)が開弁され、燃料蓄圧貯留
室(14)内の燃料が噴射孔(16)から噴射されて、主燃
料噴射が始まる。
(E) Main fuel injection In the main fuel injection stroke (E), the movement of the valve element (29) to the valve opening side in the ignition fuel injection stroke (D) continues to proceed, and After the end, the inlet valve (10) opens when a predetermined time has elapsed. Then, the pressure (P 1 ) in the valve closing pressure chamber (12) is released to the pressure reducing chamber (20) via the inlet valve (10) and the timing setting valve (19), and the pressure decreases again. The valve closing force of the injection valve (15) becomes weaker than the valve opening force, the injection valve (15) is opened, and the fuel in the fuel pressure accumulating chamber (14) is injected from the injection hole (16), Main fuel injection begins.

この主燃料噴射が進むにつれて、燃料蓄圧貯留室(14)
の圧力(P2)が低下して行き、やがて噴射弁(15)の開
弁力が閉弁力よりも弱くなって、噴射弁(15)が閉弁さ
れ、主燃料噴射が終了する。
As the main fuel injection progresses, the fuel pressure accumulation chamber (14)
(P 2 ) decreases, and eventually the valve opening force of the injection valve (15) becomes weaker than the valve closing force, the injection valve (15) is closed, and main fuel injection ends.

以上のように、着火用燃料噴射が一旦終了してから主燃
料噴射が開始するまでの間は、燃料噴射が行われないの
で、着火遅れ期間中の燃料噴射量が少なくて済み、これ
に続く爆発的燃焼期の燃焼ガスの圧力上昇率が低くな
り、ディーゼルノックが起こりにくい。
As described above, the fuel injection is not performed from once the ignition fuel injection is ended to the main fuel injection is started, so that the fuel injection amount during the ignition delay period may be small, and is continued. The pressure rise rate of the combustion gas during the explosive combustion period is low, and diesel knock is less likely to occur.

(ロ) 着火用燃料噴射開始時期の制御精度の向上 噴射開始指令弁(21)および噴射開始用減圧室(22)が
閉弁圧室(12)の間近に配置されているので、閉弁圧室
(12)から噴射開始用減圧室(22)に至るまでの流路の
抵抗が小さく、閉弁圧室(12)の減圧勾配が急峻にな
る。
(B) Improvement of control accuracy of ignition fuel injection start timing Since the injection start command valve (21) and the injection start decompression chamber (22) are arranged close to the valve closing pressure chamber (12), the valve closing pressure is increased. The resistance of the flow path from the chamber (12) to the injection start decompression chamber (22) is small, and the decompression gradient of the valve closing pressure chamber (12) becomes steep.

その結果、噴射開始指令弁(21)の開弁から閉弁圧室
(12)の減圧に至るまでの応答感度が敏感になり、噴射
弁(15)の開弁開始時期のばらつきが減少し、着火用燃
料噴射の噴射開始時期の制御精度が向上する。
As a result, the response sensitivity from the opening of the injection start command valve (21) to the pressure reduction of the valve closing pressure chamber (12) becomes sensitive, and the variation in the opening timing of the injection valve (15) decreases. The control accuracy of the injection start timing of the fuel injection for ignition is improved.

(ハ) エンジンの高速回転化 噴射開始指令弁(21)および入口弁(10)は、閉弁用受
圧室(36)の減圧により、開弁圧室(35)の圧力
(P0′)で開弁される。閉弁用受圧室(36)の圧力
(P0)は燃料噴射ポンプ(6)の吐出圧により高圧に高
められ、これに釣り合う開弁圧室(35)の圧力(P0′)
も高圧になる。
(C) High-speed engine rotation The injection start command valve (21) and inlet valve (10) are kept at the pressure (P 0 ′) in the valve opening pressure chamber (35) due to the pressure reduction in the valve closing pressure receiving chamber (36). The valve is opened. The pressure (P 0 ) in the valve closing pressure receiving chamber (36) is increased to a high pressure by the discharge pressure of the fuel injection pump (6), and the pressure (P 0 ′) in the valve opening pressure chamber (35) is balanced with this.
Also becomes high pressure.

閉弁用受圧室(36)の圧力(P0)は、高圧でエネルギー
密度が高いものであるから、タイミング設定弁(19)が
開弁したときの減圧室(20)への圧抜きが急速に進み、
噴射開始指令弁(21)および入口弁(10)が開弁圧室
(35)のエネルギー密度の高い高圧力で強力に急速に開
弁される。このため、閉弁用受圧室(36)の圧抜き開始
から噴射開始指令弁(21)および入口弁(10)の開弁に
至るまでの開弁応答速度は、非常に速くなる。
Since the pressure (P 0 ) in the valve closing pressure receiving chamber (36) is high and has a high energy density, pressure release to the pressure reducing chamber (20) is rapid when the timing setting valve (19) is opened. Go to
The injection start command valve (21) and the inlet valve (10) are strongly and rapidly opened by the high pressure with high energy density of the valve opening pressure chamber (35). Therefore, the valve opening response speed from the start of depressurization of the valve closing pressure receiving chamber (36) to the opening of the injection start command valve (21) and the inlet valve (10) becomes very fast.

すなわち、電動式アクチェータを用いて開弁させる場合
には、電動式アクチェータで発生する電磁力のエネルギ
ー密度が比較的低いものであるうえ、電動式アクチェー
タの作動軸の静止慣性による運動遅れが生じるため、両
弁(21)(10)の開弁応答速度が遅くなる。
That is, when the valve is opened using the electric actuator, the energy density of the electromagnetic force generated in the electric actuator is relatively low, and the motion delay due to the static inertia of the working shaft of the electric actuator occurs. , The valve opening response speed of both valves (21) (10) becomes slow.

これと比べて、本発明では、両弁(21)(10)の開弁力
は高圧力のエネルギー密度の高いものであるうえで、電
動式アクチェータの作動軸の静止慣性による運動遅れが
ないので、噴射開始指令弁(21)および入口弁(10)の
開弁応答速度が非常に速くなるのである。
In comparison with this, in the present invention, the valve opening force of both valves (21) (10) has a high energy density at high pressure, and there is no motion delay due to the static inertia of the working shaft of the electric actuator. The valve opening response speeds of the injection start command valve (21) and the inlet valve (10) are very fast.

しかも、タイミング設定弁(19)をエンジンのクランク
軸に速動連結した構成から、タイミング設定弁(19)の
開弁時期は、クランク軸の回転角度によって機械的に高
精度に正確に決定されるので、タイミング設定弁(19)
を電動式アクチェータで開弁する場合とは異なり、電動
式アクチェータの作動軸の作動遅れ時間による開弁時期
の遅れを、無くすことができる。
Moreover, since the timing setting valve (19) is connected to the crankshaft of the engine at high speed, the opening timing of the timing setting valve (19) is mechanically and accurately determined by the rotation angle of the crankshaft. So timing setting valve (19)
Unlike the case where the valve is opened by the electric actuator, the delay of the valve opening timing due to the operation delay time of the operation shaft of the electric actuator can be eliminated.

このように、クランク軸の回転角度に対するタイミング
設定弁(19)の開弁遅れが無い事と、上述の噴射開始指
令弁(21)および入口弁(10)の開弁応答速度が非常に
速くなる事とにより、エンジンの最高回転速度は、電動
式アクチェータの作動遅れ時間による制約から解放され
るので、エンジンを充分に高速回転化することができ
る。
As described above, there is no valve opening delay of the timing setting valve (19) with respect to the rotation angle of the crankshaft, and the valve opening response speed of the injection start command valve (21) and the inlet valve (10) described above becomes very fast. As a result, the maximum rotation speed of the engine is released from the restriction due to the operation delay time of the electric actuator, so that the engine can be rotated at sufficiently high speed.

(ニ) 構成の簡素化・耐久性の向上 タイミング設定弁(19)・噴射開始指令弁(21)および
入口弁(10)を開閉制御するために、電動式アクチェー
タ、これを駆動制御する電気式制御装置、およびこれら
に電力を供給するバッテリーが不要になり、その構成を
簡素化することができる。
(D) Simplified configuration and improved durability Electric actuator for controlling the opening and closing of the timing setting valve (19), injection start command valve (21) and inlet valve (10) The control device and the battery for supplying electric power to these are unnecessary, and the configuration thereof can be simplified.

しかも、電動式アクチェータ、これを駆動制御する電気
式制御装置、およびバッテリーの誤動作や故障による燃
料噴射の不良が生じる事を全く無くせるので、耐久性に
優れる。
Moreover, it is possible to completely eliminate the occurrence of defective fuel injection due to malfunction or failure of the electric actuator, the electric control device for driving and controlling the electric actuator, and the durability is excellent.

(ホ) 無負荷ないし低負荷時でも着火用噴射を確保 第6図は、エンジンの無負荷ないし低負荷時において
も、着火用燃料噴射が行われることを示す圧力変化曲線
図であり、第4図のVI部に相当する図である。
(E) Ensuring ignition injection even under no load or low load Fig. 6 is a pressure change curve diagram showing that fuel injection for ignition is performed even when the engine is unloaded or low load. It is a figure equivalent to the VI section of a figure.

以下、この第6図および第1図を参照しながら説明す
る。
Hereinafter, description will be given with reference to FIGS. 6 and 1.

第6図において、時点(c)−(i)の期間にわたり、
燃料噴射ポンプ(6)が吐出作動した後、開弁時点
(j)でタイミング設定弁(19)が開くことにより、各
部の圧力が次のように変化する。
In FIG. 6, over the period of time (c)-(i),
After the fuel injection pump (6) is discharged, the timing setting valve (19) is opened at the valve opening time point (j), so that the pressure of each part changes as follows.

(A) 全負荷時の圧力変化 エンジンの負荷が全負荷時の場合は、細い実線図で示す
ように圧力変化する。
(A) Pressure change at full load When the engine load is at full load, the pressure changes as shown by the thin solid line diagram.

時点(c)−(d)間では、入口弁(10)が開いている
ため、燃料噴射ポンプ(6)から吐出される燃料が、入
口弁(10)から受圧室(36)へ圧入される。このとき、
噴射開始指令弁(21)も開いているため、燃料が噴射開
始用減圧室(22)へも圧入される。これにより、受圧室
(36)の圧力(P0)・閉弁圧室(12)の圧力(P1)・お
よび噴射開始用減圧室(22)の圧力(P4)が(p11)か
ら(p12)に上昇する。この時点(d)で、入口弁(1
0)が受圧室(36)の圧力(P0)で閉じられ、受圧室(3
6)の圧力(P0)の上昇が(p12)で止まる。
Between the time points (c) and (d), since the inlet valve (10) is open, the fuel discharged from the fuel injection pump (6) is pressed into the pressure receiving chamber (36) from the inlet valve (10). . At this time,
Since the injection start command valve (21) is also open, fuel is also injected into the injection start decompression chamber (22). Thus, from the pressure of the pressure receiving chamber (36) (P 0) · Pressure in the valve closing pressure chamber (12) (P 1) · and injection start decompression chamber pressure (22) (P 4) is (p 11) Rise to (p 12 ). At this point (d), the inlet valve (1
0) is closed by the pressure (P 0 ) of the pressure receiving chamber (36), and the pressure receiving chamber (3
The increase in pressure (P 0 ) in 6) stops at (p 12 ).

時点(d)−(f)間では、噴射開始指令弁(21)がま
だ開いているため、噴射開始用減圧室(22)の圧力
(P4)が(p12)から(p14)にまで上昇する。この時点
(f)で、噴射開始指令弁(21)が受圧室(36)の圧力
(P0)で閉じられ、噴射開始用減圧室(22)の圧力
(P4)の上昇が(p14)で止まる。
Since the injection start command valve (21) is still open between the time points (d) and (f), the pressure (P 4 ) of the injection start decompression chamber (22) changes from (p 12 ) to (p 14 ). Rise to. At this time (f), the injection start command valve (21) is closed at the pressure (P 0 ) in the pressure receiving chamber (36), and the pressure (P 4 ) in the injection start decompression chamber (22) rises (p 14). ) To stop.

時点(e)−(i)間で、燃料噴射ポンプ(6)から吐
出された燃料が、燃料蓄圧貯留室(14)に圧入される。
閉弁圧室(12)の圧力(P1)および燃料蓄圧貯留室(1
4)の圧力(P2)は、(p13)から(p16)に上昇する。
The fuel discharged from the fuel injection pump (6) is pressed into the fuel pressure accumulating storage chamber (14) between time points (e) and (i).
Pressure (P 1 ) of valve closing pressure chamber (12) and fuel pressure accumulating chamber (1
The pressure (P 2 ) of 4) rises from (p 13 ) to (p 16 ).

時点(j)でタイミング設定弁(19)が開くと、受圧室
(36)の圧力(P0)がタイミング設定弁(19)を経て減
圧室(20)へ逃がされることにより、噴射開始指令弁
(21)が開かれて、閉弁圧室(12)の圧力(P1)が噴射
開始用減圧室(22)へ逃がされて、(p16)から(p17
にまで圧力低下していく。閉弁圧室(12)の圧力(P1
が(p16)から噴射開始用減圧幅(pd0)だけ低下した時
点(k)で、噴射弁(15)の閉弁力が開弁力よりも弱く
なって、噴射弁(15)が開弁し、着火用燃料の噴射が始
まる。
When the timing setting valve (19) is opened at the time point (j), the pressure (P 0 ) in the pressure receiving chamber (36) is released to the pressure reducing chamber (20) via the timing setting valve (19), so that the injection start command valve (21) is opened, the pressure (P 1 ) in the valve closing pressure chamber (12) is released to the injection decompression chamber (22), and (p 16 ) to (p 17 )
The pressure drops to. Pressure of closed valve chamber (12) (P 1 )
At the time point (k) where the injection starting pressure reduction range (pd 0 ) decreases from (p 16 ), the valve closing force of the injection valve (15) becomes weaker than the valve opening force and the injection valve (15) opens. Valve, and injection of ignition fuel begins.

なお、上記噴射開始用減圧幅(pd0)は、噴射弁(15)
の閉弁バネ(43)の張力が負担する閉弁力の値に相当す
る。
In addition, the pressure reduction range for starting the injection (pd 0 ) is the same as the injection valve (15).
Corresponds to the value of the valve closing force that the tension of the valve closing spring (43) bears.

(B) 無負荷時・低負荷時の圧力変化 エンジンの負荷が無負荷の場合は、太い実線図で示すよ
うに圧力変化する。
(B) Pressure change at no load / low load When the engine load is no load, the pressure changes as shown by the thick solid line.

時点(c)−(d1)間では、入口弁(10)が開いている
ため、燃料噴射ポンプ(6)から吐出される燃料が、入
口弁(10)から受圧室(36)へ圧入される。このとき、
噴射開始指令弁(21)も開いているため、燃料が噴射開
始用減圧室(22)へも圧入される。これにより、受圧室
(36)の圧力(P0)・閉弁圧室(12)の圧力(P1)・お
よび噴射開始用減圧室(22)の圧力(P4)が、(p11
から(p12)に上昇する。この時点(d1)で、入口弁(1
0)が受圧室(36)の圧力(P0)で閉じられ、受圧室(3
6)の圧力(P0)の上昇が(p12)で止まる。
Since the inlet valve (10) is open between the time points (c) and (d 1 ), the fuel discharged from the fuel injection pump (6) is pressed into the pressure receiving chamber (36) from the inlet valve (10). It At this time,
Since the injection start command valve (21) is also open, fuel is also injected into the injection start decompression chamber (22). Thus, the pressure of the pressure receiving chamber (36) (P 0) of the-valve closing pressure chamber (12) (P 1), and injection start pressure reducing chamber (22) pressure (P 4), (p 11)
To (p 12 ). At this point (d 1 ), the inlet valve (1
0) is closed by the pressure (P 0 ) of the pressure receiving chamber (36), and the pressure receiving chamber (3
The increase in pressure (P 0 ) in 6) stops at (p 12 ).

時点(d1)−(f1)間では、噴射開始指令弁(21)がま
だ開いているため、噴射開始用減圧室(22)の圧力
(P4)が(p12)から(p14)にまで上昇する。この時点
(f1)で噴射開始指令弁(21)が受圧室(36)の圧力
(P0)で閉じられ、噴射開始用減圧室(22)の圧力
(P4)の上昇が(p14)で止まる。
Since the injection start command valve (21) is still open between the time points (d 1 ) and (f 1 ), the pressure (P 4 ) in the injection start decompression chamber (22) changes from (p 12 ) to (p 14 ). ). At this time (f 1 ), the injection start command valve (21) is closed by the pressure (P 0 ) in the pressure receiving chamber (36) and the pressure (P 4 ) in the injection start decompression chamber (22) rises (p 14). ) To stop.

時点(e1)から(i)間で燃料噴射ポンプ(6)から吐
出された燃料が、燃料蓄圧貯留室(14)に圧入される。
閉弁圧室(12)の圧力(P1)および燃料蓄圧貯留室(1
4)の圧力(P2)は、(p13)から(p26)に上昇する。
The fuel discharged from the fuel injection pump (6) from the time point (e 1 ) to (i) is press-fitted into the fuel pressure accumulating storage chamber (14).
Pressure (P 1 ) of valve closing pressure chamber (12) and fuel pressure accumulating chamber (1
The pressure (P 2 ) of 4) rises from (p 13 ) to (p 26 ).

時点(j)でタイミング設定弁(19)が開くと、受圧室
(36)の圧力(P0)がタイミング設定弁(19)を経て減
圧室(20)へ逃がされることにより、噴射開始指令弁
(21)が開弁圧室(35)の圧力(P0′)で押し開かれ
て、閉弁圧室(12)の圧力(P1)が噴射開始用減圧室
(22)へ逃がされ、圧力低下していく。この圧力低下幅
が前記噴射開始用減圧幅(pd0)を越える場合には、着
火用燃料の噴射が行われるが、越えない場合には着火用
燃料噴射が行われない。このことを、次の(B1)・(B
2)・(B3)の各項の場合に分けて説明する。
When the timing setting valve (19) is opened at the time point (j), the pressure (P 0 ) in the pressure receiving chamber (36) is released to the pressure reducing chamber (20) via the timing setting valve (19), so that the injection start command valve (21) is pushed open by the pressure of the valve-opening pressure chamber (35) (P 0 '), escapes closed chamber (12) of the pressure (P 1) is injection start pressure reducing chamber (22) , The pressure drops. When the pressure decrease width exceeds the injection start pressure reduction width (pd 0 ), the ignition fuel is injected, but when it does not exceed the injection start pressure reduction width, the ignition fuel injection is not performed. This is described in (B1) and (B
2) The explanation is given separately for each item of (B3).

(B1) 絞り通路(60)を有しない場合 その1 (無負荷時に着火用燃料噴射しない) 本発明に至る前の段階の「絞り通路(60)」を有しない
場合は、次のようになる。
(B1) No throttle passage (60) No. 1 (No ignition fuel injection when no load is applied) When the throttle passage (60) before the present invention is not provided, it is as follows. .

上記時点(f1)で噴射開始指令弁(21)が閉じられて、
噴射開始用減圧室(22)の圧力(P4)の上昇が(p14
で止まった後には、噴射開始用減圧室(22)が密閉に保
たれるため、噴射開始用減圧室(22)の圧力(P4)は破
線図(P4a)で示すように(p14)に保持される。
At the above time point (f 1 ), the injection start command valve (21) is closed,
The pressure in the decompression chamber (22) for injection start (P 4 ) rises (p 14 )
Since the injection start decompression chamber (22) is kept airtight after stopping at, the pressure (P 4 ) of the injection start decompression chamber (22) is as shown by the broken line diagram (P 4a ) (p 14 a). ).

そして、時点(j)で噴射開始指令弁(21)が開かれ
て、閉弁圧室(12)の圧力が噴射開始用減圧室(22)へ
逃がされ、閉弁圧室(12)の圧力(P1)が(p26)から
(p27)へ低下する。この圧力低下幅(pd1)は、前記噴
射開始用減圧幅(pd0)を越えないため、噴射弁(15)
の閉弁力が開弁力よりも低下しないで、噴射弁(15)が
開かず、着火用燃料の噴射が行われない。
Then, at the time (j), the injection start command valve (21) is opened, the pressure in the valve closing pressure chamber (12) is released to the injection starting pressure reducing chamber (22), and the valve closing pressure chamber (12) is closed. The pressure (P 1 ) decreases from (p 26 ) to (p 27 ). This pressure drop width (pd 1 ) does not exceed the injection start depressurization width (pd 0 ), so the injection valve (15)
The valve closing force of is not lower than the valve opening force, the injection valve (15) is not opened, and the fuel for ignition is not injected.

(B2) 絞り通路(60)を有しない場合 その2 (着火用燃料噴射に必要な最小負荷) 本発明に至る前の段階の「絞り通路(60)」を有しない
場合において、着火用燃料噴射をするには、閉弁圧室
(12)の圧力(P1)および燃料蓄圧貯留室(14)の圧力
(P2)が(p36)にまで上昇するのに見合うエンジンの
部分負荷が必要である。
(B2) No throttle passage (60) No. 2 (Minimum load required for ignition fuel injection) Ignition fuel injection without "throttle passage (60)" before the present invention to the pressure (P 1) of the closing chamber (12) and the fuel accumulator storage chamber (14) of the pressure (P 2) is (p 36) requires partial load of the engine to meet to rise to Is.

その理由は、時点(j)で噴射開始指令弁(21)が開い
て、閉弁圧室(12)の圧力(P1)が噴射開始用減圧室
(22)へ逃がされたときの、閉弁圧室(12)の圧力
(P1)の圧力低下幅(pd2)が、前記噴射開始用減圧幅
(pd0)を越える値にするためである。
The reason is that when the injection start command valve (21) is opened at time (j) and the pressure (P 1 ) of the valve closing pressure chamber (12) is released to the injection start decompression chamber (22), This is because the pressure decrease width (pd 2 ) of the pressure (P 1 ) in the valve closing pressure chamber (12) exceeds the injection start depressurization width (pd 0 ).

このため、エンジンの上記部分負荷よりも小さい低負荷
領域においては、着火用燃料の噴射が行われない。
Therefore, the fuel for ignition is not injected in the low load region where the partial load of the engine is smaller than the above partial load.

(B3) 絞り通路(60)を有する場合=本発明 (無負荷・低負荷時でも着火用燃料噴射を確保) 本発明の「絞り通路(60)」を有する場合には、次のよ
うになる。
(B3) When the throttle passage (60) is provided = the present invention (ensures fuel injection for ignition even when there is no load or low load) When the "throttle passage (60)" of the present invention is provided, it is as follows. .

エンジンの無負荷時において、時点(f1)で噴射開始指
令弁(21)が閉じて、噴射開始用減圧室(22)の圧力
(P4)の上昇が止まる。この後、噴射開始用減圧室(2
2)の圧力(P4)が絞り通路(60)を通って受圧室(3
6)へ逃がされるため、この圧力(P4)は太い実線図(P
4b)で示すように、(p14)から(p12)にまで低下す
る。
When the engine is unloaded, the injection start command valve (21) closes at time (f 1 ) and the pressure (P 4 ) in the injection start decompression chamber (22) stops increasing. After this, the decompression chamber (2
The pressure (P 4 ) of 2) passes through the throttle passage (60) and the pressure receiving chamber (3
This pressure (P 4 ) is a thick solid line (P
As shown in 4 b), it decreases from (p 14 ) to (p 12 ).

そして、時点(j)で噴射開始指令弁(21)が開き、閉
弁圧室(12)の圧力(P1)が噴射開始用減圧室(22)へ
逃がされて、(p26)から(p28)にまで圧力低下してい
く。このときの圧力低下幅(pd3)が前記噴射開始用減
圧幅(pd0)を越えているので、この越える時点(k)
で噴射弁(15)の閉弁力が開弁力よりも弱くなって、噴
射弁(15)が開弁され、着火用燃料の噴射が行われるの
である。
Then, at the time point (j), the injection start command valve (21) is opened, the pressure (P 1 ) of the valve closing pressure chamber (12) is released to the injection start decompression chamber (22), and from (p 26 ). The pressure drops to (p 28 ). Since the pressure drop width (pd 3 ) at this time exceeds the injection start depressurization width (pd 0 ), this time point (k) is exceeded.
Thus, the valve closing force of the injection valve (15) becomes weaker than the valve opening force, the injection valve (15) is opened, and the fuel for ignition is injected.

これにより、本発明では、無負荷ないし低負荷時でも、
着火用燃料噴射が確保されるので、この着火用燃料噴射
直後の着火遅れ期間において、燃料噴射量が少なくなる
分だけ、爆発的燃焼期の燃焼ガスの圧力上昇率が低くな
り、ディゼルノックの発生を防止して、運転騒音の低下
を図ることができるのである。
Thus, in the present invention, even under no load or low load,
Since the fuel injection for ignition is secured, during the ignition delay period immediately after the fuel injection for ignition, the pressure increase rate of the combustion gas during the explosive combustion period becomes lower due to the decrease in the fuel injection amount, resulting in the occurrence of a diesel knock. It is possible to prevent the noise and reduce the driving noise.

<実施例1> 以下、本発明の一実施例を第1図ないし第4図に基づい
て説明する。
<Example 1> An example of the present invention will be described below with reference to Figs.

第1図は本発明に係るディーゼルエンジン用蓄圧式燃料
噴射装置の等価回路図であり、第2図はその燃料噴射装
置に使用されているユニットインジェクタの初期状態に
おける縦断面図であり、第3図は噴射開始指令弁の開弁
時の上記ユニットインジェクタの要部の縦断面図であ
り、第4図は上記ユニットインジェクタ及び噴射開始指
令手段の動作を説明するタイミング図である。
FIG. 1 is an equivalent circuit diagram of a pressure-accumulation fuel injection device for a diesel engine according to the present invention, and FIG. 2 is a vertical cross-sectional view of a unit injector used in the fuel injection device in an initial state. FIG. 4 is a vertical cross-sectional view of the main part of the unit injector when the injection start command valve is opened, and FIG. 4 is a timing diagram for explaining the operation of the unit injector and the injection start command means.

第1図に示すように、このディーゼルエンジン用蓄圧式
燃料噴射装置は、燃料タンク1と、メータリングユニッ
トMと、ユニットインジェクタUとを備えている。
As shown in FIG. 1, the pressure-accumulation type fuel injection device for a diesel engine includes a fuel tank 1, a metering unit M, and a unit injector U.

メータリングユニットMには、燃料ポンプ2、調圧装置
3、調量装置4、圧送ポンプ5が組込んである。
The metering unit M includes a fuel pump 2, a pressure regulator 3, a metering device 4, and a pressure pump 5.

上記ユニットインジェクタUには、エッジフィルタ27、
燃料噴射ポンプ6及び蓄圧式燃料噴射器7が組込んであ
る。
The unit injector U includes an edge filter 27,
A fuel injection pump 6 and an accumulator fuel injector 7 are incorporated.

上記ディーゼルエンジン用蓄圧式燃料噴射装置は、更
に、蓄圧式燃料噴射器7の燃料噴射開始のタイミングと
噴射特性とを制御する噴射制御装置を備えており、この
噴射制御装置は、後述するようにメータリングユニット
MとユニットインジェクタUとにわたって設けられる。
The pressure-accumulation fuel injection device for a diesel engine further includes an injection control device that controls the fuel injection start timing and injection characteristics of the pressure-accumulation fuel injector 7, and this injection control device will be described later. It is provided across the metering unit M and the unit injector U.

蓄圧式燃料噴射器7に燃料を供給する燃料系は、燃料タ
ンク1から燃料ポンプ2で汲み出した燃料の圧力を調圧
装置3で例えばエンジン回転数に正比例して増減するよ
うに調圧し、調圧装置3で調圧された燃料の供給量を調
量装置4で例えばエンジンの負荷に正比例して増減する
ように調量してから圧送ポンプ5でエッジフィルタ27を
介して燃料噴射ポンプ6に圧送し、燃料噴射ポンプ6で
例えば700〜1200気圧の高圧に昇圧させて蓄圧式燃料噴
射器7に圧入するように構成されている。
The fuel system that supplies fuel to the pressure-accumulation fuel injector 7 regulates the pressure of the fuel pumped from the fuel tank 1 by the fuel pump 2 by the pressure regulator 3 so as to increase or decrease in direct proportion to the engine speed, for example. The amount of fuel supplied by the pressure device 3 is adjusted by the amount adjusting device 4 so as to increase or decrease in direct proportion to, for example, the load of the engine, and then the pressure pump 5 supplies the fuel injection pump 6 via the edge filter 27. It is configured to be pressure-fed, to be pressurized to a high pressure of, for example, 700 to 1200 atm by the fuel injection pump 6, and to be press-fitted into the pressure accumulating fuel injector 7.

第2図及び第3図に示すように、上記燃料噴射ポンプ6
は、ユニットインジェクタUのボディ23の上面(第2図
では右面)から凹設されたプランジャ挿入孔24に進退可
能に挿入されたプランジャ8と、プランジャ挿入孔24の
下部にプランジャ8によって区画されたポンプ室9と、
入口弁10とを備えている。
As shown in FIG. 2 and FIG. 3, the fuel injection pump 6 is
Is separated from the upper surface (right surface in FIG. 2) of the body 23 of the unit injector U into a plunger insertion hole 24 which is recessed, and is divided by the plunger 8 below the plunger insertion hole 24. Pump room 9 and
An inlet valve 10 is provided.

この入口弁10は、プランジャ8と独立して設けることも
可能であるが、ここではユニットインジェクタUの小型
化を図るためにプランジャ8に内蔵してある。即ち、プ
ランジャ8の内部には上端部と下端部とが僅かに拡径さ
れたほぼ円筒形の弁室28が形成され、この弁室28内にス
プール29が摺動可能に内嵌されている。このスプール29
は上端が閉じられた中空円筒形に形成され、この中空部
32はスプール29の周壁の中間高さの部分を貫通する入口
通路部分31と上記プランジャ8の周壁の中間高さの部分
を貫通する入口通路部分30とを介して常時エッジフィル
タ27側(上流側)に連通させてある。上記入口弁10はス
プール29の周壁の下半部に形成された入口弁孔33と、プ
ランジャ8の周壁の下半部に形成された出口34とを備
え、スプール29が上死点よりも少し低い所定の高さより
も低く位置する時に入口弁孔33が出口34に連通されて開
弁し、スプール29がそれよりも上方に位置するときには
入口弁孔33が出口34から遮断されて閉弁されるように成
っている。
The inlet valve 10 can be provided independently of the plunger 8, but in this case, it is incorporated in the plunger 8 in order to reduce the size of the unit injector U. That is, a substantially cylindrical valve chamber 28 whose upper end and lower end are slightly expanded is formed inside the plunger 8, and a spool 29 is slidably fitted in the valve chamber 28. . This spool 29
Is a hollow cylinder with a closed top,
The reference numeral 32 indicates the edge filter 27 side (upstream side) at all times via the inlet passage portion 31 that penetrates the intermediate height portion of the peripheral wall of the spool 29 and the inlet passage portion 30 that penetrates the intermediate height portion of the peripheral wall of the plunger 8. ). The inlet valve 10 includes an inlet valve hole 33 formed in the lower half portion of the peripheral wall of the spool 29 and an outlet 34 formed in the lower half portion of the peripheral wall of the plunger 8, so that the spool 29 is slightly smaller than the top dead center. The inlet valve hole 33 communicates with the outlet 34 to open the valve when the height is lower than a predetermined height, and the inlet valve hole 33 is shut off from the outlet 34 and closed when the spool 29 is positioned higher than that. Like so.

弁室28内には、その上部に開弁圧室35が、下部にプラン
ジャストローク調整用の蓄圧室36がそれぞれスプール29
によってそれぞれ区画されている。そして、スプール29
は入口弁10の上流側に連通する中空部32及び蓄圧室36の
内圧P0によって閉弁方向に付勢され、開弁圧室35の内圧
p0′によって開弁方向に付勢されている。尚、この開弁
圧室35は、スプール29が上死点に位置するときに、スプ
ール29の周壁の上部に形成された連通孔37により中空部
32と連通され、また、スプール29が下死点に位置すると
きに、この連通孔37とプランジャ8の周壁の上部に形成
された通路38とを介して上記中空部32に連通されるよう
に成っている。
Inside the valve chamber 28, there is a valve-opening pressure chamber 35 in the upper part and a pressure-accumulating chamber 36 for adjusting the plunger stroke in the lower part.
It is divided by each. And spool 29
Is urged in the valve closing direction by the internal pressure P 0 of the hollow portion 32 communicating with the upstream side of the inlet valve 10 and the pressure accumulating chamber 36, and the internal pressure of the valve opening pressure chamber 35.
It is biased in the valve opening direction by p 0 ′. The valve opening pressure chamber 35 has a hollow portion formed by a communication hole 37 formed in an upper portion of the peripheral wall of the spool 29 when the spool 29 is located at the top dead center.
When the spool 29 is located at the bottom dead center, the spool 29 is communicated with the hollow portion 32 through the communication hole 37 and the passage 38 formed in the upper portion of the peripheral wall of the plunger 8. Made of

上記ユニットインジェクタUのボデイ23にはプランジャ
挿入孔24と平行に噴射管挿通孔25が形成してあり、この
噴射管挿通孔25に蓄圧式燃料噴射器7の噴射管26が内嵌
支持される。
An injection pipe insertion hole 25 is formed in the body 23 of the unit injector U in parallel with the plunger insertion hole 24, and the injection pipe 26 of the accumulator fuel injector 7 is fitted and supported in the injection pipe insertion hole 25. .

この噴射管26内の下半部には、閉弁圧室12と、逆止弁室
39及び燃料蓄圧貯留室14の一部分(以下、第1燃料蓄圧
貯留室という)14aとが上下方向に同軸心状に並べて一
連に形成され、第1燃料畜圧貯留室14aの下端部(第2
図では左端部)の周面に噴射弁15の弁座面40が形成され
ている。
In the lower half of the injection pipe 26, the valve closing pressure chamber 12 and the check valve chamber
39 and a part of the fuel pressure accumulating chamber 14 (hereinafter referred to as the first fuel pressure accumulating chamber) 14a are formed in series in a line coaxially in the vertical direction.
The valve seat surface 40 of the injection valve 15 is formed on the peripheral surface of the left end portion in the drawing).

この噴射弁15の弁柄42は第1燃料畜圧貯留室14a、逆止
弁室39及び閉弁圧室12を貫通し、更に、その上端部を噴
射管26の上半部内に形成された閉弁バネ室41に突入させ
てある。
The valve stem 42 of the injection valve 15 penetrates the first fuel storage chamber 14a, the check valve chamber 39 and the valve closing pressure chamber 12, and the upper end portion is formed in the upper half of the injection pipe 26. It is made to rush into the valve closing spring chamber 41.

閉弁圧室12と第1燃料畜圧噴射室14aとの間に介在する
逆止弁室39には、逆止弁13の弁13aが摺動可能に内嵌さ
れ、この弁体13aは、噴射弁15の弁柄42中間高さに形成
された拡径部からなる弁座13bに向かって閉弁バネ13cに
よって上昇付勢されている。従って、この逆止弁13の弁
体13aは閉弁圧室12の内圧(=ポンプ室9の内圧P1)で
開弁付勢され、第1燃料畜圧噴射室14aの内圧P2によっ
て閉弁付勢され、燃料噴射ポンプ6により燃料が圧入さ
れて閉弁圧室12の内圧P1が第1燃料畜圧噴射室14aの内
圧P2を上回るときにのみ開弁されることになる。
The valve 13a of the check valve 13 is slidably fitted in the check valve chamber 39 interposed between the valve closing pressure chamber 12 and the first fuel storage pressure injection chamber 14a. A valve closing spring 13c upwardly biases a valve seat 13b formed of a diameter-increased portion formed at an intermediate height of the valve stem 42 of the injection valve 15. Therefore, the valve body 13a of the check valve 13 is urged to open by the internal pressure of the valve closing pressure chamber 12 (= the internal pressure P 1 of the pump chamber 9) and closed by the internal pressure P 2 of the first fuel storage injection chamber 14a. The valve is opened, and the fuel is injected by the fuel injection pump 6 to open the valve only when the internal pressure P 1 of the valve closing pressure chamber 12 exceeds the internal pressure P 2 of the first fuel storage pressure injection chamber 14a.

上記閉弁バネ室41の内部には上記弁柄42を介して噴射弁
15を閉弁方向に付勢する閉弁バネ43が挿入されている。
An injection valve is provided inside the valve closing spring chamber 41 through the valve stem 42.
A valve closing spring 43 for urging 15 in the valve closing direction is inserted.

従って、上記噴射弁15は、閉弁バネ43の付勢力と閉弁圧
室12の内圧P1により閉弁方向に付勢され、第1燃料畜圧
貯留室14aの内圧P2によって開弁方向に付勢され、燃料
噴射ポンプ6からの燃料供給が終了して逆止弁13が閉弁
された後、閉弁圧室12の内圧P1を減圧して上記の閉弁力
が上記の開弁力よりも小さくなると開弁されることにな
る。
Therefore, the injection valve 15 is biased in the valve closing direction by the biasing force of the valve closing spring 43 and the internal pressure P 1 of the valve closing pressure chamber 12, and is opened by the internal pressure P 2 of the first fuel storage chamber 14a. After the fuel supply from the fuel injection pump 6 is completed and the check valve 13 is closed, the internal pressure P 1 of the valve closing pressure chamber 12 is reduced and the valve closing force is increased. If it becomes smaller than the valve force, it will be opened.

尚、上記閉弁バネ室41の上端は閉弁バネ43の付勢力を設
定するバネ受座44及び噴射弁15の最大開弁量を設定する
開弁制限具45により閉塞され、閉弁バネ室41の下端部は
圧力伝達路46及びプランジャ8に形成した通路38を介し
て入口弁10の開弁圧室35に連通されている。また、噴射
管26の上端部には、バネ受座44及び開弁制限具45を覆う
キャップ47が螺着してあり、このキャップ47とバネ受座
44及び開弁制限具45との間に形成される空間48は、開弁
制限具45に通設された連通路49を介して閉弁バネ室41に
連通されている。このように構成することにより、キャ
ップ47とバネ受座44及び開弁制限具45との間に形成され
る空間48は閉弁バネ室41とともに入口弁10の開弁圧室35
の急激な圧力変動を吸収する開弁圧安定用蓄圧室の役割
を果たすことになる。
The upper end of the valve closing spring chamber 41 is closed by a spring seat 44 that sets the urging force of the valve closing spring 43 and a valve opening restrictor 45 that sets the maximum valve opening amount of the injection valve 15. The lower end of 41 is communicated with the valve opening pressure chamber 35 of the inlet valve 10 via a pressure transmission passage 46 and a passage 38 formed in the plunger 8. Further, a cap 47 that covers the spring seat 44 and the valve opening restrictor 45 is screwed onto the upper end portion of the injection pipe 26. The cap 47 and the spring seat
A space 48 formed between the valve opening limiter 45 and the valve opening limiter 45 communicates with the valve closing spring chamber 41 via a communication passage 49 provided in the valve opening limiter 45. With this structure, the space 48 formed between the cap 47, the spring seat 44, and the valve opening restrictor 45 is closed together with the valve closing spring chamber 41 in the valve opening pressure chamber 35 of the inlet valve 10.
It plays the role of a valve-opening pressure stabilization accumulator that absorbs the sudden pressure fluctuations.

燃料蓄圧貯留室14の残りの部分(以下、第2燃料蓄圧貯
留室という)14bは上記噴射管26の中間高さの部分とこ
れの周囲のボディ23の部分にわたって環状に形成され、
この第2燃料蓄圧貯留室14bは逆止弁50及び圧力設定弁5
1を介して第1燃料蓄圧噴射室14aに接続される。
The remaining portion of the fuel pressure accumulating chamber 14 (hereinafter referred to as the second fuel pressure accumulating chamber) 14b is formed in an annular shape over the intermediate height portion of the injection pipe 26 and the body 23 portion around it.
The second fuel pressure accumulating storage chamber 14b is provided with a check valve 50 and a pressure setting valve 5
It is connected via 1 to the first fuel pressure accumulator and injection chamber 14a.

この逆止弁50は第1燃料蓄圧噴射室14aの内圧P2が第2
燃料蓄圧貯留室14bの残圧(例えば、約700気圧)よりも
高圧になれば開弁して第1燃料蓄圧噴射室14aから第2
燃料蓄圧貯留室14bに燃料を流入させるとともに第2燃
料蓄圧貯留室14bから第1燃料蓄圧噴射室14aへの逆流を
阻止するように構成されている。また、上記圧力設定弁
51は第2燃料蓄圧貯留室14bの内圧P3が所定の残圧以上
の昇圧すれば開弁して第2燃料蓄圧貯留室14bと第1燃
料蓄圧噴射室14aとの間の燃料の流通を許容し、第2燃
料蓄圧貯留室14bの内圧P3が所定の残圧まで減圧される
と第2燃料蓄圧貯留室14bの内圧P3が所定の残圧を下回
らないように閉弁されるように成っている。
This check valve 50 has the second internal pressure P 2 of the first fuel pressure accumulating injection chamber 14a
When the pressure becomes higher than the residual pressure of the fuel pressure accumulating chamber 14b (for example, about 700 atm), the valve is opened to move from the first fuel pressure accumulating injection chamber 14a
It is configured to allow the fuel to flow into the fuel pressure accumulating storage chamber 14b and prevent the backflow from the second fuel pressure accumulating storage chamber 14b to the first fuel pressure accumulating injection chamber 14a. In addition, the pressure setting valve
The valve 51 opens when the internal pressure P 3 of the second fuel pressure accumulating chamber 14b rises above a predetermined residual pressure to open the flow of fuel between the second fuel pressure accumulating chamber 14b and the first fuel pressure accumulating chamber 14a. acceptable, so that the internal pressure P 3 of the second fuel accumulator reservoir 14b is pressure P 3 of the is reduced to a predetermined residual pressure second fuel accumulator reservoir 14b is closed so as not to fall below a predetermined residual pressure Made of

さて、上記噴射制御装置は、第1図に示すように、ユニ
ットインジェクタU内に組み込まれる噴射開始指令弁21
及び噴射開始用減圧室22と、メータリングユニットMに
組み込まれた噴射開始指令手段18とを備えている。
Now, as shown in FIG. 1, the injection control device has an injection start command valve 21 incorporated in the unit injector U.
Further, it is provided with an injection start decompression chamber 22 and an injection start command means 18 incorporated in the metering unit M.

噴射開始指令弁21は、第2図及び第3図に示すように、
燃料噴射ポンプ6の入口弁10と共通の弁室28及びスプー
ル29を有している。即ち、この噴射開始指令弁21は、上
記プランジャ8の周壁の入口弁の出口34よりも下方でポ
ンプ室9と弁室28とを連通させる噴射開始用減圧通路52
と、上記入口弁孔33よりも下方のスプール29の周面部分
に全周にわたって凹設された弁溝53とで構成され、スプ
ール29の上死点よりも低い、入口弁10が開閉切り替えさ
れるスプール29の位置を含む所定の範囲内の高さにスプ
ール29が位置するときに噴射開始用減圧通路52と弁溝53
とが連通されて開弁されるように成っている。
The injection start command valve 21 is, as shown in FIG. 2 and FIG.
It has a valve chamber 28 and a spool 29 which are common to the inlet valve 10 of the fuel injection pump 6. That is, the injection start command valve 21 is provided with the injection start depressurizing passage 52 for communicating the pump chamber 9 and the valve chamber 28 below the outlet 34 of the inlet valve of the peripheral wall of the plunger 8.
And a valve groove 53 that is recessed over the entire circumference in the peripheral surface portion of the spool 29 below the inlet valve hole 33, and the inlet valve 10 that is lower than the top dead center of the spool 29 is opened and closed. When the spool 29 is positioned at a height within a predetermined range including the position of the spool 29, the injection depressurizing passage 52 and the valve groove 53
And are communicated with each other so that the valve is opened.

上記噴射開始用減圧室22は、噴射開始用減圧通路52に対
向するプランジャ8の周壁部分の外周面を凹入させるこ
とによりプランジャ挿入穴24の内周面とプランジャ8の
外周面との間に形成され、噴射開始用減圧通路52に対向
するプランジャ8の周壁部分に貫通形成された減圧通路
54を介して弁室28に連通されている。そして、この噴射
開始用減圧室22は噴射開始用減圧通路52と弁溝53とが連
通されるときに減圧通路54、弁溝53及び噴射開始用減圧
通路52を介してポンプ室9に連通されるように成ってい
る。また、この噴射開始用減圧室22は、常時、プランジ
ャ8の周壁に形成した微小通路60及びスプール29の周壁
に形成した連通路61を介してスプール29の中空部32に連
通されるようになっている。
The injection starting decompression chamber 22 is provided between the inner peripheral surface of the plunger insertion hole 24 and the outer peripheral surface of the plunger 8 by recessing the outer peripheral surface of the peripheral wall portion of the plunger 8 facing the injection starting decompression passage 52. The pressure reducing passage formed in the peripheral wall portion of the plunger 8 facing the injection starting pressure reducing passage 52.
It communicates with the valve chamber 28 via 54. The injection start decompression chamber 22 communicates with the pump chamber 9 through the decompression passage 54, the valve groove 53 and the injection start decompression passage 52 when the injection start decompression passage 52 and the valve groove 53 communicate with each other. Like so. Further, the injection starting decompression chamber 22 is always communicated with the hollow portion 32 of the spool 29 via the minute passage 60 formed in the peripheral wall of the plunger 8 and the communication passage 61 formed in the peripheral wall of the spool 29. ing.

第1図に示すように、噴射開始指令手段18は、入口弁10
の上流側に順次接続されたタイミング設定弁19と減圧室
20とを備え、このタイミング設定弁19が図示しないクラ
ンク軸に連動して所定のクランク軸角で開弁されたとき
に減圧室20が入口弁10の上流側と連通されるように成っ
ている。尚、このタイミング設定弁19は、エンジン回転
数に対応して噴射開始タイミングを早めたり、遅らせた
りする進角制御弁19aと、その進角範囲内で進角制御弁1
9aと入口弁10とを接続させる主タイミング設定弁19bと
で構成されている。第1図に示すように、上記進角制御
弁19aは、液圧作動式のスプール弁から成り、弁箱71内
でスプール弁体72が、釣合いばね73で遅角側へ押し上げ
弾圧されるのに対し、液圧作動室74内の燃料の圧力で進
角側へ押し下げ加圧されて、この押し下げ加圧力とその
押し上げ弾圧力とが釣り合う位置にまで上下に調節移動
させられるように構成されている。
As shown in FIG. 1, the injection start command means 18 includes an inlet valve 10
Timing setting valve 19 and decompression chamber connected in sequence upstream of the
20 is provided, and the decompression chamber 20 is communicated with the upstream side of the inlet valve 10 when the timing setting valve 19 is opened at a predetermined crankshaft angle in conjunction with a crankshaft (not shown). . The timing setting valve 19 includes an advance control valve 19a for advancing or delaying the injection start timing according to the engine speed, and an advance control valve 1a within the advance range.
It is composed of a main timing setting valve 19b connecting the inlet valve 10 and the valve 9a. As shown in FIG. 1, the advance control valve 19a is composed of a hydraulically operated spool valve, and the spool valve element 72 in the valve box 71 is pushed upward by a counterbalancing spring 73 and is elastically pressed. On the other hand, the fuel pressure in the hydraulic pressure operating chamber 74 is pushed down and pressurized toward the advance side, and is configured to be adjustable up and down to a position where the pushing down pressure and the pushing up elastic force are balanced. There is.

上記弁箱71の入り口側には上から順に、遅角側弁入口75
・中間時期弁入口76・および進角側弁入口77が開口し、
弁箱71の出口側には弁出口78が開口する。スプール弁体
72にスプール弁体通路79が横断状に形成される。このス
プール弁体通路79は、入り口側では上記遅角側弁入口75
・中間時期弁入口76・および進角側弁入口77に対しては
選択的に開通するのに対し、出口側では弁出口78を介し
て減圧室20に常時連通する。
On the inlet side of the valve box 71, from the top, the retard side valve inlet 75
・ Intermediate timing valve inlet 76 ・ and advance side valve inlet 77 open,
A valve outlet 78 opens on the outlet side of the valve box 71. Spool disc
A spool valve body passage 79 is formed in 72 in a transverse shape. The spool valve body passage 79 has the retard side valve inlet 75 on the inlet side.
The intermediate timing valve inlet 76 and the advance side valve inlet 77 are selectively opened, whereas the outlet side is always communicated with the decompression chamber 20 via the valve outlet 78.

上記液圧作動室74は、圧力連通路90を介して、前記調圧
装置3の出口側に連通している。エンジンの回転速度が
低速から中速をへて高速になることより、調圧装置3の
出口側の燃料圧が低圧から中圧を経て高圧になり、スプ
ール弁体72が液圧作動室74の作動圧で、上側の遅角側位
置から中間高さ位置を経て下側の進角側位置に移動し
て、スプール弁体通路79が遅角側弁入口75から中間時期
弁入口76を経て進角側弁入口77へと連通し換えていくよ
うに構成されている。
The hydraulic pressure working chamber 74 communicates with the outlet side of the pressure regulator 3 via a pressure communication passage 90. Since the rotation speed of the engine increases from low speed to medium speed, the fuel pressure on the outlet side of the pressure regulator 3 increases from low pressure to medium pressure to high pressure, and the spool valve element 72 moves to the hydraulic pressure operating chamber 74. The operating pressure causes the spool valve disc passage 79 to advance from the retard side valve inlet 75 through the intermediate timing valve inlet 76 by moving from the upper retard side position through the intermediate height position to the lower advance side position. It is configured to communicate with the corner side valve inlet 77.

前記主タイミング設定弁19bは、回転弁から成り、弁箱8
8内で回転弁体89がエンジンのクランク軸に連動して右
回りに回転するように構成されている。
The main timing setting valve 19b is composed of a rotary valve and has a valve box 8
The rotary valve body 89 is configured to rotate in the clockwise direction in conjunction with the crankshaft of the engine within 8.

この弁箱88の入り口側には弁入口83が開口し、その出口
側には回転弁体89の回転方向の上手側から下手側へ向か
って順に進角側弁出口84・中間時期弁出口85・および遅
角側弁出口86が開口する。
A valve inlet 83 is opened at the inlet side of the valve box 88, and an advance side valve outlet 84 and an intermediate timing valve outlet 85 are sequentially provided at the outlet side from the upper side to the lower side in the rotating direction of the rotary valve body 89.・ And the retard side valve outlet 86 opens.

エンジンのクランク軸の回転角が燃料噴射開始時期に至
ると、回転弁体89の回転弁体通路87は、その入り口側で
は弁入口83にしばらくの間連通し続けるのに対し、その
出口側では進角側弁出口84から中間時期弁出口85を経て
遅角側弁出口86へと順に連通し換えていくように構成さ
れている。
When the rotation angle of the crankshaft of the engine reaches the fuel injection start timing, the rotary valve body passage 87 of the rotary valve body 89 continues to communicate with the valve inlet 83 for a while at its inlet side, whereas it does not reach its outlet side. The advance side valve outlet 84, the intermediate timing valve outlet 85, and the retard side valve outlet 86 are sequentially communicated with each other.

このようにして構成した噴射開始指令手段18は、エンジ
ンのクランク軸の回転角が燃料噴射開始時期に至ったと
きに、回転弁体89が開通して、前記閉弁圧室12の閉弁用
圧力P1を、入口弁10・主タイミング設定弁19b・および
進角制御弁19aを経て、減圧室20へ逃がすことにより、
蓄圧式燃料噴射器7の噴射弁15の閉弁用圧力P1を弱め
て、この噴射弁15を燃料蓄圧貯留室14内の燃料蓄圧力に
よる開弁用圧力P2で開弁させて、燃料蓄圧貯留室14内に
蓄圧された燃料を噴射口16から燃焼室へ噴射させ始め
る。
The injection start command means 18 configured as described above is for closing the valve closing pressure chamber 12 by opening the rotary valve body 89 when the rotation angle of the engine crankshaft reaches the fuel injection start timing. By releasing the pressure P 1 to the decompression chamber 20 via the inlet valve 10, the main timing setting valve 19b, and the advance control valve 19a,
The valve closing pressure P 1 of the injection valve 15 of the pressure accumulation type fuel injector 7 is weakened, and the injection valve 15 is opened at the valve opening pressure P 2 due to the fuel accumulation pressure in the fuel pressure accumulation chamber 14 The fuel accumulated in the storage chamber 14 starts to be injected from the injection port 16 into the combustion chamber.

このように、回転弁体89が開通することにより、噴射弁
15を開弁させて、燃料噴射を開始させる場合において、
まず第1に、エンジンが高速回転しているときには、調
圧装置3の出口の燃料圧が高くなることにより、液圧作
動室74の圧力が高くなって、スプール弁体72を進角位置
に押し下げ、スプール弁体通路79を進角側弁体入口77に
開通させる。
In this way, by opening the rotary valve body 89, the injection valve
When opening 15 to start fuel injection,
First of all, when the engine is rotating at high speed, the fuel pressure at the outlet of the pressure regulator 3 becomes high, so that the pressure in the hydraulic pressure working chamber 74 becomes high and the spool valve body 72 is moved to the advanced position. It is pushed down to open the spool valve disc passage 79 to the advance side valve disc inlet 77.

このため、回転弁体89の回転角が、燃料噴射開始時期の
可変領域のうちでの早い時期、すなわち進角時期に達し
て、回転弁体通路87が進角側弁出口84に開通した時点
で、閉弁圧室12の閉弁用圧力P1が、回転弁体通路87・進
角側弁出口84・進角側弁入口77・およびスプール弁体通
路79を経て、減圧室20へ逃がされて減圧される。これに
より、燃料噴射時期が進角時期へと早められるのであ
る。
Therefore, when the rotation angle of the rotary valve body 89 reaches an early timing in the variable region of the fuel injection start timing, that is, the advance timing, and the rotary valve body passage 87 is opened to the advance side valve outlet 84. Then, the valve closing pressure P 1 of the valve closing pressure chamber 12 escapes to the pressure reducing chamber 20 via the rotary valve body passage 87, the advance side valve outlet 84, the advance side valve inlet 77, and the spool valve body passage 79. The pressure is reduced and the pressure is reduced. As a result, the fuel injection timing is advanced to the advance timing.

第2に、これとは逆に、エンジンガ低速回転していると
きには、調圧装置3の出口の燃料圧が低くなることによ
り、液圧作動室74の圧力が低くなって、スプール弁体72
が釣合いばね73で遅角位置に押し上げられ、スプール弁
体通路79が遅角側弁入口75に連通する。
Secondly, on the contrary, when the engine is rotating at a low speed, the fuel pressure at the outlet of the pressure regulator 3 becomes low, so that the pressure in the hydraulic working chamber 74 becomes low, and the spool valve element 72
Is pushed up to the retard position by the balance spring 73, and the spool valve body passage 79 communicates with the retard side valve inlet 75.

このため、回転弁体通路87は、まず進角側弁出口84に連
通した時点では、スプール弁体通路79に対して連通でき
ず、次に中間時期弁出口85に達した時点でも連通でき
ず、そして遅角側弁出口86に達した時点に至ってはじめ
て連通する。これにより、燃料噴射時期が遅角時期へと
遅らせられるのである。
Therefore, the rotary valve body passage 87 cannot communicate with the spool valve body passage 79 when it first communicates with the advance side valve outlet 84, and cannot communicate with the spool valve body passage 79 when it reaches the intermediate timing valve outlet 85 next. And, the communication is established only when the retard side valve outlet 86 is reached. As a result, the fuel injection timing is delayed to the retarded timing.

そして第3に、エンジンが中速回転しているときには、
上記低速回転の場合と同様に作用する事により、燃料噴
射時期が中間時期に調節制御されるのである。
And third, when the engine is rotating at medium speed,
By operating in the same manner as in the case of the low speed rotation, the fuel injection timing is adjusted and controlled to the intermediate timing.

また、上記噴射開始指令手段18には、タイミング設定弁
19と並列に減圧室20と入口弁10とを接続する吐戻し通路
55が設けられ、この吐戻し通路55には一旦開通されたタ
イミング設定弁19が遮断され、燃料噴射が終了した後の
所定のタイミングに開弁される吐戻し弁56を介在させて
ある。
Further, the injection start command means 18 includes a timing setting valve.
Exhaust return passage connecting decompression chamber 20 and inlet valve 10 in parallel with 19
55 is provided, and the discharge setting valve 19 that is once opened is shut off in the discharge returning passage 55, and a discharge returning valve 56 that is opened at a predetermined timing after the end of fuel injection is interposed.

上記燃料供給系の圧送ポンプ5とエッジフィルタ27との
間には燃料供給弁57が介在させてあり、また、上記燃料
供給系の調圧装置3の出口とエッジフィルタ27との間に
は、調圧装置4、圧送ポンプ5及び燃料供給弁57と並列
に調圧装置3の出口をエッジフィルタ27の上流側に接続
する初期圧調整用圧力伝達路58が接続されている。この
初期圧調整用圧力伝達路58には燃料噴射が終了して燃料
噴射装置が初期状態に戻るときに開弁される開閉弁59が
介在させてある。
A fuel supply valve 57 is interposed between the pressure feed pump 5 of the fuel supply system and the edge filter 27, and between the outlet of the pressure regulator 3 of the fuel supply system and the edge filter 27. An initial pressure adjusting pressure transmission path 58 that connects the outlet of the pressure adjusting device 3 to the upstream side of the edge filter 27 is connected in parallel with the pressure adjusting device 4, the pressure feed pump 5, and the fuel supply valve 57. An on-off valve 59 that is opened when the fuel injection ends and the fuel injection device returns to the initial state is interposed in the initial pressure adjusting pressure transmission path 58.

上記の燃料供給弁57、タイミング設定弁19、吐戻し弁56
及び開閉弁59は別個に設けてもよいが、これらの弁はそ
れぞれ所定のクランク軸で開閉されるので、クランク軸
に連動連結された共通の回転弁体を有する1個の複合タ
イミング制御弁として構成することが可能である。
The fuel supply valve 57, the timing setting valve 19, and the discharge return valve 56 described above.
Although the on-off valve 59 and the on-off valve 59 may be provided separately, each of these valves is opened and closed by a predetermined crankshaft, and therefore, as one combined timing control valve having a common rotary valve body linked to the crankshaft. It is possible to configure.

次に、この燃料噴射装置の動作をユニットインジェクタ
U及び噴射制御装置の動作を中心にして説明する。
Next, the operation of the fuel injection device will be described focusing on the operation of the unit injector U and the injection control device.

(A) 初期状態 初期状態では、燃料供給弁57、タイミング設定弁19、吐
戻し弁56及び開閉弁59は全て閉弁されており、第2図に
示すように、燃料噴射ポンプ6のプランジャ8は上死点
に位置し、スプール29は下死点に位置している。従っ
て、入口弁10は開弁され、噴射開始指令弁21は閉弁され
ている。また、逆止弁13は閉弁バネ13cによって閉弁さ
れ、噴射弁15は閉弁バネ43によって閉弁されている。更
に、燃料蓄圧貯留室14の逆止弁50及び圧力設定弁51は共
に閉弁されている。
(A) Initial state In the initial state, the fuel supply valve 57, the timing setting valve 19, the discharge return valve 56, and the opening / closing valve 59 are all closed, and as shown in FIG. 2, the plunger 8 of the fuel injection pump 6 is closed. Is located at the top dead center, and the spool 29 is located at the bottom dead center. Therefore, the inlet valve 10 is opened and the injection start command valve 21 is closed. The check valve 13 is closed by the valve closing spring 13c, and the injection valve 15 is closed by the valve closing spring 43. Further, the check valve 50 and the pressure setting valve 51 of the fuel pressure accumulating chamber 14 are both closed.

また、初期状態で、入口弁10の中空部32に連通されてい
る開弁圧室35、閉弁バネ室41及びキャップ47内の空間48
の内圧P0′、蓄圧室36の内圧P0、噴射開始用減圧室22の
内圧P4、ポンプ室9及び蓄圧式燃料噴射器7の閉弁圧室
12の内圧P1は等しく所定の初期圧になっている。逆止弁
13の下流側の第1燃料蓄圧貯留室14aの内圧P2は噴射終
了時の残圧(噴射弁15の閉弁時の内圧)に等しく、第2
燃料蓄圧貯留室14bの内圧P3は圧力設定弁51の閉弁圧
(例えば700気圧)に成っている。
Further, in the initial state, the valve opening pressure chamber 35, the valve closing spring chamber 41, and the space 48 in the cap 47, which communicate with the hollow portion 32 of the inlet valve 10.
Pressure P 0 'and the internal pressure P 0 of the accumulator 36, the internal pressure P 4 of the injection start pressure reducing chamber 22, the valve closing pressure chamber of the pump chamber 9 and an accumulator fuel injector 7
The internal pressure P 1 of 12 is equal to a predetermined initial pressure. Check valve
The internal pressure P 2 of the first fuel pressure storage chamber 14a on the downstream side of 13 is equal to the residual pressure at the end of injection (internal pressure when the injection valve 15 is closed),
The internal pressure P 3 of the fuel pressure accumulating / storing chamber 14b is the closing pressure of the pressure setting valve 51 (for example, 700 atm).

(B) 燃料供給行程 (噴射ポンプ6への燃料供給) 燃料噴射ポンプ6への燃料の供給が開始される第4図a
時点(以下、単にa時点といい、これ以降の第4図に示
す各時点も同様にいう)に燃料供給弁57が閉弁状態から
開弁状態に切換られ圧送ポンプ5から燃料噴射ポンプ6
に調圧され、かつ、調量された燃料が圧送される。この
燃料は、まず入口通路部分30,31及び中空部32を介して
蓄圧室36に圧入され、スプール29を上死点側に移動させ
る。
(B) Fuel supply process (fuel supply to the injection pump 6) The supply of fuel to the fuel injection pump 6 is started in FIG. 4a.
At a time point (hereinafter, simply referred to as time point a and the same applies to each time point shown in FIG. 4 thereafter), the fuel supply valve 57 is switched from the closed state to the open state, and the pressure pump 5 to the fuel injection pump 6 are switched.
The fuel whose pressure has been regulated and which has been regulated is pumped. This fuel is first pressed into the pressure accumulating chamber 36 via the inlet passage portions 30 and 31 and the hollow portion 32 to move the spool 29 to the top dead center side.

エンジン始動時、全負荷時あるいは好負荷時には最大噴
射量の燃料が圧送ポンプ5から圧送され、スプール29は
上死点に移動させられるが、部分負荷時にはスプール29
は下死点と上死点との中間の位置まで移動させられ、燃
料噴射ポンプ6への燃料の圧入が終了するb時点で燃料
供給弁57が閉弁される。
When the engine is started, under full load or under heavy load, the maximum injection amount of fuel is pumped from the pump 5 and the spool 29 is moved to the top dead center.
Is moved to an intermediate position between the bottom dead center and the top dead center, and the fuel supply valve 57 is closed at time b when the injection of fuel into the fuel injection pump 6 is completed.

このb時点では、ホンプ室9の内圧P1、蓄圧室36の内圧
P0及び蓄圧室36の内圧P0と対抗している開弁圧室35の内
圧P0′は初期圧よりも高められているが、第1燃料噴射
蓄圧室14aの内圧P2よりは低圧であり、逆止弁13は開弁
されるに至らない。
At this point in time b, the internal pressure P 1 of the hoop chamber 9 and the internal pressure of the pressure accumulating chamber 36
Although P 0 and pressure P 0 of the valve-opening pressure chamber 35 that is against the internal pressure P 0 of the accumulator 36 'is increased from the initial pressure, than the internal pressure P 2 of the first fuel injection accumulator 14a low pressure Therefore, the check valve 13 cannot be opened.

(C) 燃料圧入行程 (蓄圧式燃料噴射器7への燃料
圧入) この後のc時点からi時点にわたって図示しないカムに
よってプランジャ8が上死点から押し下げられる。ポン
プ室9の内圧P1及び蓄圧室36の内圧P0はc時点から更に
高められ、スプール29はさらに上昇させられてポンプ室
9から蓄圧室36に燃料が圧入され、やがてd時点でスプ
ール29が上死点の近くの所定の高さに上昇して入口弁10
が閉弁されることになる。このd時点以降は、プランジ
ャ8が下死点に達するi時点まではポンプ室9の内圧P1
が更に高められ、ポンプ室9内の燃料が蓄圧式燃料噴射
器7に圧入されることになる。
(C) Fuel injection stroke (fuel injection into the pressure-accumulation fuel injector 7) From this time point, the plunger 8 is pushed down from the top dead center by a cam (not shown) from the time point c to the time point i. The internal pressure P 1 of the pump chamber 9 and the internal pressure P 0 of the pressure accumulating chamber 36 are further increased from the time point c, and the spool 29 is further raised to press the fuel into the pressure accumulating chamber 36 from the pump chamber 9 and eventually the spool 29 at the time point d. Is raised to a predetermined height near the top dead center and the inlet valve 10
Will be closed. After this time d, the internal pressure P 1 of the pump chamber 9 is increased until time i when the plunger 8 reaches the bottom dead center.
Is further increased, and the fuel in the pump chamber 9 is pressed into the pressure-accumulation fuel injector 7.

ここで、a時点から入口弁10が閉弁されるd時点までの
間に拡大される蓄圧室36の容積を最大噴射量と等しくし
てあるので、c時点からd時点の間にポンプ室9から蓄
圧室36に圧入された燃料の量は最大噴射量とa時点から
b時点にわたって蓄圧室36に圧入された燃料供給量との
差に相当する。また、プランジャ8が上死点から下死点
に移動することにより縮小されるポンプ室9の容積は最
大噴射量と等しくしてあるので、d時点以後プランジャ
8が下死点に達するi時点までにポンプ室9から蓄圧式
燃料噴射器7に圧入される燃料の量は、最大噴射量とc
時点からe時点の間にポンプ室9から蓄圧室36に圧入さ
れた燃料の量との差、即ち、圧送ポンプ5からの燃料供
給量に相当する。
Here, since the volume of the pressure accumulating chamber 36 that is expanded from the time point a to the time point d when the inlet valve 10 is closed is made equal to the maximum injection amount, the pump chamber 9 can be used between the time point c and the time point d. Therefore, the amount of fuel injected into the pressure accumulating chamber 36 corresponds to the difference between the maximum injection amount and the fuel supply amount injected into the pressure accumulating chamber 36 from the time point a to the time point b. Further, since the volume of the pump chamber 9 which is reduced by moving the plunger 8 from the top dead center to the bottom dead center is equal to the maximum injection amount, after the time point d until the time point i when the plunger 8 reaches the bottom dead point. The amount of fuel injected into the accumulator fuel injector 7 from the pump chamber 9 is the maximum injection amount and c
It corresponds to the difference from the amount of fuel press-fitted from the pump chamber 9 into the pressure accumulating chamber 36 between time point e and time point e, that is, the fuel supply amount from the pressure feed pump 5.

尚、a時点からd時点までの噴射開始用減圧室22の内圧
は、d時点前には噴射開始用減圧室22が微小通路60、連
通路61中空部32及び入口弁10を介してポンプ室9に連通
されているので、比較的緩慢に変化する蓄圧室36及びポ
ンプ室9の内圧P0,P1と同じように変化する。
In addition, the internal pressure of the injection start decompression chamber 22 from the time point a to the time point d is such that the injection start decompression chamber 22 is in the pump chamber through the minute passage 60, the communication passage 61 hollow portion 32 and the inlet valve 10 before the time point d. Since it is communicated with 9, the internal pressures P 0 and P 1 of the pressure accumulating chamber 36 and the pump chamber 9 that change relatively slowly change.

d時点以降、ポンプ室9及び閉弁圧室12の内圧P1は急激
に上昇し、これが第1燃料蓄圧貯留室14aの内圧P2を上
回るe時点からプランジャ8が下死点に達するi時点に
わたって逆止弁13が開弁され、燃料が第1燃料蓄圧貯留
室14aに圧入される。また、ポンプ室9から第1燃料蓄
圧貯留室14aにわたる燃料の圧力P1(ここでは=P2)が
圧力設定弁51の設定圧を上回るh時点に、逆止弁50が開
弁されて第1燃料蓄圧貯留室14aから第2燃料蓄圧貯留
室14bに燃料が圧入される。
After the time point d, the internal pressure P 1 of the pump chamber 9 and the valve closing pressure chamber 12 rapidly increases, and exceeds the internal pressure P 2 of the first fuel pressure accumulating and storing chamber 14a from the time point e, the time point i when the plunger 8 reaches the bottom dead center. The check valve 13 is opened over, and the fuel is press-fitted into the first fuel pressure accumulation chamber 14a. Further, at the time h when the fuel pressure P 1 (here, P 2 ) from the pump chamber 9 to the first fuel pressure accumulating storage chamber 14a exceeds the set pressure of the pressure setting valve 51, the check valve 50 is opened and the check valve 50 is opened. Fuel is press-fitted from the first fuel pressure storage chamber 14a into the second fuel pressure storage chamber 14b.

尚、上記噴射開始指令弁21はd時点の前に開弁され、d
時点で入口弁10が閉弁されてから、ポンプ室9の内圧P1
が高められるに連れてポンプ室9から噴射開始指令弁2
1、噴射開始用減圧室22、微小通路60及び連通路61を介
してスプール29の中空部32及び蓄圧室36にごく僅かの燃
料がリークし、この燃料によって蓄圧室36及び中空部32
の内圧P0が僅かに高められ、スプール29がd時点の位置
よりも更に押上げられる。そして、スプール29が上死点
に達する少し前のf時点で噴射開始指令弁21が閉弁され
る。
The injection start command valve 21 is opened before the time point d, and
Since the inlet valve 10 is closed at this point, the internal pressure P 1 of the pump chamber 9
Injection start command valve 2 from pump chamber 9
1. A very small amount of fuel leaks into the hollow portion 32 of the spool 29 and the pressure accumulating chamber 36 through the injection starting pressure reducing chamber 22, the minute passage 60 and the communication passage 61, and this fuel causes the pressure accumulating chamber 36 and the hollow portion 32 to leak.
The internal pressure P 0 is slightly increased, and the spool 29 is further pushed up from the position at the time point d. Then, the injection start command valve 21 is closed at a time point f slightly before the spool 29 reaches the top dead center.

重要なことは、噴射開始用減圧室22が微小通路60及び連
通路61からなる減圧路Dを介してスプール29の中空部32
及び蓄圧室36に連通されているので、この後、噴射開始
用減圧室22の内の燃料が噴射開始用減圧室22からこの減
圧路Dを介してスプール29の中空部32及び蓄圧室36に燃
料が流入し、噴射開始用減圧室22の内圧P4が、閉弁圧室
12の内圧に比較すれば遥かに低圧の中空部32及び蓄圧室
36の内圧P0と同じになるまで低下されることである。な
お、この噴射開始用減圧室22から中空部32及び蓄圧室36
への燃料の流入によりスプール29は上死点まで押し上げ
られる。
What is important is that the injection-starting decompression chamber 22 has a hollow portion 32 of the spool 29 via a decompression passage D including a minute passage 60 and a communication passage 61.
And the pressure accumulating chamber 36, the fuel in the injection starting depressurizing chamber 22 is then transferred from the injection starting depressurizing chamber 22 to the hollow portion 32 of the spool 29 and the accumulating chamber 36 via the depressurizing path D. When the fuel flows in, the internal pressure P 4 of the injection start decompression chamber 22 becomes
Compared to the internal pressure of 12, the hollow part 32 and the accumulator which have much lower pressure
It is to be reduced until it becomes the same as the internal pressure P 0 of 36. In addition, from the injection decompression chamber 22 to the hollow portion 32 and the pressure accumulating chamber 36.
The inflow of fuel into the spool 29 pushes the spool 29 up to the top dead center.

燃料噴射ポンプ6から燃料噴射器7への燃料の圧入はプ
ランジャ8が下死点に達するi時点で終了され、各逆止
弁13,50は閉弁される。
The injection of fuel from the fuel injection pump 6 into the fuel injector 7 is completed at time i when the plunger 8 reaches the bottom dead center, and the check valves 13 and 50 are closed.

(D) 着火用燃料噴射行程 この後の所定のj時点に噴射開始指令手段18のタイミン
グ設定弁19が開弁されて減圧室20が入口弁10の上流側に
連通される。これにより入口弁10の中空部32及び蓄圧室
36の内圧が減圧され、スプール29が上死点から下降し始
め、スプール29が上死点から僅か下の所定の位置まで下
降したk時点で噴射開始指令弁21が開弁される。タイミ
ング設定弁19の開弁から噴射開始指令弁21の開弁までの
制御遅れ時間は、減圧室20の初期圧(タイミング設定弁
19の開弁前の内圧)が一定であれば一定になる。この噴
射開始指令弁21の開弁により、ポンプ室9及び閉弁圧室
12の内圧P1が噴射開始用減圧室22に急激に圧抜きされ、
第1燃料蓄圧貯留室14aの内圧P2(この時点では=P3
からなる開弁力よりも閉弁圧室12の内圧P1及び閉弁バネ
43の付勢力からなる閉弁力が弱くなるl時点に噴射弁15
が開弁される。
(D) Ignition fuel injection stroke At a predetermined time j after this, the timing setting valve 19 of the injection start command means 18 is opened and the decompression chamber 20 is connected to the upstream side of the inlet valve 10. Thereby, the hollow portion 32 of the inlet valve 10 and the accumulator chamber
The internal pressure of 36 is reduced, the spool 29 starts to descend from the top dead center, and the injection start command valve 21 is opened at time k when the spool 29 descends to a predetermined position slightly below the top dead center. The control delay time from the opening of the timing setting valve 19 to the opening of the injection start command valve 21 is the initial pressure of the decompression chamber 20 (timing setting valve
It becomes constant if the internal pressure before opening valve 19) is constant. By opening the injection start command valve 21, the pump chamber 9 and the valve closing pressure chamber
The internal pressure P 1 of 12 is suddenly released into the injection decompression chamber 22,
Internal pressure P 2 of the first fuel pressure accumulating chamber 14a (= P 3 at this point)
Internal pressure P 1 of the valve closing pressure chamber 12 and valve closing spring
When the valve closing force consisting of the urging force of 43 becomes weak, the injection valve 15
Is opened.

ここで注目すべきことは、噴射開始指令弁21と噴射開始
用減圧室22を燃料噴射ポンプ6のプランジャ8内に組込
むことにより、蓄圧式燃料噴射器7の閉弁圧室12に順次
接続される噴射開始指令弁21と噴射開始用減圧室22が蓄
圧式燃料噴射器7の閉弁圧室12の間近に配置され、閉弁
圧室12から噴射開始用減圧室22までの距離ができるかぎ
り短くされていることである。このように閉弁圧室12か
ら噴射開始用減圧室22までの距離を短くすると、噴射開
始指令弁21から噴射開始用減圧室22に至る流路の抵抗が
小さくなり、噴射開始指令弁21開弁後の閉弁圧室12の減
圧勾配を急にすることができる。その結果、制御感度を
敏感にでき噴射弁15の開弁開始時期のばらつきの範囲を
小さくして、噴射開始時期の制御精度を高めることがで
きるのである。
What should be noted here is that the injection start command valve 21 and the injection start pressure reducing chamber 22 are assembled in the plunger 8 of the fuel injection pump 6 so that they are sequentially connected to the valve closing pressure chamber 12 of the pressure accumulating fuel injector 7. The injection start command valve 21 and the injection start depressurization chamber 22 are arranged close to the valve closing pressure chamber 12 of the pressure accumulating fuel injector 7, and the distance from the valve closing pressure chamber 12 to the injection start depressurization chamber 22 is as long as possible. That is to be shortened. When the distance from the valve closing pressure chamber 12 to the injection start decompression chamber 22 is shortened in this way, the resistance of the flow path from the injection start command valve 21 to the injection start decompression chamber 22 becomes small, and the injection start command valve 21 opens. The pressure reduction gradient of the valve closing pressure chamber 12 after the valve can be made steep. As a result, the control sensitivity can be made sensitive, the range of variation in the valve opening start timing of the injection valve 15 can be reduced, and the control accuracy of the injection start timing can be improved.

ここでの圧抜きは比較的容積が小さい噴射開始用減圧室
22への圧抜きであるために、閉弁圧室12の内圧P1の圧抜
きされる燃料の量は比較的少なく、従って噴射弁15の開
弁量も小さく抑えられ、燃料噴射率が小さく抑えられ
る。
The depressurization here is a decompression chamber for injection start, which has a relatively small volume.
Since the pressure is released to 22, the amount of fuel with which the internal pressure P 1 of the valve closing pressure chamber 12 is depressurized is relatively small, and therefore the valve opening amount of the injection valve 15 is also suppressed to a small amount, and the fuel injection rate is small. It can be suppressed.

しかしながら、ここで注目すべきもう一つのことは、上
記蓄圧式燃料噴射器7への燃料圧入が終了する前に噴射
開始用減圧室22の内圧P4が、閉弁圧室12の内圧に比較す
れば遥かに低圧の中空部32及び蓄圧室36の内圧P0と同じ
になるまで低下されていることである。これにより、低
負荷領域で閉弁圧室12の内圧P1が比較的低い場合であっ
ても、噴射開始指令弁21の開弁時には閉弁圧室12の内圧
P1と噴射開始用減圧室22の内圧P4との差圧が充分に大き
く、噴射開始指令弁21の開弁と同時に確実に閉弁圧室12
の内圧P1が充分に大きく減圧され、噴射弁15が開弁され
る。
However, another thing to note here is that the internal pressure P 4 of the injection start decompression chamber 22 is compared with the internal pressure of the valve closing pressure chamber 12 before the injection of fuel into the pressure accumulating fuel injector 7 is completed. Then, the internal pressure P 0 of the hollow portion 32 and the pressure accumulating chamber 36, which has a much lower pressure, is reduced to the same value . As a result, even when the internal pressure P 1 of the valve closing pressure chamber 12 is relatively low in the low load region, the internal pressure of the valve closing pressure chamber 12 when the injection start command valve 21 is opened.
The pressure difference between P 1 and the internal pressure P 4 of the injection start decompression chamber 22 is sufficiently large to ensure that the injection start command valve 21 is opened and the valve closing pressure chamber 12 is closed.
The internal pressure P 1 of the is reduced sufficiently and the injection valve 15 is opened.

ポンプ室9及び閉弁圧室12の内圧P1と噴射開始用減圧室
22の内圧P4が等しくなると、噴射開始用減圧室22と中空
部32とが微小通路60及び連通路61により連通されている
ので、これらの内圧P1(=P4)は徐々に減圧される。こ
れに対して、燃料噴射による第1燃料蓄圧貯留室14aの
内圧P2の減圧は閉弁圧室12の内圧P1の減圧よりも急激で
あり、開弁力と閉弁力との差が最大となるm時点から噴
射弁15の開弁量が減少し、やがてn時点で噴射弁15が一
旦閉弁されて燃料噴射が中断される。n時点で噴射弁15
が閉弁されると、第1燃料蓄圧貯留室14aの減圧が止ま
る一方、圧力設定弁51の連通により第2燃料蓄圧貯留室
14bからの燃料が流入する結果、第1燃料蓄圧貯留室14a
の内圧P2は再び昇圧して行く。
Internal pressure P 1 of pump chamber 9 and valve closing pressure chamber 12 and decompression chamber for starting injection
When the internal pressure P 4 of 22 becomes equal, the injection start decompression chamber 22 and the hollow portion 32 are communicated by the minute passage 60 and the communication passage 61, so that the internal pressure P 1 (= P 4 ) of these is gradually reduced. It On the other hand, the pressure reduction of the internal pressure P 2 of the first fuel pressure accumulating and storing chamber 14a due to the fuel injection is more rapid than the pressure reduction of the internal pressure P 1 of the valve closing pressure chamber 12, and the difference between the valve opening force and the valve closing force is The valve opening amount of the injection valve 15 decreases from the maximum point m, and eventually the injection valve 15 is closed once at the point n to interrupt the fuel injection. injection valve 15 at time n
Is closed, the depressurization of the first fuel pressure accumulating storage chamber 14a stops, while the pressure setting valve 51 communicates with the second fuel pressure accumulating storing chamber.
As a result of the inflow of fuel from 14b, the first fuel pressure accumulation chamber 14a
The internal pressure P 2 of is increased again.

(E) 主燃料噴射行程 ところで、入口弁10の中空部32及び蓄圧室36の内圧P0
減圧は、j時点以降減圧室20の内圧が蓄圧室の内圧P0
等しくなるまで連続して行われ、スプール29はl時点か
らn時点にわたる燃料噴射とは殆ど関係無く下降させら
れる。そして、スプール29が上死点よりも低い所定の高
さまで下降したo時点で入口弁10が開弁され、ポンプ室
9及び閉弁圧室12が入口弁10及びタイミング設定弁19を
介して減圧室20に接続される。これにより、ポンプ室9
及び閉弁圧室12の内圧P1が急激に、しかも、大幅に減圧
され、噴射弁15が急に、しかも、大きく開弁され、高圧
の燃料が多量に噴射されることになる。
(E) Main fuel injection stroke By the way, the internal pressure P 0 of the hollow portion 32 of the inlet valve 10 and the pressure accumulating chamber 36 is continuously reduced until time j becomes equal to the internal pressure P 0 of the pressure accumulating chamber 20. Then, the spool 29 is lowered almost independently of the fuel injection from the time point l to the time point n. When the spool 29 descends to a predetermined height lower than the top dead center, the inlet valve 10 is opened, and the pump chamber 9 and the valve closing pressure chamber 12 are decompressed via the inlet valve 10 and the timing setting valve 19. Connected to chamber 20. As a result, the pump chamber 9
Also, the internal pressure P 1 of the valve closing pressure chamber 12 is sharply and significantly reduced, the injection valve 15 is suddenly and largely opened, and a large amount of high-pressure fuel is injected.

スプール29が下降を開始するj時点から噴射開始指令弁
21が開弁されるk時点までの時間及びj時点から入口弁
10が開弁されるo時点までの時間は入口弁10から減圧室
20までの流路抵抗によって決定されるのでそれぞれ一定
である。また、k時点から燃料噴射が開始されるl時点
までの時間は閉弁圧室12から噴射開始用減圧室22までの
流路抵抗によって決定されるので一定である。従って、
着火用噴射が開始するl時点から主噴射が開始するo時
点までの時間は、エンジンの回転数に無関係に一定にな
り、この時間を着火遅れ時間に等しく設定することによ
り、着火用噴射により噴射された少量の燃料を着火さ
せ、ディーゼルノックの発生を防止してエンジンの運転
騒音を減少させるとともに、着火用噴射で噴射された燃
料が着火したところに主噴射により多量の燃料を噴射さ
せて大出力を得ることができるようになる。
The injection start command valve starts at time j when the spool 29 starts descending.
The time from k to when 21 is opened and from j to the inlet valve
The time from when the valve 10 is opened to the time point o is from the inlet valve 10 to the decompression chamber.
It is constant because it is determined by the channel resistance up to 20. Further, the time from the time point k to the time point 1 at which the fuel injection is started is constant because it is determined by the flow path resistance from the valve closing pressure chamber 12 to the injection starting decompression chamber 22. Therefore,
The time from the time point l at which the ignition injection starts to the time point o at which the main injection starts becomes constant regardless of the engine speed, and by setting this time equal to the ignition delay time, the injection by the ignition injection is performed. Ignition of a small amount of injected fuel to prevent the generation of diesel knocks and reduce engine operating noise, and when the fuel injected by the ignition injection is ignited, a large amount of fuel is injected by the main injection to increase You will be able to get the output.

尚、入口弁10が開弁した後、入口弁10の中空部32及び蓄
圧室36の内圧P0の減圧はさらに連続し、スプール29はo
時点以降も下降を続ける。そして、o時点から少し後の
p時点で噴射開始指令弁21が閉弁される。o時点以後、
燃料の噴射圧は第1燃料蓄圧貯留室14aの内圧P2と同じ
であり、次第に減圧されてくる。そして、第2燃料蓄圧
室14bの内圧P3が圧力設定弁51の設定圧まで減圧される
q時点で圧力設定弁51が閉じられ、このq時点以後の第
1燃料蓄圧貯留室14aの減圧が一層急激になる。燃料噴
射率は、o時点からq時点までは第2燃料蓄圧貯留室14
bから流出する高圧の燃料が噴射されるので上昇する
が、q時点以後は、第1燃料蓄圧貯留室14aの内圧P2
減少が激しく、燃料噴射率は減少する。そして、噴射に
よって第1燃料蓄圧貯留室14aの内圧P2が減少して開弁
力が閉弁力と等しくなるr時点以後は、第1燃料蓄圧貯
留室14aの内圧P2が更に継続する噴射により減少し続け
るので、閉弁力が開弁力よりも強くなり、噴射弁15が閉
弁方向に移動する。そして、第1燃料蓄圧貯留室14aの
内圧P2が所定の残圧まで減圧されたs時点で噴射弁15が
閉弁されて燃料噴射が終わる。
After the inlet valve 10 is opened, the internal pressure P 0 of the hollow portion 32 of the inlet valve 10 and the pressure accumulating chamber 36 is further reduced, and the spool 29 is o
It continues to decline after that time. Then, the injection start command valve 21 is closed at a time point p slightly after the time point o. After time point o,
The fuel injection pressure is the same as the internal pressure P 2 of the first fuel pressure accumulating and storing chamber 14a, and is gradually reduced. Then, the pressure setting valve 51 is closed at the time point q when the internal pressure P 3 of the second fuel pressure accumulating chamber 14b is reduced to the setting pressure of the pressure setting valve 51, and the depressurization of the first fuel pressure accumulating chamber 14a after this time point q is reduced. It gets even sharper. The fuel injection rate is from the time point o to the time point q.
Although the high-pressure fuel flowing out from b is injected, it rises, but after the time point q, the internal pressure P 2 in the first fuel pressure accumulating chamber 14a decreases sharply and the fuel injection rate decreases. Then, r time after the valve opening force pressure P 2 is reduced in the first fuel accumulator storage chamber 14a is equal to the closing force by the injection, the internal pressure P 2 of the first fuel accumulator storage chamber 14a is further continued injection Therefore, the valve closing force becomes stronger than the valve opening force, and the injection valve 15 moves in the valve closing direction. Then, at the time s when the internal pressure P 2 of the first fuel pressure accumulating and storing chamber 14a is reduced to a predetermined residual pressure, the injection valve 15 is closed and the fuel injection ends.

尚、ポンプ室9の内圧P1は入口弁10が開弁されたo時点
以後急速に、かつ、大幅に減圧されて短時間の内に中空
部32の内圧P0と同じになる。また、噴射開始用減圧室22
の内圧P4は、k時点では中空部32の内圧P0と同じである
が、k時点で噴射開始指令弁21が開弁されると非常に急
激に立ち上がり、短時間の内にポンプ室9の内圧P1と同
じになる。そして、入口弁10がo時点で開弁するとポン
プ室9の内圧P1とともに噴射開始用減圧室22の内圧P4
急激に立ち下がるが、スプール29が所定の高さ以下にな
って噴射開始指令弁21が閉弁されるp時点以降は、噴射
開始用減圧室22とポンプ室9との連通が遮断されるの
で、噴射開始用減圧室22の内圧P4は、これから微小通路
60及び連通路61を介して中空部32に徐々に圧抜きされ、
やがて噴射開始用減圧室22の内圧は中空部32及びポンプ
室9の内圧P0,P1と同じになる。このとき、蓄圧室36に
は最大噴射量にポンプ室9から噴射開始用減圧室22等を
介して蓄圧室36にリークしてきた燃料の量を加えた量か
ら減圧室20に圧抜きされた燃料の量を差し引いた量に相
当する量の燃料が残され、スプール29は下死点よりも高
い位置に位置させられている。
The internal pressure P 1 of the pump chamber 9 is rapidly and significantly reduced after the time point o when the inlet valve 10 is opened, and becomes the same as the internal pressure P 0 of the hollow portion 32 within a short time. Also, the injection decompression chamber 22
The internal pressure P 4 of the same is the same as the internal pressure P 0 of the hollow portion 32 at the time point k, but when the injection start command valve 21 is opened at the time point k, it rises very rapidly and the pump chamber 9 It becomes the same as the internal pressure P 1 . When the inlet valve 10 is opened at the time point o, the internal pressure P 1 of the pump chamber 9 and the internal pressure P 4 of the injection starting decompression chamber 22 suddenly fall, but the spool 29 becomes below a predetermined height and the injection starts. After the time point p at which the command valve 21 is closed, the communication between the injection start depressurization chamber 22 and the pump chamber 9 is cut off, so that the internal pressure P 4 of the injection start depressurization chamber 22 is set to a small passage from now on.
Pressure is gradually released into the hollow portion 32 via 60 and the communication passage 61,
Eventually, the internal pressure of the injection starting decompression chamber 22 becomes the same as the internal pressures P 0 and P 1 of the hollow portion 32 and the pump chamber 9. At this time, in the pressure accumulating chamber 36, the maximum amount of injection plus the amount of fuel leaking from the pump chamber 9 to the pressure accumulating chamber 36 through the injection decompression chamber 22 or the like is added to the pressure reducing chamber 20 to depressurize the fuel. The amount of fuel corresponding to the amount obtained by subtracting the amount of is left, and the spool 29 is positioned higher than the bottom dead center.

(F) 初期状態への復帰行程 噴射開始用減圧室22、中空部32及びポンプ室9の内圧
P0,P1,P4が同じになった後の所定のt時点から燃料噴射
ポンプ6のプランジャ8が上昇し始め、プランジャ8の
上昇に従って蓄圧室36からポンプ室9に燃料が吸入され
る。
(F) Return stroke to initial state Internal pressure of the injection decompression chamber 22, hollow 32 and pump chamber 9
The plunger 8 of the fuel injection pump 6 starts to rise at a predetermined time t after P 0 , P 1 and P 4 become the same, and fuel is sucked from the pressure accumulating chamber 36 into the pump chamber 9 as the plunger 8 rises. .

しかし、上記のようにt時点に蓄圧室36に収容されてい
る燃料の量は最大噴射量にポンプ室9から噴射開始用減
圧室22等を介して蓄圧室36にリークしてきた燃料の量を
加えた量から減圧室20に圧抜きされた燃料の量を差し引
いた量に相当する量であり、プランジャ8を上死点まで
上昇させるには不足している。そこで、プランジャ8が
カムのカムベースに達すべきv時点までに必要と思われ
る時間、即ち、u時点からv時点にわたって吐戻し弁56
を開弁して減圧室20に圧抜きされた燃料を蓄圧室36に吐
き戻すことにより、プランジャ8を確実に上死点に戻す
ようにしてある。また、このようにしてv時点でプラン
ジャ8を上死点に戻した場合、減圧室20からポンプ室9
までの間には、ポンプ室9から噴射開始用減圧室22等を
介して蓄圧室36にリークしてきた量に相当する燃料が過
剰に閉じ込められていることになるので、これらの内圧
はv時点では初期圧よりも高くなっている。そこで、v
時点の後の所定のw時点からx時点にわたって初期圧調
整用開閉弁59を開弁することにより、これらの内圧が初
期圧まで減圧される。
However, as described above, the amount of fuel stored in the pressure accumulating chamber 36 at time t is the maximum amount of fuel that is the amount of fuel leaking from the pump chamber 9 to the pressure accumulating chamber 36 via the injection starting pressure reducing chamber 22 or the like. The amount corresponds to the amount obtained by subtracting the amount of fuel depressurized in the decompression chamber 20, and is insufficient to raise the plunger 8 to the top dead center. Therefore, the discharge return valve 56 is considered to be required from time u to time v when the plunger 8 should reach the cam base of the cam, that is, from time u to time v.
The valve 8 is opened and the fuel depressurized in the pressure reducing chamber 20 is discharged back to the pressure accumulating chamber 36, whereby the plunger 8 is surely returned to the top dead center. Further, when the plunger 8 is returned to the top dead center at time v in this way, the pressure reducing chamber 20 to the pump chamber 9
During this period, the fuel corresponding to the amount leaked from the pump chamber 9 to the pressure accumulating chamber 36 via the injection starting pressure reducing chamber 22 and the like is excessively confined, so these internal pressures are at time v. Is higher than the initial pressure. So v
By opening the opening / closing valve 59 for adjusting the initial pressure from the predetermined time point w to the time point x after the time point, these internal pressures are reduced to the initial pressure.

また、このようにして中空部32の内圧が所定の初期圧に
調整されるのに伴って、中空部32に連通路61及び微小通
路60を介して連通している噴射開始用減圧室22の内圧も
所定の初期圧に調整される。その結果、噴射開始指令弁
21の閉弁時に生じる噴射開始用減圧室22の内圧P4のばら
つきはv時点の後の所定のw時点からx時点にわたって
初期圧調整用開閉弁59を開弁することにより確実に所定
の初期圧に調整され、次回に噴射開始指令弁21を開弁し
たときに噴射開始用減圧室22の内圧P4が高すぎて噴射弁
15が開弁されなかったり、噴射開始用減圧室22の内圧P4
が低すぎて噴射弁15の閉弁が遅れ、燃料噴射量が過多に
なったりすることを防止できる。
Further, as the internal pressure of the hollow portion 32 is adjusted to a predetermined initial pressure in this way, the injection start depressurizing chamber 22 communicating with the hollow portion 32 via the communication passage 61 and the minute passage 60 is provided. The internal pressure is also adjusted to a predetermined initial pressure. As a result, the injection start command valve
The variation in the internal pressure P 4 of the injection start decompression chamber 22 which occurs when the valve 21 is closed is ensured by opening the initial pressure adjusting on-off valve 59 from a predetermined time point w after the time point v to the time point x. The pressure is adjusted to the next value, and the next time the injection start command valve 21 is opened, the internal pressure P 4 of the injection start decompression chamber 22 is too high and the injection valve
15 is not opened, or the internal pressure P 4
It is possible to prevent the fuel injection amount from becoming excessive due to delay in closing the injection valve 15 due to too low.

なお、以上の蓄圧式燃料噴射装置の全体にわたる作動の
うち、燃料噴射カムのリフトダウン行程(第4図の初期
状態への復帰行程(F)中の時点t−v)において、こ
の燃料噴射カムとプランジャ8との間に若しも隙間が生
じる場合には、次回の燃料噴射カムのリフトアップ行程
(第4図の燃料噴射行程(C)中の時点c−i)で、燃
料噴射カムがプランジャ8に衝突し、その衝撃で騒音や
早期摩耗・変形などの弊害が生じる。
In addition, in the above-described overall operation of the pressure-accumulation fuel injection device, during the lift-down stroke of the fuel injection cam (time tv during the return stroke (F) to the initial state in FIG. 4), the fuel injection cam If there is a gap between the fuel injection cam and the plunger 8, the fuel injection cam will move during the next lift-up stroke of the fuel injection cam (time point c-i during the fuel injection stroke (C) in FIG. 4). The impact with the plunger 8 causes adverse effects such as noise and early wear and deformation.

この弊害を無くすために、燃料噴射カムとプランジャ8
との間に隙間が生じないようにしてあり、このためのプ
ランジャ作動の1サイクルを、第7図(A)−(D)で
示す各行程順に基づき、次に説明する。
In order to eliminate this adverse effect, the fuel injection cam and the plunger 8
A gap is not created between the two, and one cycle of the plunger operation for this purpose will be described below based on the order of each stroke shown in FIGS. 7 (A)-(D).

(A) 初期状態 第7図(A)参照 この初期状態では、スプール29が下死点D2に、プランジ
ャ8が上死点U1に位置する。入口弁10が開き、燃料供給
弁57が閉じ、逆止弁13が燃料蓄圧貯留室14の内圧で押し
閉じられている。
(A) Initial state See FIG. 7 (A) In this initial state, the spool 29 is located at the bottom dead center D 2 and the plunger 8 is located at the top dead center U 1 . The inlet valve 10 is opened, the fuel supply valve 57 is closed, and the check valve 13 is pushed and closed by the internal pressure of the fuel pressure accumulation chamber 14.

燃料噴射ポンプ6の最大吐出量V0と、閉弁用蓄圧室36の
最大容積V0とが、等しい値となるように設定されてい
る。
The maximum ejection amount V 0 which the fuel injection pump 6, the maximum volume V 0 which valve-closing accumulator 36, are set to be equal values.

(B) 燃料供給行程 第7図(B)参照 燃料は、エンジンの負荷に応じてメータリングユニット
Mで調量供給量V1が調量されて供給される。
(B) Fuel Supply Process Refer to FIG. 7 (B) The fuel is supplied by the metering unit M in a metered supply amount V 1 in accordance with the load of the engine.

この調量供給量V1の燃料が、燃料供給弁57が開いたとき
に、メータリングユニットMから閉弁用蓄圧室36に押し
込まれ、スプール29が下死点D2から上死点U2へ向かって
途中まで押し上げられる。
When the fuel supply valve 57 opens, the metering supply amount V 1 of the fuel is pushed into the valve closing pressure accumulating chamber 36 from the metering unit M, and the spool 29 moves from the bottom dead center D 2 to the top dead center U 2. It is pushed up part way toward.

(C) 無効吐出行程 第7図(C)参照 燃料供給弁57が閉じた後、燃料噴射カム80がリフトアッ
プ行程81に入ってプランジャ8を押し下げていくと、ポ
ンプ室9内の燃料が入口弁10を経て閉弁用蓄圧室36内に
無効吐出量V2だけ圧入される。このとき、逆止弁13は燃
料蓄圧貯留室14の内圧で閉じられている。
(C) Invalid discharge stroke See FIG. 7 (C). After the fuel supply valve 57 is closed, the fuel injection cam 80 enters the lift-up stroke 81 and pushes down the plunger 8. Through the valve 10, the ineffective discharge amount V 2 is press-fitted into the valve-closing pressure accumulating chamber 36. At this time, the check valve 13 is closed by the internal pressure of the fuel pressure storage chamber 14.

この閉弁用蓄圧室36内の燃料は、無効吐出量V2だけ圧入
され終えたときに、さきに入っていた調量供給量V1と合
わせて、最大容積V0に達する。これにより、スプール29
が上死点U2まで上昇し、閉弁用蓄圧室36の内圧が閉弁圧
にまで上昇して、入口弁10を押し閉じる。
The fuel in the valve-closing pressure accumulating chamber 36 reaches the maximum volume V 0 together with the metering supply amount V 1 that had been contained in the fuel when the ineffective discharge amount V 2 is completely injected. This allows the spool 29
Rises to the top dead center U 2 , the internal pressure of the valve closing pressure accumulating chamber 36 rises to the valve closing pressure, and the inlet valve 10 is pushed and closed.

ポンプ室9に残った有効吐出量V3の燃料は、最大吐出量
V0から無効吐出量V2を差し引いた量であり、閉弁用蓄圧
室36の最大容積V0から無効吐出量V2を差し引いた調量供
給量V1と等しくなる。
The fuel of the effective discharge amount V 3 remaining in the pump chamber 9 is the maximum discharge amount.
An amount obtained by subtracting the invalid ejection amount V 2 from V 0, equal to the maximum volume V 0 disables the ejection amount V 2 metering the amount V 1 of minus from the valve-closing accumulator 36.

(D) 有効吐出行程 第7図(D)参照 プランジャ8がさらに押し下げられて下死点D1に達した
ときに、ポンプ室9内の有効吐出量V3(=調量供給量
V1)の燃料が、逆止弁13を経て燃料蓄圧貯留室14へ圧入
される。
(D) Effective discharge stroke Refer to FIG. 7 (D) When the plunger 8 is further pushed down to reach the bottom dead center D 1 , the effective discharge amount V 3 (= metering supply amount in the pump chamber 9)
The fuel of V 1 ) is pressed into the fuel pressure accumulating storage chamber 14 through the check valve 13.

この後、有効吐出量V3の燃料が蓄圧式燃料噴射器7から
燃焼室へ噴射される。
Thereafter, the effective discharge amount V 3 of fuel is injected from the pressure accumulation type fuel injector 7 into the combustion chamber.

(E) プランジャ復帰行程 第7図(A)参照 メータリングユニットM内の主タイミング設定弁19bが
短時間だけ開いたときに、開弁用蓄圧室36の内圧がこの
主タイミング設定弁19bから僅かに抜かれて、入口弁1
が開弁圧室35の弾圧力で押し開かれる。
(E) Plunger return stroke Refer to FIG. 7 (A) When the main timing setting valve 19b in the metering unit M is opened for a short time, the internal pressure of the valve-opening accumulator chamber 36 is slightly different from this main timing setting valve 19b. Inlet valve 1
Is pushed open by the elastic force of the valve opening pressure chamber 35.

燃料噴射カム80がリフトダウン行程82に入ると、閉弁用
蓄圧室36内に貯留されていた最大容積V0の燃料が、開弁
圧室35の弾圧力で入口弁10を経てポンプ室9へ圧入され
る。これにより、スプール29が上死点U2から下死点D2
復帰し、プランジャ8が燃料噴射カム80に押し当てられ
ながら下死点D1から上死点U1に復帰させられて接触し続
けるので、プランジャ8と燃料噴射カム80との間に隙間
が生じない。
When the fuel injection cam 80 enters the lift-down stroke 82, the fuel having the maximum volume V 0 stored in the valve closing pressure accumulator chamber 36 passes through the inlet valve 10 by the elastic pressure of the valve opening pressure chamber 35 and the pump chamber 9 Is pressed into. As a result, the spool 29 is returned from the top dead center U 2 to the bottom dead center D 2 , and the plunger 8 is pressed against the fuel injection cam 80 while being returned from the bottom dead center D 1 to the top dead center U 1 to make contact. Therefore, there is no gap between the plunger 8 and the fuel injection cam 80.

このため、次回の燃料噴射カム80のリフトアップ行程81
(第7図(C)=第4図の時点c−i)で、燃料噴射カ
ム80がプランジャ8に衝突することが起こらない。
Therefore, the lift-up stroke 81 of the next fuel injection cam 80
At the time point (c-i in FIG. 7 (C) = FIG. 4), the fuel injection cam 80 does not collide with the plunger 8.

以上でプランジャ8の作動の1サイクルが終了する。This completes one cycle of the operation of the plunger 8.

<実施例2> 第5図は本発明の他の実施例の要部の縦断面図である。<Embodiment 2> FIG. 5 is a vertical cross-sectional view of a main portion of another embodiment of the present invention.

この実施例では、噴射開始指令弁21がプランジャ8内に
組み込まれた二重スプール弁で構成されている。即ち、
スプール29の下端部に子スプール62を昇降可能に内嵌
し、この子スプール62には下端部で縮径された貫通孔63
と、この貫通孔63の大径部の周壁に互いに対向するよう
に形成された弁孔64とが形成されている。また、この貫
通孔63の縮径部の周壁の外周面には噴射開始指令弁21の
弁溝53が全周にわたって形成されている。これに対し
て、スプール29の下端部の周壁には、子スプール62が上
死点まで上昇した時に弁溝53に連通する1対の弁孔65,6
6が形成され、プランジャ8にはスプール29が上死点か
ら少し低い所定の範囲の高さに位置するときにスプール
29の各弁孔65、66にそれぞれに連通する噴射開始用減圧
通52,54が形成されている。その他の構成は上記の一実
施例と同様に構成されているのでその説明は省略する。
In this embodiment, the injection start command valve 21 is composed of a double spool valve incorporated in the plunger 8. That is,
A child spool 62 is fitted in the lower end portion of the spool 29 so as to be able to move up and down, and the child spool 62 has a through hole 63 whose diameter is reduced at the lower end portion.
And a valve hole 64 formed so as to face each other on the peripheral wall of the large diameter portion of the through hole 63. A valve groove 53 of the injection start command valve 21 is formed on the outer peripheral surface of the peripheral wall of the reduced diameter portion of the through hole 63 over the entire circumference. On the other hand, on the peripheral wall of the lower end of the spool 29, a pair of valve holes 65, 6 communicating with the valve groove 53 when the child spool 62 rises to the top dead center.
6 is formed, and the spool 8 is formed on the plunger 8 when the spool 29 is located at a predetermined range of height slightly lower than the top dead center.
Injection start depressurization passages 52, 54 are formed to communicate with the respective valve holes 65, 66 of 29. The other structure is the same as that of the above-described embodiment, and the description thereof is omitted.

次に、この実施例の動作を噴射開始指令弁の動作を中心
に説明する。ここでは、上記の一実施例と共通する説明
はできる限り重複を避けるために省略することにする。
Next, the operation of this embodiment will be described focusing on the operation of the injection start command valve. Here, the description common to the above-described embodiment will be omitted as much as possible to avoid duplication.

(a) 初期状態 初期状態では、燃料供給弁57、タイミング設定弁19、吐
戻し弁56及び開閉弁59は全て閉弁されており、燃料噴射
ポンプ6のプランジャ8は上死点に位置し、スプール29
は下死点に位置して、入口弁10は開弁され、噴射開始指
令弁21は閉弁されている。また、子スプール62は下死点
に位置し、噴射開始用減圧室22は噴射開始用減圧通路5
4、弁孔66、弁孔64及び貫通孔63からなる減圧路Dを介
して中空部32及び蓄圧室36に連通されている。
(A) Initial state In the initial state, the fuel supply valve 57, the timing setting valve 19, the discharge return valve 56, and the opening / closing valve 59 are all closed, and the plunger 8 of the fuel injection pump 6 is located at the top dead center. Spool 29
Is located at the bottom dead center, the inlet valve 10 is opened, and the injection start command valve 21 is closed. Further, the child spool 62 is located at the bottom dead center, and the injection start decompression chamber 22 has the injection start decompression passage 5
The hollow portion 32 and the pressure accumulating chamber 36 are communicated with each other through a pressure reducing passage D formed by 4, a valve hole 66, a valve hole 64, and a through hole 63.

(b) 噴射ポンプ6への燃料供給 燃料供給弁57が閉弁状態から開弁状態に切換られ圧送ポ
ンプ5から圧送される燃料は、まず入口通路部分30,31
及び中空部32に圧入され、中空部32及び貫通孔63を経て
蓄圧室36に圧入された燃料によってスプール29が上死点
側に移動される。この間、噴射開始指令弁21はスプール
29の上死点の近くで開弁される。噴射開始用減圧室22は
中空部32及び蓄圧室36に連通されたままになっている。
従って、a時点からd時点までの噴射開始用減圧室22の
内圧P4は、比較的緩慢に変化する蓄圧室36及びポンプ室
9の内圧P0,P1と同じように変化する。
(B) Fuel Supply to Injection Pump 6 The fuel supplied from the pressure pump 5 after the fuel supply valve 57 is switched from the closed state to the open state is first of all the inlet passage portions 30, 31.
Also, the spool 29 is moved to the top dead center side by the fuel press-fitted into the hollow portion 32 and press-fitted into the pressure accumulating chamber 36 through the hollow portion 32 and the through hole 63. During this time, the injection start command valve 21 is on the spool.
It is opened near the top dead center of 29. The injection-starting decompression chamber 22 remains in communication with the hollow portion 32 and the pressure accumulating chamber 36.
Therefore, the internal pressure P 4 of the injection starting decompression chamber 22 from the time point a to the time point d changes in the same manner as the internal pressures P 0 and P 1 of the pressure accumulating chamber 36 and the pump chamber 9 which change relatively slowly.

(c) 蓄圧式燃料噴射器7への燃料圧入 上記噴射開始指令弁21はd時点に達する前に開弁され、
d時点で入口弁10が閉弁されてからポンプ室9の内圧P1
が高められるに連れてポンプ室9から噴射開始指令弁21
の噴射開始用減圧通路52、弁孔65、弁孔64及び貫通孔63
を介して連通された中空部32及び蓄圧室36に微量の燃料
がリークし、この燃料によって蓄圧室36及び中空部32の
内圧P0が僅かに高められ、スプール29がd時点の位置よ
りも更に押し上げられる。そして、スプール29が上死点
に達する少し前のf時点で弁孔65,66が噴射開始用減圧
通路52,54よりも高く位置して噴射開始指令弁21が閉弁
される。
(C) Fuel injection into the pressure-accumulation fuel injector 7 The injection start command valve 21 is opened before the time point d,
After the inlet valve 10 is closed at time d, the internal pressure P 1 of the pump chamber 9
The injection start command valve 21 from the pump chamber 9 as the
Injection starting pressure reducing passage 52, valve hole 65, valve hole 64 and through hole 63
A small amount of fuel leaks into the hollow portion 32 and the pressure accumulating chamber 36 that are communicated with each other through the fuel, and the internal pressure P 0 of the pressure accumulating chamber 36 and the hollow portion 32 is slightly increased by this fuel, so that the spool 29 is positioned higher than the position at the time point d. It is pushed up further. Then, at a time point f slightly before the spool 29 reaches the top dead center, the valve holes 65, 66 are positioned higher than the injection start depressurizing passages 52, 54, and the injection start command valve 21 is closed.

(d) 着火用燃料噴射 噴射開始指令手段18のタイミング設定弁19を開弁させて
中空部32の減圧が開始されると、貫通孔63及び中空部32
を通って蓄圧室36の燃料が減圧室20に吸い出され、スプ
ール29が下降するが、貫通孔63には縮径部があるので、
蓄圧室36と中空部32との間に圧力差が生じてスプール29
の下降と同時に子スプール62が急上昇する。そして、子
スプール62が上死点に達するとプランジャ8の噴射開始
用減圧通路52,54、スプール29の65,66及び子スプール62
の弁溝53が互いに連通して噴射開始指令弁21が開弁さ
れ、ポンプ室9が噴射開始用減圧室22と連通してポンプ
室9及び閉弁圧室12の内圧P1が減圧されることになる。
この減圧により噴射弁15が開弁されてプレ噴射が行わ
れ、閉弁圧室12の内圧P1と第1燃料蓄圧貯留室14aの内
圧P2との差圧が所定値以下になると噴射弁15が一旦閉じ
られる。
(D) Fuel injection for ignition When the timing setting valve 19 of the injection start command means 18 is opened to start depressurization of the hollow portion 32, the through hole 63 and the hollow portion 32.
The fuel in the pressure accumulating chamber 36 is sucked into the decompression chamber 20 through the spool 29, and the spool 29 descends, but since the through hole 63 has a reduced diameter portion,
A pressure difference is generated between the pressure accumulating chamber 36 and the hollow portion 32, and the spool 29
The child spool 62 rapidly rises at the same time as the descending. When the child spool 62 reaches the top dead center, the injection starting pressure reducing passages 52, 54 of the plunger 8, 65, 66 of the spool 29, and the child spool 62.
The valve groove 53 communicates with each other, the injection start command valve 21 is opened, the pump chamber 9 communicates with the injection start decompression chamber 22, and the internal pressure P 1 of the pump chamber 9 and the valve closing pressure chamber 12 is reduced. It will be.
The depressurized by in injection valve 15 is opened is performed the pre-injection, the internal pressure P 1 of the closing chamber 12 and the pressure difference between the internal pressure P 2 of the first fuel accumulator storage chamber 14a is below a predetermined value the injection valve 15 is closed once.

(e) 主燃料噴射 主燃料噴射(メイン噴射)の期間中は特に上記の一実施
例と異なるところはない。
(E) Main fuel injection During the main fuel injection (main injection), there is no particular difference from the above-described embodiment.

(f) 初期状態への復帰 初期状態に復帰するために中空部32が初期圧調整用圧力
伝達路58を介して調圧装置3に連通され、中空部32の内
圧P0が初期圧に復帰されるときに子スプール62は下死点
に復帰させられる。
(F) Return to the initial state In order to return to the initial state, the hollow portion 32 is communicated with the pressure regulator 3 via the pressure transmission path 58 for adjusting the initial pressure, and the internal pressure P 0 of the hollow portion 32 returns to the initial pressure. Then, the child spool 62 is returned to the bottom dead center.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るディーゼルエンジン用燃料噴射装
置の等価回路図、第2図はその燃料噴射装置に使用され
ているユニットインジェクタの初期状態における縦断面
図、第3図は噴射開始指令弁の開弁時の上記ユニットイ
ンジェクタの要部の縦断面図、第4図は上記ユニットイ
ンジエクタ及び噴射開始指令手段の動作を説明するタイ
ミング図、第5図は本発明の他の実施例の要部の縦断面
図、第6図はエンジンの無負荷時においても着火用燃料
噴射が行われることを示す圧力変化曲線図、第7図
(A)−(D)はプランジャ8の作動順序を示す図、第
8図は先行発明の等価回路図である。 6……燃料噴射ポンプ、7……蓄圧式燃料噴射器、8…
…プランジャ、9……ポンプ室、10……入口弁、11……
燃料入口、12……閉弁圧室、13……逆止弁、14……燃料
蓄圧貯留室、15……噴射弁、16……噴射孔、18……噴射
開始指令手段、19……タイミング設定弁、20……減圧
室、21……噴射開始指令弁、22……噴射開始用減圧室、
29……弁体、35……開弁圧室、36……閉弁用受圧室、43
……閉弁バネ、60……微小通路、C……燃料圧入行程、
D……着火用燃料噴射行程、f……閉弁時期、k……開
弁時期、t1……蓄圧期間。
FIG. 1 is an equivalent circuit diagram of a fuel injection device for a diesel engine according to the present invention, FIG. 2 is a vertical sectional view of a unit injector used in the fuel injection device in an initial state, and FIG. 3 is an injection start command valve. 4 is a longitudinal sectional view of the main part of the unit injector when the valve is opened, FIG. 4 is a timing diagram for explaining the operation of the unit injector and the injection start command means, and FIG. 5 is a view of another embodiment of the present invention. 6 is a longitudinal sectional view of a portion, FIG. 6 is a pressure change curve diagram showing that fuel injection for ignition is performed even when the engine is not loaded, and FIGS. 7 (A)-(D) show an operation sequence of the plunger 8. 8 and 9 are equivalent circuit diagrams of the prior invention. 6 ... Fuel injection pump, 7 ... Accumulation type fuel injector, 8 ...
… Plunger, 9 …… Pump room, 10 …… Inlet valve, 11 ……
Fuel inlet, 12 ... Valve closing pressure chamber, 13 ... Check valve, 14 ... Fuel pressure accumulating chamber, 15 ... Injection valve, 16 ... Injection hole, 18 ... Injection start command means, 19 ... Timing Setting valve, 20 ... decompression chamber, 21 ... Injection start command valve, 22 ... Injection starting decompression chamber,
29 …… Valve disc, 35 …… Valve opening chamber, 36 …… Valve for closing valve, 43
...... Valve closing spring, 60 ...... micro passage, C ...... fuel injection stroke,
D ...... ignition fuel injection stroke, f ...... closing timing, k ...... opening timing, t 1 ...... accumulator period.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ディーゼルエンジン用蓄圧式燃料噴射装置
に、蓄圧式燃料噴射器(7)と、これに燃料を供給する
燃料供給系とを設け、 この燃料供給系は、調圧及び調量された燃料を蓄圧式燃
料噴射器(7)に圧入する燃料噴射ポンプ(6)とこれ
の入口側を開閉する入口弁(10)とを備え、 上記蓄圧式燃料噴射器(7)は、燃料噴射ポンプ(6)
のポンプ室(9)に連通する燃料入口(11)と、これに
順次接続された閉弁圧室(12)、逆止弁(13)、燃料蓄
圧貯留室(14)、噴射弁(15)及び噴射孔(16)と、閉
弁バネ(43)とを有し、 上記噴射弁(15)は、燃料蓄圧貯留室(14)の内圧によ
り開弁付勢される一方、閉弁バネ(43)の付勢力及び閉
弁圧室(12)の内圧により閉弁付勢されるように構成
し、 上記燃料噴射ポンプ(6)のプランジャ(8)をポンプ
室(9)に押し込めることにより、燃料を燃料入口(1
1)、閉弁圧室(12)及び逆止弁(13)を介して燃料蓄
圧貯留室(14)に圧入した後、所定のタイミングに上記
閉弁圧室(12)の内圧を圧抜きすることにより、上記噴
射弁(15)の閉弁付勢力を開弁付勢力よりも弱めて、噴
射弁(15)を開弁させるように構成した ディーゼルエンジン用蓄圧式燃料噴射装置の噴射制御装
置において、 上記蓄圧式燃料噴射器(7)の閉弁圧室(12)に、これ
の間近に配置された噴射開始指令弁(21)と小容積の噴
射開始用減圧室(22)とを順に接続し、 上記噴射開始指令弁(21)には、入口弁(10)を介して
燃料噴射ポンプ(6)および閉弁圧室(12)に接続さ
れ、その内圧で噴射開始指令弁(21)および入口弁(1
0)の弁体(29)を閉弁付勢する受圧室(36)と、その
弁体(29)を開弁付勢する開弁圧室(35)とを設け、 上記噴射開始指令弁(21)を所定の着火用燃料噴射開始
時に開弁させるとともに、この開弁後に入口弁(10)を
開弁させる噴射開始指令手段(18)を設け、この噴射開
始指令手段(18)には、燃料噴射ポンプ(6)から蓄圧
式燃料噴射器(7)に燃料を圧入した後の所定の時点で
開弁されるタイミング設定弁(19)と、このタイミング
設定弁(19)を介して上記受圧室(36)に連通される減
圧室(20)とを設け、 このタイミング設定弁(19)の開弁により、受圧室(3
6)を減圧室(20)に連通させて、受圧室(36)の内圧
を減圧することにより、先ず、噴射開始指令弁(21)を
開弁圧室(35)の内圧で開弁させ、上記閉弁圧室(12)
の内圧を噴射開始用減圧室(22)へ減圧し、次いで、入
口弁(10)を開弁圧室(35)の内圧で開弁させ、上記閉
弁圧室(12)の内圧を上記減圧室(20)へ圧抜きするよ
うに構成し、 上記タイミング設定弁(19)をエンジンのクランク軸に
連動連結し、 上記噴射開始用減圧室(22)を微小通路(60)を介して
受圧室(36)に連通し、 燃料圧入行程(C)において、上記プランジャ(8)の
吐出作動により、受圧室(36)の圧力を高めて、入口弁
(10)を閉じた後、噴射開始指令弁(21)を閉じた閉弁
時点(f)から、着火用燃料噴射行程(D)において、
噴射開始指令手段(18)のタイミング設定弁(19)の開
弁作動により、受圧室(36)の圧力(P0)を減圧室(2
0)へ減圧して、噴射開始指令弁(21)を開弁させる開
弁時点(k)までの期間を蓄圧期間(t1)とし、 上記微小通路(60)は、この蓄圧期間(t1)内におい
て、噴射開始用減圧室(22)の圧力(P4)を受圧室(3
6)へ逃がして、噴射開始用減圧室(22)の圧力(P4
を受圧室(36)の圧力(P0)にまで低下させるように構
成した 事を特徴とする、ディーゼルエンジン用蓄圧式燃料噴射
装置の噴射制御装置。
1. A pressure-accumulation fuel injector for a diesel engine is provided with a pressure-accumulation fuel injector (7) and a fuel supply system for supplying fuel to the accumulator fuel injector, and the fuel supply system is pressure-regulated and metered. A fuel injection pump (6) for press-fitting the fuel into the pressure-accumulation fuel injector (7) and an inlet valve (10) for opening and closing the inlet side of the fuel injection pump (7). Pump (6)
Fuel inlet (11) communicating with the pump chamber (9) of the valve, the valve closing pressure chamber (12), the check valve (13), the fuel pressure accumulating chamber (14), and the injection valve (15) that are sequentially connected to the fuel inlet (11). And an injection hole (16) and a valve closing spring (43). The injection valve (15) is biased to open by the internal pressure of the fuel pressure accumulating chamber (14) while the valve closing spring (43) is closed. ) And the internal pressure of the valve closing pressure chamber (12) to close the valve, and by pushing the plunger (8) of the fuel injection pump (6) into the pump chamber (9), The fuel inlet (1
1), after press-fitting into the fuel pressure storage chamber (14) through the valve closing pressure chamber (12) and the check valve (13), the internal pressure of the valve closing pressure chamber (12) is depressurized at a predetermined timing. Thus, in the injection control device of the accumulator fuel injection device for a diesel engine, the valve closing biasing force of the injection valve (15) is made weaker than the valve opening biasing force to open the injection valve (15). , The valve closing pressure chamber (12) of the pressure accumulating fuel injector (7) is sequentially connected to the injection start command valve (21) and the small volume injection starting decompression chamber (22) which are arranged close to the valve closing pressure chamber (12). Then, the injection start command valve (21) is connected to the fuel injection pump (6) and the valve closing pressure chamber (12) via the inlet valve (10), and the injection start command valve (21) and Inlet valve (1
The pressure receiving chamber (36) for urging the valve body (29) of (0) to close and the valve opening pressure chamber (35) for urging the valve body (29) to open are provided, and the injection start command valve ( 21) is opened at the start of fuel injection for a predetermined ignition, and after this opening, injection start command means (18) for opening the inlet valve (10) is provided, and this injection start command means (18) includes A timing setting valve (19) that is opened at a predetermined time point after fuel is injected from the fuel injection pump (6) to the pressure accumulation type fuel injector (7), and the above pressure reception via this timing setting valve (19). A pressure reducing chamber (20) communicating with the chamber (36) is provided, and by opening this timing setting valve (19), the pressure receiving chamber (3
6) is communicated with the decompression chamber (20) to reduce the internal pressure of the pressure receiving chamber (36), so that the injection start command valve (21) is first opened with the internal pressure of the valve opening pressure chamber (35), Valve closing pressure chamber (12)
The internal pressure of the valve to the injection decompression chamber (22), then the inlet valve (10) is opened with the internal pressure of the valve opening pressure chamber (35), and the internal pressure of the valve closing pressure chamber (12) is reduced to the above pressure. The pressure setting chamber (20) is depressurized to the chamber (20), the timing setting valve (19) is linked to the crankshaft of the engine, and the injection starting decompression chamber (22) is received through the minute passage (60). (36), in the fuel injection stroke (C), the pressure of the pressure receiving chamber (36) is increased by the discharge operation of the plunger (8), the inlet valve (10) is closed, and then the injection start command valve From the valve closing time (f) when (21) is closed, in the fuel injection stroke (D) for ignition,
By opening the timing setting valve (19) of the injection start command means (18), the pressure (P 0 ) in the pressure receiving chamber (36) is reduced (2).
The period until the valve opening time (k) at which the pressure is reduced to 0) and the injection start command valve (21) is opened is the pressure accumulation period (t 1 ), and the minute passage (60) is the pressure accumulation period (t 1). ), The pressure (P 4 ) in the injection starting decompression chamber (22) is applied to the pressure receiving chamber (3
6), and the pressure (P 4 ) in the injection decompression chamber (22)
Is configured to reduce the pressure to the pressure (P 0 ) of the pressure receiving chamber (36), and the injection control device for the pressure-accumulation fuel injection device for a diesel engine.
JP63206880A 1988-08-19 1988-08-19 Injection control device for accumulator fuel injection device for diesel engine Expired - Lifetime JPH07109186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206880A JPH07109186B2 (en) 1988-08-19 1988-08-19 Injection control device for accumulator fuel injection device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206880A JPH07109186B2 (en) 1988-08-19 1988-08-19 Injection control device for accumulator fuel injection device for diesel engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62123183A Division JPH07117011B2 (en) 1987-05-19 1987-05-19 Injection control device for accumulator fuel injection device for diesel engine

Publications (2)

Publication Number Publication Date
JPH01159440A JPH01159440A (en) 1989-06-22
JPH07109186B2 true JPH07109186B2 (en) 1995-11-22

Family

ID=16530577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206880A Expired - Lifetime JPH07109186B2 (en) 1988-08-19 1988-08-19 Injection control device for accumulator fuel injection device for diesel engine

Country Status (1)

Country Link
JP (1) JPH07109186B2 (en)

Also Published As

Publication number Publication date
JPH01159440A (en) 1989-06-22

Similar Documents

Publication Publication Date Title
JPH1047196A (en) Direct operation type speed control nozzle valve of fluid injector
JPH06510581A (en) injection device
JP3991470B2 (en) Injection valve
US4917068A (en) Unit injector for an engine
JPH07109186B2 (en) Injection control device for accumulator fuel injection device for diesel engine
JP2000297719A (en) Fuel injector for diesel engine
JP3235286B2 (en) Fuel injection device for internal combustion engine
JPH07117011B2 (en) Injection control device for accumulator fuel injection device for diesel engine
JPH07109185B2 (en) Injection control device for accumulator fuel injection device for diesel engine
JP4016569B2 (en) Hydraulic valve gear
JPH07109183B2 (en) Injection control device for accumulator fuel injection device for diesel engine
JPH08261092A (en) Injector
JPS6146459A (en) Fuel jet pump of internal combustion engine
JP2674266B2 (en) Fuel injection device for diesel engine
JPH07109184B2 (en) Fuel supply device for accumulator type fuel injection device of diesel engine
JPH1122581A (en) Fuel injection device
JPH053739Y2 (en)
JPS61129457A (en) Multi-fuel-valve injector
JP3832037B2 (en) Accumulated fuel injection system
JPS63134853A (en) Accumulator fuel injection device for diesel engine
JPS6313023B2 (en)
JP2004519622A (en) Fuel injector with nozzle needle damping device
JPH0914077A (en) Pressure accumulating-type fuel injection device
JPH0521659Y2 (en)
JP2000130293A (en) Fuel injector of diesel engine