JPH07108824B2 - How to join carbon materials - Google Patents

How to join carbon materials

Info

Publication number
JPH07108824B2
JPH07108824B2 JP25406389A JP25406389A JPH07108824B2 JP H07108824 B2 JPH07108824 B2 JP H07108824B2 JP 25406389 A JP25406389 A JP 25406389A JP 25406389 A JP25406389 A JP 25406389A JP H07108824 B2 JPH07108824 B2 JP H07108824B2
Authority
JP
Japan
Prior art keywords
carbon
copper
joining
metal
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25406389A
Other languages
Japanese (ja)
Other versions
JPH03218986A (en
Inventor
亨 吉田
博彦 大村
喬 松本
照久 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP25406389A priority Critical patent/JPH07108824B2/en
Publication of JPH03218986A publication Critical patent/JPH03218986A/en
Publication of JPH07108824B2 publication Critical patent/JPH07108824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素材の接合方法に関し、更に詳しくはフリー
カーボンを0.2重量%以上含有する炭素系材料、例えば
炭素材、炭化物、金属類(以下炭素材と略記する)と、
該炭素材又は炭化物、金属類とを接合する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for joining carbon materials, and more particularly to a carbon-based material containing 0.2% by weight or more of free carbon, such as carbon materials, carbides and metals (hereinafter referred to as “carbon materials”). Abbreviated as carbon material),
The present invention relates to a method for joining the carbon material, the carbide or the metal.

〔従来の技術〕[Conventional technology]

炭素材料は、その特性が広く、工業用の用途で広く使わ
れている。
Carbon materials have wide characteristics and are widely used in industrial applications.

その形態としては、一般に、炭素材として、定義されて
いるが、より詳細には、黒鉛単独、炭素単独、各種金属
との炭化物、又は、これらを含む複合材或いは炭素を多
量に含む金属類として用いられるのが普通である。
The form is generally defined as a carbon material, but more specifically, as graphite alone, carbon alone, a carbide with various metals, or a composite material containing these or a metal containing a large amount of carbon. It is usually used.

例えば、黒鉛単独材としては、その高温での耐熱製や耐
熱衝撃性に優れている事から、核分裂炉、核融合炉の構
造材として使われたり、熱伝導率が大きく、且つ潤滑性
が良好な所から、鋳造のモールドスリーブに、高温強度
に優れている点でホットプレスのモールドに、導電性が
大きい事からスパッタリング用ターゲット、半導体製造
装置内部構造材料に用いられたりしている。
For example, graphite alone is used as a structural material for nuclear fission reactors and fusion reactors because of its excellent heat resistance and thermal shock resistance at high temperatures, and has high thermal conductivity and good lubricity. From a certain point of view, it is used as a casting mold sleeve, a hot press mold because of its excellent high-temperature strength, and a sputtering target and a material for internal structure of a semiconductor manufacturing apparatus because of its high conductivity.

その他、炭素単独材としては、その耐食性より、化学装
置のライニング材に用いられたり、その電気抵抗に見合
った電気ブラシ材などの用途がある。但しこれ等の用途
に於いてはそれ等炭素材を所定位置に取り付ける金具、
電気を流すための金属配線との接合等の問題がある。
In addition, the carbon-only material is used as a lining material of a chemical device due to its corrosion resistance, or as an electric brush material suitable for its electric resistance. However, in these applications, metal fittings that attach such carbon materials in place,
There is a problem such as joining with metal wiring for passing electricity.

炭化物としては、例えばチタンカーバイドは、その高温
強度に優れる点でサーメット等の硬質耐熱合金の主要成
分として用いられ、シリコンカーバイトはその耐食性に
着目し、熱交換機隔壁に、又タンズステンカーバイト
は、その硬度が大きい事からチップ材、カム接触部、ダ
イス材、及びピストンヘッド等に用いられている。
As the carbide, for example, titanium carbide is used as a main component of hard heat-resistant alloys such as cermet in that it is excellent in high-temperature strength, silicon carbide pays attention to its corrosion resistance, heat exchanger partition walls, and tans stencarbite is Because of its high hardness, it is used for chip materials, cam contact parts, die materials, piston heads and the like.

更に、複合材では、炭素の基盤に、電気伝導度の高い金
属を含浸させ、潤滑性と導電性とを活用した電気ブラシ
としたり、炭素と樹脂とを複合化し、シール材或いは放
電加工電極材として使用したりしている。
Further, in the case of a composite material, a carbon base is impregnated with a metal having a high electric conductivity to form an electric brush utilizing lubricity and conductivity, or carbon and a resin are combined to form a sealing material or an electric discharge machining electrode material. It is used as

このように、炭素材料の用途は、広範に、且つ着実に、
拡大しつつ有るが、実際に工業化を進めるには、尚問題
点を残している。
In this way, the applications of carbon materials are wide and steady.
Although it is expanding, there are still some problems to be solved before actually promoting industrialization.

一般に、工業装置の大型化高機能性の要求は、日増しに
高まりつつあり、各部材を、一体物で作り上げるには、
製造設備或いは各素材機能の性質上の制約が有り必ずし
も容易ではない。更に、複雑な形状をした鋳造モールド
など、所謂ニア・シェーブで作り上げるにも、その加工
成形には、制約がある。
In general, the demand for large-scale and high-performance industrial equipment is increasing day by day.
It is not always easy because there are restrictions on the characteristics of the manufacturing equipment or the functions of each material. Further, even if a casting mold having a complicated shape is made by a so-called near shave, there is a limitation in its work forming.

他に、炭素材料の持つ特性を活かしきっても、尚それ以
上の特性を要求される場合も多く、例えば核燃料炉、核
融合炉構造材では、構造材としての黒鉛にかかる熱負荷
が大きく、強制的な水冷が必要となる場合があるが、黒
鉛材自身水冷は、その水分浸透性により不可能であり、
水冷用の金属配管との組み合わせが必要である。
In addition, even if the characteristics of carbon materials are fully utilized, there are many cases where even higher characteristics are required. For example, in nuclear fuel reactors and structural materials for fusion reactors, the thermal load on graphite as a structural material is large, Although forced water cooling may be necessary, water cooling of the graphite material itself is impossible due to its water permeability,
Combination with water cooling metal pipes is required.

又、使用時に期待される炭素材としての特性が、その表
(裏)面層だけにあれば良い様な場合も多く、その表
(裏)面層の下(上)の基層には、表(裏)面層と異な
る材料を用いる事がある。又、それ等炭素材を所定位置
に取り付ける金具や、炭素材に電気を流すための金属配
線との接合を要することがある。
In many cases, the characteristics of a carbon material that is expected during use need only be in the front (back) surface layer, and in the base layer below (upper) the front (back) surface layer, A material different from the (back) surface layer may be used. Further, it may be necessary to join metal fittings for attaching the carbon material at a predetermined position or metal wiring for passing electricity to the carbon material.

このような要求に対する最も普通の手段は炭素材と他の
金属材料、或いは炭素材同志を接合することであり、こ
の接合により上記各機能を賦与せしめ総合的複合機能に
より対処する手段である。
The most common means for satisfying such a requirement is to bond a carbon material and another metal material, or carbon materials together, and to provide the above-mentioned functions by this bonding and to deal with them by a comprehensive composite function.

このような要請からこの種上記材料同志の接合について
は従来からも種々な方法が提案されている。
From such a demand, various methods have been conventionally proposed for joining materials of the same kind.

しかし乍ら従来の各種接合方法はいずれも接合強度が不
充分であったり、或いは接合材により加熱温度などに制
約があったり、或いは操作に煩雑な手間や時間を要した
りするものが多く、特に大型材の接合の場合(一般に線
膨張係数が小さい)炭素材とこれの大きい金属材料の膨
張係数の差によって割れ等を生じて必ずしも、汎用的な
技術としては普及せず、現在尚満足すべき方法は極めて
少ない。
However, all of the various conventional joining methods have insufficient joining strength, or there are restrictions on the heating temperature or the like depending on the joining material, or many operations require complicated labor and time, Especially when joining large materials (generally having a small linear expansion coefficient), due to the difference in expansion coefficient between carbon material and large metal material, cracks and the like do not necessarily spread as a general-purpose technology and are still satisfactory. There are very few ways to do it.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明が解決しようとする課題はこの種炭素材同志また
は炭素材と金属材とを出来るだけ簡単な操作でしかも接
合強度、耐熱性、耐衝撃性及び耐食性いずれも大きく接
合し得、特に大型材でも接合し得る新しい接合方法を開
発することである。
The problem to be solved by the present invention is that this kind of carbon material or carbon material and metal material can be bonded to each other with great ease in bonding strength, heat resistance, impact resistance and corrosion resistance, and particularly large materials. However, it is to develop a new joining method capable of joining.

〔課題を解決するための手段〕[Means for Solving the Problems]

(A)炭素分を0.2重量%以上含む炭素材と、 (B)金属又は上記炭素材との接合(但し炭素鋼同志の
接合を除く)に於いて、 (C)線膨張係数が7×10-6/℃以下である金属又は
(及び)金属合金をインサート材として使用し、 (D)炭素材とインサート材(C)の間に、鉄または鉄
合金を介在させて、 (E)銅を少なくとも25%重量以上含む銅又は銅合金を
接合材として使用して接合せしめることによって解決さ
れる。
When joining (A) a carbon material containing 0.2% by weight or more of carbon, and (B) a metal or the above carbon material (excluding the joining of carbon steels), (C) the linear expansion coefficient is 7 × 10. A metal or (and) a metal alloy having a temperature of -6 / ° C or less is used as an insert material, and (D) a carbon material and an insert material (C) are interposed with iron or an iron alloy, and (E) copper is added. The problem is solved by using copper or a copper alloy containing at least 25% by weight or more as a joining material for joining.

〔発明の作用並びに構成〕[Operation and Configuration of Invention]

本発明においては炭素材(A)と炭素材(B)又は炭素
材(A)と金属(B)との接合に於いて、それ等の間に
線膨張係数(以下CTEと略記する)が、7×10-6以下の
金属材料の表面に、鉄の層(膜)が析出しているインサ
ート材(C)を用いること、更に接合に当たっては、該
インサート材(C)の両面に少なくとも銅を25重量%以
上含有する銅又は銅合金から成る接合材(E)を介在さ
せ、即ちA−E−D−C−E−Bの組み合わせの状態で
加熱し、(A)と(B)とを接合することを基本として
いる。
In the present invention, in the joining of the carbon material (A) and the carbon material (B) or the carbon material (A) and the metal (B), a linear expansion coefficient (hereinafter abbreviated as CTE) is provided between them. Use an insert material (C) in which an iron layer (film) is deposited on the surface of a metal material of 7 × 10 −6 or less, and further in joining, at least copper is provided on both surfaces of the insert material (C). A bonding material (E) made of copper or a copper alloy, which is contained in an amount of 25% by weight or more, is interposed, that is, heating is performed in a state of a combination of AEDECEDB, and (A) and (B) are It is based on joining.

更に図面を用いて本発明の作用と構成を詳しく説明す
る。
Further, the operation and configuration of the present invention will be described in detail with reference to the drawings.

第1図は、炭素材(A)と炭素材(B)との接合の例で
あり、両面に鉄層(1)、(2)を有するインサート材
(C)を用い、その両側に銅を含有する接合材(D)を
介在させて接合する例を模擬的に図示したものである。
FIG. 1 is an example of joining a carbon material (A) and a carbon material (B), using an insert material (C) having iron layers (1) and (2) on both sides and copper on both sides. It is what simulatedly illustrated the example which joins by interposing the containing bonding material (D).

また、第2図は炭素材(A)と金属(B)の接合の例で
あり、炭素材と向かい合う面に鉄層(1)を有するイン
サート材(C)を用い、その両側に銅を含有する接合材
(D)を介在させて接合する例である。この場合、イン
サート材(C)の両面に鉄層を形成しても全く同等の効
果を示す。
FIG. 2 is an example of joining a carbon material (A) and a metal (B). An insert material (C) having an iron layer (1) on the surface facing the carbon material is used, and copper is contained on both sides. This is an example of joining with the joining material (D). In this case, even if iron layers are formed on both surfaces of the insert material (C), the same effect is exhibited.

この場合の炭素材(A)及び(B)としては、フリーカ
ーボンを0.2重量%、好ましくは0.5重量%以上含有する
炭素材であり、含水炭素や、炭化水素等は勿論含まな
い。ここでフリーカーボンを0.2重量%以上含有する炭
素材とは、実質的に接合時にフリーカーボンが0.2重量
%以上存在するような炭素材であり、必ずしも接合前に
フリーカーボンを上記量含有していなくとも良い。接合
するには、鉄箔中の炭素量との差が少なくとも0.2重量
%以上の濃度差を必要とするので、0.2重量%以下では
炭素体との間に橋かけ効果が生じず、また弱いので、充
分な接合強度が発揮されない。
In this case, the carbon materials (A) and (B) are carbon materials containing 0.2% by weight, preferably 0.5% by weight or more of free carbon, and of course do not include hydrous carbon or hydrocarbons. Here, the carbon material containing 0.2% by weight or more of free carbon is a carbon material that substantially contains 0.2% by weight or more of free carbon at the time of joining, and does not necessarily contain the above amount of free carbon before joining. Both good. For joining, the difference from the carbon content in the iron foil requires a concentration difference of at least 0.2% by weight or more, so if it is 0.2% by weight or less, there is no bridging effect with the carbon body and it is weak. , Sufficient bonding strength is not exhibited.

具体的には、黒鉛単独から成るもの、炭素単独からなる
もの、両者の混合物、各種金属の炭化物、或いはこれ等
をその少なくとも1成分とした他の材料との複合材が例
示出来、その他各種セラミックや金属中にフリーカーボ
ンを所定量含有せしめたものでも良い。尚フリーカーボ
ンとは化合物でななく炭素単一からなる物をいう。
Specific examples thereof include graphite alone, carbon alone, a mixture of both, carbides of various metals, and composite materials with other materials containing at least one of these as other components, and other various ceramics. It is also possible to use a metal containing a predetermined amount of free carbon. The free carbon is not a compound but a single carbon.

各種金属の炭化物としては、タングステンカーバイト、
チタンカーバイト、シリコンカーバイトを始め、その他
例えば炭素鋼、各種合金鋼等が好ましい例として例示出
来、また複合体としては、炭素繊維で強化された炭素材
所謂c/c複合材、炭素材に金属を含浸、浸透せしめたも
の、例えば炭素材に鉄、鋼等を高温下、溶融含浸、また
は混合加圧成形したもの等を好ましい具体例として挙げ
ることができる。
As carbides of various metals, tungsten carbide,
In addition to titanium carbide and silicon carbide, other examples such as carbon steel and various alloy steels can be exemplified as preferable examples, and as the composite, carbon material reinforced with carbon fiber, so-called c / c composite material, carbon material Preferred specific examples include those impregnated and permeated with a metal, for example, those obtained by melting and impregnating a carbon material with iron, steel or the like at high temperature, or by mixing and pressing.

次に被接合体たる金属材(B)としては、広く各種の金
属が包含され、金属としては合金も含まれる。好ましい
金属としては、例えば銅、タンズステン、モリブデン、
鉄、珪素、ステンレス鋼、ハステロイ、インコネル、炭
素鋼、各種合金鋼、合金鉄等である。
Next, a wide variety of metals are included as the metal material (B) to be bonded, and alloys are also included as the metals. Preferred metals include, for example, copper, tansten, molybdenum,
Examples include iron, silicon, stainless steel, Hastelloy, Inconel, carbon steel, various alloy steels, and iron alloys.

これ等被接合体たる炭素材や金属材は、その材質が上記
で説明したものである限り、その形状、大きさ等は何等
限定されず、適宜な形状、大きさのものが使用される。
The carbon material and the metal material to be bonded are not limited in shape and size as long as the materials are those described above, and those having an appropriate shape and size are used.

これ等炭素材同志又は炭素材と金属材との接合におい
て、インサート材(C)を用いる。
The insert material (C) is used in joining these carbon materials together or in joining the carbon material and the metal material.

インサート材(C)としてはCTEが7×10-6℃以下の金
属材料であれば良く、例えばモリブデン、鉄モリブデン
合金の板状体、片、薄板、箔状体等が使用され、それを
基材として、に少なくとも一表面に鉄の層を有している
ものが好ましく使用される。インサート材(C)の厚さ
は相手材即ち(A)と(B)との膨張係数の差の大きい
程厚くし、時には1m/m以上ともなる。
The insert material (C) may be any metal material having a CTE of 7 × 10 -6 ℃ or less, and for example, molybdenum, iron-molybdenum alloy plate, piece, thin plate, foil, etc. are used. A material having an iron layer on at least one surface thereof is preferably used as the material. The thickness of the insert material (C) is made thicker as the difference in expansion coefficient between the mating material, that is, (A) and (B), becomes larger, and sometimes becomes 1 m / m or more.

本発明に於いては必ずしも予め鉄層を形成する必要はな
く、鉄の箔片をただ単に介在させても良いが、予め金属
に鉄層を形成させておく方が作業能率上好ましい。
In the present invention, it is not always necessary to previously form the iron layer, and an iron foil piece may be simply interposed, but it is preferable to previously form the iron layer on the metal in terms of work efficiency.

この鉄層としては、均一に付着している状態であれば、
どのような方法で付着させたものでも良い。例えば、電
気メッキ法、化学メッキ法、蒸着法、CVD法、金属溶射
法等が挙げられる。
As this iron layer, if it is in a state of being adhered uniformly,
It may be attached by any method. For example, an electroplating method, a chemical plating method, a vapor deposition method, a CVD method, a metal spraying method and the like can be mentioned.

この鉄層の厚さは通常1m/m以下、特に好ましくは0.2m/m
以下である。
The thickness of this iron layer is usually 1 m / m or less, particularly preferably 0.2 m / m.
It is the following.

尚、炭素材(低CTE)と金属材(高CTE)との接合に当た
って、炭素材のCTEと非常に近いモリブデン箔を両者の
間に緩衝層として介在させ、接合することが特願昭61−
258155号に開示されている。しかしこの公知方法の如く
単にモリブデンのみ使用した場合には、接合効果が無い
か、或いは弱く、実質的に実用性が低い。そこで、ニッ
ケル、チタン或いは銅等のロウ材の箔、薄板等を更にモ
リブデンの上下に併用して橋かけ効果を起こさしめ、実
用的な接合技術としている。これに対し本発明に於いて
は、CTEが7×10-6℃以下の金属例えばモリブデン等の
金属に、鉄を併用し、更に銅層を設けた新規な組み合わ
せとしたところに特徴がある。
When joining a carbon material (low CTE) and a metal material (high CTE), a molybdenum foil that is very close to the CTE of the carbon material should be interposed as a buffer layer between the two to make a joint.
No. 258155. However, when only molybdenum is used as in this known method, there is no bonding effect or the bonding effect is weak, and practically low. Therefore, a brazing foil such as nickel, titanium, or copper, a thin plate, or the like is further used above and below the molybdenum to cause a bridging effect, which is a practical joining technique. On the other hand, the present invention is characterized in that a metal having a CTE of 7 × 10 −6 ° C. or less, for example, a metal such as molybdenum, is used in combination with iron, and a copper layer is further provided.

この鉄層は、箔状のものを使用しても技術的には良い
が、接合作業の現場に於いて作業の能率向上、確実性、
経費節減等のために、前記のように予めモリブデン等に
鉄層を設けておくことが特に好ましい。特に曲面材、異
形材、精密加工材等を接合する場合には予め鉄層を設け
ておくことは極めて重要であり、鉄層を確実に設けるこ
とが出来る。
Although this iron layer is technically good even if it uses a foil-like one, it improves the work efficiency, reliability, and
It is particularly preferable to previously provide an iron layer on molybdenum or the like as described above in order to reduce costs. In particular, when a curved surface material, a profiled material, a precision processed material, or the like is bonded, it is extremely important to provide an iron layer in advance, and the iron layer can be reliably provided.

接合作業にあたっては、鉄層を設けた或いは鉄層を介在
させたインサート材(C)を更に銅板、銅箔等の銅を25
%以上含む接合材(D)の存在下好ましくは両面を挾ん
で、減圧下、加熱する。即ち、上記の作業で、炭素材
(A)−銅−鉄−Mo−鉄−銅−(B)の配列となって接
合され、特に鉄層間は〔炭素−銅−鉄−(銅)の合金
が晶出し強固なる結合が保たれている。この場合、鉄箔
には多数の細孔を設けて用いることも可能で、その孔を
通じて銅がMo−鉄間に流入し、直接強固なる接合層を形
成する方法もある。
In the joining work, the insert material (C) with the iron layer provided or with the iron layer interposed is further coated with copper such as copper plate or copper foil.
% In the presence of the bonding material (D), preferably sandwiching both surfaces and heating under reduced pressure. That is, in the above work, the carbon material (A) -copper-iron-Mo-iron-copper- (B) is joined in an array, and especially the iron layer is a [carbon-copper-iron- (copper) alloy. Are crystallized and a strong bond is maintained. In this case, the iron foil can be provided with a large number of pores, and there is also a method in which copper flows between the Mo and iron through the pores to directly form a strong bonding layer.

本発明者等は、先に「フリーカーボンを0.2重量%以上
含む炭素材と、該炭素材又は金属材とを接合するに際
し、銅を少なくとも25重量%以上含有してなる接合材の
介在下に、被接合材間に鉄又は鉄合金を存在させる接合
方法」を骨子とする新規な接合方法を発明し、既に出願
を行った(特願昭63−120105号)。
The present inventors have previously stated that "when joining a carbon material containing 0.2% by weight or more of free carbon and the carbon material or a metal material, an interposing of a joining material containing at least 25% by weight of copper is used. , And a patent has already been filed (Japanese Patent Application No. 63-120105).

この発明は〔炭素材−銅−鉄箔−銅−炭素材又は金属〕
の配列によって炭素材の接合を行うことを要旨として居
り、工業的に極めて有用なものであるが、大型材、特に
接合面での長辺が50cmを超える材料の全面接合について
は、接合面での金属質部分と、炭素質部分の膨張差によ
る歪みを充分には吸収しきれず、時として割れ、接合面
での剥離現象が生じる場合がある。
This invention is [carbon material-copper-iron foil-copper-carbon material or metal]
The main idea is to join the carbon materials by the arrangement of, and it is extremely useful industrially.However, for large-scale materials, especially for the full-scale joining of materials whose long side exceeds 50 cm, the joining surface The strain due to the difference in expansion between the metallic portion and the carbonaceous portion cannot be fully absorbed, and sometimes cracks and a peeling phenomenon at the joint surface may occur.

本発明は、この先願の上記時として生ずる恐れのある欠
点を補う目的で、特に大型接合面又は比較的高い温度で
使用される材料の接合を意図して開発、改良されたもの
であり、顕著な差異がある。即ち本発明の基本態様は、
〔炭素材−Cu−Fe−Mo−Fe−Cu−炭素材〕又は〔炭素材
−Cu−Fe*−Mo−Fe−Cu−金属材〕(但し金属材の場合
にはFe*層を省くこともできる)であり、炭素材−Cu−F
e−Moの部分が本発明の構成上の必須部分であり、この
部分は先願と著しく異なっている。
The present invention has been developed and improved for the purpose of compensating for the drawbacks that may occur in the above-mentioned prior application, particularly for the purpose of joining large-sized joint surfaces or materials used at relatively high temperatures. There is a big difference. That is, the basic aspect of the present invention is
[Carbon material-Cu-Fe-Mo-Fe-Cu-carbon material] or [Carbon material-Cu-Fe * -Mo-Fe-Cu-metal material] (However, in the case of metal material, omit the Fe * layer. It is also possible), and carbon material-Cu-F
The e-Mo part is an essential part of the configuration of the present invention, and this part is significantly different from the prior application.

本発明法により接合された接合体は或いは本発明法は各
種の分野で広く使用される。例えば接合体は核融合炉の
部材特に第1壁又はリミターとして、あるいは航空機、
ロケット、宇宙機器用部材として極めて有用である。ま
たその他本発明法は電極銅と黒鉛材との接合や炭素電極
と銅導線との接合惹いては電極、反射鏡、就中炭化珪素
反射鏡の水冷機構付設、水中ポンプとメカニカールシー
ルの摺動面接着等にも有効に使用される。
The joined body joined by the method of the present invention or the method of the present invention is widely used in various fields. For example, the zygote may be a member of a fusion reactor, in particular the first wall or limiter, or an aircraft,
It is extremely useful as a material for rockets and space equipment. In addition, in the method of the present invention, the joining of the electrode copper and the graphite material or the joining of the carbon electrode and the copper conducting wire is carried out by attaching the water cooling mechanism of the electrode, the reflecting mirror, and the silicon carbide reflecting mirror, and the sliding of the submersible pump and the mechanical seal. It is also effectively used for dynamic surface adhesion.

〔効果〕〔effect〕

本発明により、大面積接合作業に於いても接合面に於い
て殆ど割れ、剥離現象も起こらず、強固な接合を実施す
ることが出来、新規な応用面を拓くことができた。
According to the present invention, even in a large-area joining operation, almost no cracking or peeling phenomenon occurs on the joining surface, and strong joining can be performed, and a new application aspect can be opened up.

〔実施例〕〔Example〕

以下本発明の実施の態様を実施例によって具体的に例示
する。
Hereinafter, embodiments of the present invention will be specifically illustrated by examples.

実施例1 (黒鉛材料と銅との接合例) 接合操作は次の2工程で行った。Example 1 (Example of joining graphite material and copper) The joining operation was performed in the following two steps.

(イ)先ず炭素材(東洋炭素製等方性黒鉛材:「IG−4
3」)と金属モリブデン板とを、第3図に示すように、
銅(無酸銅)箔、鉄板を介して接合した。但しこれ等の
サイズは下記の通りである。
(A) First, carbon material (isotropic graphite material made by Toyo Tanso: "IG-4
3 ") and the metal molybdenum plate as shown in FIG.
Bonded via a copper (acid-free copper) foil and an iron plate. However, these sizes are as follows.

炭素材:28×28×15m/m、第3図中(11) 銅 箔:0.1m/m、第3図中(12) 鉄 板:0.1m/m、第3図中(13) モリブデン板:0.6m/m、第3図中(14) 上記を重ねて、炭素材(11)の上方に約500gの重りを載
せ、窒素雰囲気中にて1200℃まで昇温、4分間保持した
後、徐冷した。
Carbon material: 28 x 28 x 15 m / m, Fig. 3 (11) Copper foil: 0.1 m / m, Fig. 3 (12) Iron plate: 0.1 m / m, Fig. 3 (13) Molybdenum plate : 0.6m / m, (14) in Fig. 3 (14) After stacking the above, put about 500g of weight on top of the carbon material (11), heat up to 1200 ° C in nitrogen atmosphere and hold for 4 minutes. Gradually cooled.

(ロ)次に上記(イ)にて得られた試料を第4図に示す
ように金ろうを介して銅板(16)(30×30×25m/m)に
載せ、窒素雰囲気下にて950℃に昇温し、4分間保持、
徐冷した。
(B) Next, place the sample obtained in (a) above on a copper plate (16) (30 x 30 x 25 m / m) through a gold braze as shown in Fig. 4, and place it in a nitrogen atmosphere at 950 Increase the temperature to ℃, hold for 4 minutes,
Gradually cooled.

上記(イ)、(ロ)の操作によって得た炭素材(11)と
銅板(16)の接合体を約500℃に加熱した後、これを水
中に投入して、急冷したが、剥離、ヒビ割れ等は起こら
ず強固な接合体となっていた。
After heating the joined body of the carbon material (11) and the copper plate (16) obtained by the above (a) and (b) to about 500 ° C, it was put into water and rapidly cooled, but peeling and cracking occurred. It was a strong joined body without cracks and the like.

(ロ)の工程で使用した金ろうは、〔Cu66/Au34重量
%〕の組成を有する合金で、950〜990℃の融点を有する
ものである。従って、純銅の融点(1040℃)よりは50〜
100℃低く、被接合体である銅板を損なうことなく、接
合することができる。本例に於いて接合工程を(イ)、
(ロ)の2工程に分けて実施した理由は上記のことを考
慮したものである。
The brazing filler metal used in the step (b) is an alloy having a composition of [Cu66 / Au34% by weight] and has a melting point of 950 to 990 ° C. Therefore, the melting point of pure copper (1040 ℃) is 50 ~
It can be joined without damaging the copper plate, which is the object to be joined, at a temperature 100 ° C lower. In this example, the joining process is (a),
The reason why the process is divided into two steps (b) is to take the above into consideration.

実施例2 炭素材として(炭素/炭素)複合材〔東洋炭素製「CX−
2002」〕を用い、実施例1とほぼ同じ条件及び操作によ
り接合体を得た。
Example 2 As a carbon material (carbon / carbon) composite material [CX- manufactured by Toyo Tanso Co., Ltd.
2002 ”] was used to obtain a joined body under substantially the same conditions and operations as in Example 1.

但し、この例では、 炭素材:28×28×15m/m(被接合体「CX−2002」) 金ろう箔:0.1m/m(Cu66%,Au34重量%) 鉄 箔:0.1m/m モリブデン箔:0.6m/m 金ろう箔:0.1m/m(同上) 銅 :28×28×25m/m(被接合材) の順に接合操作を2工程に分けることなく、一挙に窒素
ガス中950℃まで昇温、4分間保持した後、徐冷し、接
合操作を完了した。
However, in this example, carbon material: 28 × 28 × 15 m / m (CX-2002) to be joined Gold brazing foil: 0.1 m / m (Cu66%, Au34 wt%) Iron foil: 0.1 m / m molybdenum Foil: 0.6 m / m Gold brazing foil: 0.1 m / m (same as above) Copper: 28 × 28 × 25 m / m (material to be joined) without dividing the joining operation into two steps in order, 950 ℃ in nitrogen gas at once After heating up to 4 minutes and holding for 4 minutes, it was gradually cooled to complete the joining operation.

得られた接合体は、約1ケ月、気温下放置したが、剥離
等の変質はなく、また500℃に加熱して、水中に投入し
ても剥離、ヒビ割れ等の現象は認められなかった。
The obtained joined body was left at room temperature for about 1 month, but did not show any change in quality such as peeling, and when heated to 500 ° C and put in water, no phenomenon such as peeling or cracking was observed. .

比較例1 実施例2においてMo層を除き、他は全く同様に処理して
得た接合体は、接合体を室温にて取り出した際、炭素面
側接合面にて剥離、破壊した。これは、(炭素/炭素)
複合材「CX−2002」の熱膨張係数(CTE)は2×10-6
℃であり、銅のCTEは17×10-6/℃で、両者に著しい差
があるためである。
Comparative Example 1 The joint obtained in Example 2 except that the Mo layer was treated in exactly the same manner was peeled and destroyed at the carbon-face-side joint surface when the joint was taken out at room temperature. This is (carbon / carbon)
The coefficient of thermal expansion (CTE) of the composite material "CX-2002" is 2 × 10 -6 /
This is because the CTE of copper is 17 × 10 -6 / ° C, and there is a marked difference between the two.

実施例3 実施例2と同様の方法にて、ステンレス鋼(200×50×1
0m/m,SUS316)と(炭素/炭素)複合体「CX−2002」と
の接合体を得た。
Example 3 In the same manner as in Example 2, stainless steel (200 × 50 × 1
A bonded body of 0 m / m, SUS316) and a (carbon / carbon) composite “CX-2002” was obtained.

但し、この例においては被接合材である金属側が、比較
的融点の高いステンレス鋼(約1400℃)であるため、炭
素側とステンレス鋼側、何れにも銅(無酸銅)(融点10
80℃)を用いることができる。
However, in this example, since the metal side to be joined is stainless steel (about 1400 ° C) having a relatively high melting point, copper (acid-free copper) (melting point 10
80 ° C.) can be used.

従って接合材の順序は下記のようになる。Therefore, the order of the bonding material is as follows.

但し、*1は鉄箔をそのまま、*2は鉄箔い予め銅を電
気メッキ法により被覆したものを使用した。
However, * 1 was an iron foil as it was, and * 2 was an iron foil which was previously coated with copper by electroplating.

以上の順に試料を重ねて、上部より重しを載せ、炉中を
窒素雰囲気にしたのち、昇温、1100℃にて4分間保持後
徐冷した。
The samples were stacked in the above order, a weight was placed from the top, the atmosphere in the furnace was set to a nitrogen atmosphere, the temperature was raised, the temperature was maintained at 1100 ° C. for 4 minutes, and then gradually cooled.

本例は比較的長形材料であり、CTE差の大きい材料間の
接合の例であり、従来法での数多くの実験で悉く、剥
離、ヒビ割れ現象を起こして来たものであるが、本発明
の方法により、剥離、ヒビ割れ等の全く無い接合を行う
ことができた。
This example is a comparatively long material and is an example of joining between materials with a large CTE difference, and it has caused cracking, peeling and cracking phenomena in many experiments by the conventional method. According to the method of the invention, it was possible to carry out bonding without any peeling or cracking.

実施例4 この実施例4は実施例3に記す方法によって得られた接
合体を核融合炉用材料として使用可否を評価する為の試
験部材の製作例である。
Example 4 Example 4 is a production example of a test member for evaluating whether or not the joined body obtained by the method described in Example 3 can be used as a material for a fusion reactor.

炉内の耐熱内装材、特に最も厳しい耐熱特性を要求され
る第1壁に使用する場合、その高温下での強度特性、ア
ウトガスが少ない特性、Hzガスによる耐ケミカルエロー
ジョン特性等が要求される。
When used as a heat-resistant interior material in a furnace, especially for the first wall that requires the most strict heat-resistant properties, its strength properties at high temperatures, low outgas properties, and chemical erosion resistance properties due to Hz gas are required.

炭素繊維/炭素マトリックス複合材(「CX−2002」:東
洋炭素製)を反応雰囲気側に対向せしめ、金属(ステン
レス鋼)側を背面にして、炉本体に取りつける方法によ
って使用される。上記複合材自体は上記特性を有し従来
からこの第1壁に使用されて来たものである。実施例3
の接合体はこれに金属を強固に接合したものであるた
め、第1壁として使用した場合のその他の部材の取りつ
けが容易となる、即ち実施例3の方法によって得た接合
体は、背面が金属材料であるため、本体への取付用ボー
ルト等を自由に、且つ強固に取り付けることが出来、且
つこの金属への水冷用配管の溶接、孔あけ加工等も自由
に行うことが出来る。尚この水冷配管の取りつけ方法は
実施例7を援用する。
The carbon fiber / carbon matrix composite material (“CX-2002”: made by Toyo Tanso Co., Ltd.) is made to face the reaction atmosphere side, and the metal (stainless steel) side is made the back surface, and the carbon fiber / carbon matrix composite material is attached to the furnace body. The composite material itself has the above-mentioned characteristics and has been conventionally used for the first wall. Example 3
Since the joined body of No. 1 is formed by strongly joining a metal to this, it becomes easy to mount other members when used as the first wall, that is, the joined body obtained by the method of Example 3 has a back surface. Since it is a metal material, it is possible to freely and firmly attach a mounting vault or the like to the main body, and it is also possible to freely perform welding, drilling, etc. of the water cooling pipe on this metal. In addition, Example 7 is referred to for the method of mounting the water cooling pipe.

実施例5 実施例3に記す方法によって得られた接合体は、航空機
用部材として使用することができる。
Example 5 The joined body obtained by the method described in Example 3 can be used as a member for aircraft.

即ち最近、超軽量、高強度特性により、炭素繊維/炭素
マトリックス系の複合材が、宇宙機器、航空機用部材と
して使用されつつあるが、現在技術的に最も問題がある
ものとして挙げられるのが、この種複合材と強度構造体
との取付方法である。
That is, recently, due to its ultra-light weight and high strength properties, carbon fiber / carbon matrix composite materials are being used as space equipment and aircraft components, but the most technically problematic ones at present are This is a method of attaching this kind of composite material to the strength structure.

いま航空機について、その使用場所の数例を挙げたのが
第5図(イ)であり、図中(21)は外部尾翼板(Out Bo
ard Tail)、(22)はラバトリー・モジール部(Lavato
ry Module)、(23)はインボードフラップ部(Inboard
Flap)を示し、これらの部材の取り付けに本発明接合
方法は有効に適用出来る。その取りつけ方法の1例を示
したものが、第5図(ロ)であり、強度構造骨格材(3
1)に炭素繊維/炭素マトリックス複合材(32)を取り
つけるに際し、その接合面(33)に金属を用いるが、こ
の接合に際し本発明の方法を適用するものである。尚
(34)は取りつけボルトを示す。
Fig. 5 (a) shows some examples of the places where aircraft are used, and (21) in the figure shows the outer tail plate (Out Bo).
ard Tail), (22) is the lavatory mogile section (Lavato
ry Module), (23) are inboard flaps (Inboard
Flap), and the joining method of the present invention can be effectively applied to the attachment of these members. An example of the mounting method is shown in Fig. 5 (b), which shows that the strength structural skeleton (3
When attaching the carbon fiber / carbon matrix composite material (32) to 1), a metal is used for the joining surface (33), and the method of the present invention is applied to this joining. Note that (34) indicates a mounting bolt.

本発明方法により、強固な大面積接合が可能となったの
で、始めてもっとも安全性が要求される航空機への適用
が可能となった。
Since the method of the present invention enables strong large-area joining, it can be applied to an aircraft requiring the highest safety for the first time.

実施例6 (電極銅と黒鉛材との接合例) 黒鉛材は金属製練(例えばアルミニウム)やハロゲン化
水素の電気分解の(例えば塩化水素、フッ化水素)電極
として用いられる。
Example 6 (Jointing Example of Electrode Copper and Graphite Material) The graphite material is used as an electrode for metal smelting (for example, aluminum) or electrolysis of hydrogen halide (for example, hydrogen chloride or hydrogen fluoride).

炭素材がこの用途に用いられる主な理由は、炭素材が耐
熱性、化学薬品に対する耐食性が大きく且つ電気伝導性
が大きいからである。しかし従来しばしば配線材料であ
る銅材との接続性が問題となる。
The main reason why the carbon material is used for this purpose is that the carbon material has high heat resistance, high corrosion resistance to chemicals, and high electric conductivity. However, the connectivity with a copper material, which is a wiring material, often becomes a problem.

従来、炭素材と銅材は、両者の面を良く磨いて合わせ、
ボールト・ナット等で機械的に一体化する方法が、一般
には採られているが、連続使用により合わせ面に化学物
質の蒸気や水滴などが浸入し、次第に接触抵抗が大きく
なる欠点があった。
Conventionally, carbon material and copper material are polished well on both sides,
A method of mechanically integrating with a vault, a nut, etc. is generally adopted, but there is a drawback that vapor and water drops of chemical substances penetrate into the mating surfaces due to continuous use and the contact resistance gradually increases.

本発明方法によって、接合面積を大きくすることが出
来、且つ炭素材と金属材とが完全且つ強固に一体化して
いるので、接続抵抗も小さく、連続使用による故障も少
ない。
By the method of the present invention, the joining area can be increased, and since the carbon material and the metal material are completely and firmly integrated, the connection resistance is small and the failure due to continuous use is small.

第6図に炭素材(電極)と銅材(配線用線材)との接合
例を示す。
FIG. 6 shows an example of joining a carbon material (electrode) and a copper material (wiring wire).

第6図中(41)は銅材(配線)、(42)はいずれも銅ボ
ルト、(43)は可撓性黒鉛シート(東洋炭素性「PE8
0」)、(44)は黒鉛材(黒鉛電極、東洋炭素製「IG−1
1」)、を示し、(45)はいずれも接合面を示す。
In FIG. 6, (41) is a copper material (wiring), (42) is a copper bolt, and (43) is a flexible graphite sheet (Toyo Tanso "PE8").
0 ”) and (44) are graphite materials (graphite electrode,“ IG-1 ”manufactured by Toyo Tanso Co., Ltd.)
1 ”), and (45) are joint surfaces.

この第6図に示す形態により、実施例2の方法により黒
鉛材(44)と銅材(配線)(41)とを接合した。尚銅ボ
ルト(42)の伸縮に対応するため、可撓性黒鉛シート
(43)を介在させた。
According to the form shown in FIG. 6, the graphite material (44) and the copper material (wiring) (41) were joined by the method of the second embodiment. A flexible graphite sheet (43) was interposed in order to accommodate expansion and contraction of the copper bolt (42).

実施例7 (SiCと銅材との接合例) 短波長光(波長100ナノメートル以下)用の反射鏡は、
特に耐熱性が要求される。
Example 7 (Example of joining SiC and copper material) A reflecting mirror for short wavelength light (wavelength 100 nm or less) is
Particularly, heat resistance is required.

この波長領域に於いては理論反射率も低いため、未反射
光が鏡体に残るため、鏡体形成材としては耐熱性の高い
材料(例えば炭化珪素)が用いられるが、更に鏡体自身
の昇温による光軸歪を避けるために、鏡面と反対面に水
冷機構を設けることが行われている。この例を第7図に
示す。但し第7図中(51)は反射鏡用材料であり、内部
は炭素材、外部はSiC被覆面である。また(52)は接合
面、(53)は冷却機構であり、全体が銅製である。(53
-1)は冷却水用銅管、(53-2)は歪吸収用溝を示す。
In this wavelength region, the theoretical reflectance is low, and unreflected light remains in the mirror body. Therefore, a material having high heat resistance (for example, silicon carbide) is used as the mirror body forming material. In order to avoid optical axis distortion due to temperature rise, a water cooling mechanism is provided on the surface opposite to the mirror surface. An example of this is shown in FIG. However, (51) in FIG. 7 is a material for a reflecting mirror, the inside is a carbon material, and the outside is a SiC coated surface. Further, (52) is a joint surface, and (53) is a cooling mechanism, which is entirely made of copper. (53
-1) shows a copper pipe for cooling water, and (53-2) shows a strain absorbing groove.

接合条件: 反射鏡用SiC材(芯材として東洋炭素製SiC12を用い、表
面に炭化珪素層を約300μ CVD法にて析出せしめたも
の)〔100×50×15m/m〕 但し中間層は実施例1と同様の順に接合し、2段接合法
によって行った。また銅材(140×50×50m/m)無酸素銅
接合反応条件も実施例1と同じである。
Bonding conditions: SiC material for reflector (SiC12 made by Toyo Tanso Co., Ltd. was used as the core material, and a silicon carbide layer was deposited on the surface by approximately 300μ CVD method) [100 × 50 × 15m / m] However, the intermediate layer was used Bonding was performed in the same order as in Example 1, and the two-step bonding method was used. The conditions for the copper material (140 × 50 × 50 m / m) oxygen-free copper bonding reaction are also the same as in Example 1.

結果: 接合体を約700℃に加熱し、水中に投入、急冷したが、
剥離、ヒビ割れなはく、熱衝撃に非常に強いことが判っ
た。
Result: The bonded body was heated to about 700 ° C, put into water and rapidly cooled.
It was found to be very resistant to peeling, cracking, and thermal shock.

但し冷却後反射面にての光軸の狂いを精査したところ、
炭素材と銅材の熱膨張の差による接合体の僅かな弓なり
変化が認められたので、第7図に示すように、歪吸収用
の溝(53-2)を長軸を横断する方向に設けたところ、こ
れを防ぐことが出来た。
However, after cooling, we carefully examined the deviation of the optical axis on the reflecting surface,
Since a slight bowing change of the bonded body due to the difference in thermal expansion between the carbon material and the copper material was recognized, as shown in Fig. 7, the strain absorbing groove (53-2) was placed in the direction transverse to the long axis. When I set it up, I was able to prevent this.

【図面の簡単な説明】[Brief description of drawings]

第1〜2図は本発明法を説明するための模擬的な構造図
を、第3〜4図は本発明法を説明するための模擬的な構
造図を示す。第5図は本発明法を航空機の部材に適用す
る場合の説明図であり、第6図は電極銅と黒鉛材との接
合例を説明するための図面を示す。また第7図は反射鏡
に冷却装置を本発明法により接合した場合の説明図を示
す。 11…炭素材、41…銅材(配線用) 12…銅箔、42…銅ボルト 13…鉄板、43…可撓性黒鉛シート 14…モリブデン板、44…黒鉛材(電極) 15…金ロウ、45…接合面 16…銅板、51…反射鏡用材料 21…外部尾翼板、51-1…炭素材 22…ラバトリー・モジュール、51-2…SiC被覆層 23…インボードフラップ、52…接合面 31…強度構造骨格材、53…冷却機構 32…複合材、53-1…銅管 33…接合面、53-2…溝 34…ボルト
1 to 2 are schematic structural diagrams for explaining the method of the present invention, and FIGS. 3 to 4 are schematic structural diagrams for explaining the method of the present invention. FIG. 5 is an explanatory diagram when the method of the present invention is applied to a member of an aircraft, and FIG. 6 is a drawing for explaining an example of joining electrode copper and a graphite material. Further, FIG. 7 shows an explanatory view when a cooling device is joined to the reflecting mirror by the method of the present invention. 11 ... Carbon material, 41 ... Copper material (for wiring) 12 ... Copper foil, 42 ... Copper bolt 13 ... Iron plate, 43 ... Flexible graphite sheet 14 ... Molybdenum plate, 44 ... Graphite material (electrode) 15 ... Gold solder, 45 ... Bonding surface 16 ... Copper plate, 51 ... Reflector material 21 ... External tail plate, 51-1 ... Carbon material 22 ... Lavatory module, 51-2 ... SiC coating layer 23 ... Inboard flap, 52 ... Bonding surface 31 … Strength structural skeleton material, 53… Cooling mechanism 32… Composite material, 53-1… Copper tube 33… Joint surface, 53-2… Groove 34… Bolt

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 照久 大阪府大阪市西淀川区竹島5丁目7番12号 東洋炭素株式会社内 審査官 平塚 政宏 (56)参考文献 特開 平1−290567(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Teruhisa Kondo, 5-7-12 Takeshima, Nishiyodogawa-ku, Osaka City, Osaka Prefecture Examiner Masahiro Hiratsuka, Toyo Carbon Co., Ltd. (56) Reference JP-A-1-290567 (JP, A)

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】(A)炭素分を0.2重量%以上含む炭素材
と、 (B)金属又は上記炭素材との接合(但し炭素鋼同志の
接合を除く)に於いて、 (C)線膨張係数が7×10-6/℃以下である金属又は
(及び)金属合金をインサート材として使用し、 (D)炭素材(A)とインサート材(C)の間に、鉄ま
たは鉄合金、 (E)銅を少なくとも25%重量以上含む銅又は銅合金を
接合材としてを介在させて接合せしめることを特徴とす
る炭素材の接合方法
1. In the joining of (A) a carbon material containing 0.2% by weight or more of carbon, and (B) a metal or the above carbon material (excluding joining of carbon steels), (C) linear expansion A metal or (and) a metal alloy having a coefficient of 7 × 10 −6 / ° C. or less is used as an insert material, and (D) a carbon material (A) and an insert material (C) are provided with iron or an iron alloy, ( E) A method for joining carbonaceous materials, characterized in that copper or copper alloy containing at least 25% by weight of copper is used as a joining material for joining.
【請求項2】請求項(1)における接合方法に於いて線
膨張係数が7×10-6/℃以下である金属又は(及び)金
属合金(C)の少なくとも片面に、鉄又は鉄合金(E)
層を予め形成したものを使用することを特徴とする接合
方法。
2. The joining method according to claim 1, wherein at least one surface of the metal or (and) metal alloy (C) having a linear expansion coefficient of 7 × 10 −6 / ° C. or less is iron or iron alloy ( E)
A joining method, characterized in that a preformed layer is used.
【請求項3】請求項(1)に於ける接合方法に於いて、
鉄又は鉄合金(D)及び更に予め銅を少なくとも25%重
以上含む銅又は銅合金層(E)を形成したものを使用す
ることを特徴とする接合方法。
3. The joining method according to claim 1,
A joining method comprising using iron or an iron alloy (D) and a copper or copper alloy layer (E) further containing copper in an amount of at least 25% by weight in advance.
【請求項4】請求項(1)乃至(3)の少なくとも1つ
において、熱膨張係数が7×10-6/℃以下である金属又
は(及び)金属合金(C)が、モリブデンであることを
特徴とする接合方法。
4. The metal or (and) metal alloy (C) having a thermal expansion coefficient of 7 × 10 −6 / ° C. or less according to at least one of claims (1) to (3) is molybdenum. Joining method characterized by.
【請求項5】請求項(1)にいう、銅を少なくとも25%
重以上含む銅又は銅合金(E)が金ロウ又は(及び)銀
ロウであることを特徴とする炭素材の接合方法。
5. At least 25% copper as claimed in claim 1.
A method for joining carbon materials, characterized in that the copper or copper alloy (E) containing more than one weight is a gold solder and / or a silver solder.
【請求項6】請求項(1)に於いて、炭素分を0.2重量
%以上含む炭素材(A)または(B)が、等方性炭素
材、非等方性炭素材、フリーカーボンを含む金属炭化
物、超硬合金、サーメットなど、炭素繊維−炭素マトリ
ックス複合材、炭素に金属を混合乃至含浸せしめた複合
材、セラミックに炭素を混合した複合材の少なくとも1
種であることを特徴とする接合方法。
6. The carbon material (A) or (B) according to claim 1, wherein the carbon content (A) or (B) contains 0.2% by weight or more of carbon, includes an isotropic carbon material, an anisotropic carbon material and free carbon. At least one of carbon fiber-carbon matrix composite material such as metal carbide, cemented carbide, and cermet, composite material in which carbon is mixed or impregnated with metal, and composite material in which carbon is mixed with ceramic
A joining method characterized by being a seed.
【請求項7】請求項(1)に於いて金属(B)が、銅、
タングステン、モリブデン、鉄、珪素、ステンレス鋼、
ハステロイ、インコネル、各種合金鋼及び鉄合金の少な
くとも1種であることを特徴とする接合方法。
7. The metal (B) according to claim 1 is copper,
Tungsten, molybdenum, iron, silicon, stainless steel,
A joining method comprising at least one of Hastelloy, Inconel, various alloy steels and iron alloys.
【請求項8】請求項(1)の接合方法により接合された
接合体。
8. A joined body joined by the joining method according to claim 1.
【請求項9】請求項(8)の接合体を、その内部耐熱部
材として用いた核融合炉。
9. A fusion reactor using the joined body according to claim 8 as an internal heat-resistant member.
【請求項10】請求項(8)の接合体を少なくともその
部材の一部として使用した航空機。
10. An aircraft using the joined body according to claim 8 as at least a part of its members.
【請求項11】請求項(8)の接合体をその部材のすく
なくとも一部に使用した電極用部材。
11. A member for an electrode, wherein the joined body according to claim 8 is used as at least a part of the member.
【請求項12】請求項(8)の接合体を少なくともその
一部として用いた反射鏡体。
12. A reflecting mirror body using the joined body according to claim 8 as at least a part thereof.
【請求項13】請求項(8)の接合体を2側面に用いた
反射鏡体。
13. A reflecting mirror body using the bonded body according to claim 8 on two side surfaces.
【請求項14】請求項(8)の接合体をその液封部の摺
動部材として用いたポンプ。
14. A pump using the joined body according to claim 8 as a sliding member for a liquid sealing portion.
JP25406389A 1989-09-29 1989-09-29 How to join carbon materials Expired - Lifetime JPH07108824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25406389A JPH07108824B2 (en) 1989-09-29 1989-09-29 How to join carbon materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25406389A JPH07108824B2 (en) 1989-09-29 1989-09-29 How to join carbon materials

Publications (2)

Publication Number Publication Date
JPH03218986A JPH03218986A (en) 1991-09-26
JPH07108824B2 true JPH07108824B2 (en) 1995-11-22

Family

ID=17259709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25406389A Expired - Lifetime JPH07108824B2 (en) 1989-09-29 1989-09-29 How to join carbon materials

Country Status (1)

Country Link
JP (1) JPH07108824B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8763846B2 (en) 2009-10-30 2014-07-01 Japanese Aerospace Exploration Agency Bonding structure of metal member and composite-material member
WO2022088129A1 (en) * 2020-10-31 2022-05-05 华为技术有限公司 Automobile air conditioning unit, method for controlling automobile air conditioning unit, and air conditioning controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8763846B2 (en) 2009-10-30 2014-07-01 Japanese Aerospace Exploration Agency Bonding structure of metal member and composite-material member
WO2022088129A1 (en) * 2020-10-31 2022-05-05 华为技术有限公司 Automobile air conditioning unit, method for controlling automobile air conditioning unit, and air conditioning controller

Also Published As

Publication number Publication date
JPH03218986A (en) 1991-09-26

Similar Documents

Publication Publication Date Title
US4602731A (en) Direct liquid phase bonding of ceramics to metals
AU2001275856C1 (en) Reducing metals as a brazing flux
US20110132973A1 (en) Method of manufacturing high-heat-load equipment by metallurgically joining carbon material with copper-alloy material
JP2023549518A (en) Silicon carbide coating and its soldering method, fuel rods and fuel assemblies
US3226822A (en) Art of bonding ceramic to metal
JPS60131874A (en) Method of bonding ceramic and metal
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
CN1903795A (en) Method of low temperature active vacuum diffusion connecting ceramic
CN107488043B (en) Multilayer composite film, preparation method thereof and application of multilayer composite film as silicon carbide and composite material connecting material thereof
EP0104711A2 (en) Beryllium to metal seals and method of producing the same
US4689810A (en) Composite rotary anode for X-ray tube and process for preparing the composite
US4700882A (en) Composite rotary anode for X-ray tube and process for preparing the composite
JPH07108824B2 (en) How to join carbon materials
CN113909801A (en) Preparation method of low-activation steel and tungsten all-solid-solution joint
CN112620847A (en) Method for enhancing brazing connection between carbon-based material and copper alloy
JP2003039179A (en) Manufacturing method for composite member of high temperature material and the composite member
US20110135956A1 (en) Method of joining materials, and articles made therewith
US4705207A (en) Method of brazing columbium to itself using low bonding pressures and temperatures
US5855313A (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPH0360414A (en) Method for joining carbon material, joined body by this method and material using the same
JPH0672779A (en) Method for joining carbon member
Mergia Joining of Cf/C and Cf/SiC composites to metals
WO1998003297A1 (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
CN117921161A (en) High-entropy carbide ceramic diffusion connection method of high-Nb-content alloying intermediate layer
JPS59144176A (en) Method of producing rectifier