JPH07108642A - Functional article - Google Patents

Functional article

Info

Publication number
JPH07108642A
JPH07108642A JP15898494A JP15898494A JPH07108642A JP H07108642 A JPH07108642 A JP H07108642A JP 15898494 A JP15898494 A JP 15898494A JP 15898494 A JP15898494 A JP 15898494A JP H07108642 A JPH07108642 A JP H07108642A
Authority
JP
Japan
Prior art keywords
film
layer
oxide
target
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15898494A
Other languages
Japanese (ja)
Other versions
JP3373298B2 (en
Inventor
Susumu Suzuki
すすむ 鈴木
Koichi Seki
宏一 関
Hidekazu Ando
英一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15898494A priority Critical patent/JP3373298B2/en
Publication of JPH07108642A publication Critical patent/JPH07108642A/en
Application granted granted Critical
Publication of JP3373298B2 publication Critical patent/JP3373298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve resistance to marring properties on the film surface and to automate blanking by forming an oxide film which incorporates oxide containing Sn and Si as a main component on the uppermost layer in a functional article in which transparent oxide and an Ag layer are successively laminated on a transparent base body and total (2n+1) layers (n>=1) are formed. CONSTITUTION:A transparent oxide layer 2 and an Ag layer 3 are successively lamianted on a transparent base body 1 and total (2n+1) layers (n>=1) are formed. Furthermore an oxide film (STO film) 5 which incorporates oxide containing Sn and Si as a main component is formed on the uppermost layer. The refractive index of visible light of the STO film 5 is regulated to 1.5-2.0. The refractive index depends on the composition of Sn and Si of a target and sputtering conditions but is mainly controlled by the composition of the target. Further the rate of Sn and Si in the STO film 5 is regulated to 5-95% Sn for total amount of Sn and Si in atomic ratio. Thickness of the STO film 5 is regulated to 1-50nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的耐久性に優れた
機能性物品に関する。
TECHNICAL FIELD The present invention relates to a functional article having excellent mechanical durability.

【0002】[0002]

【従来の技術】従来からマグネトロンスパッタリング法
を用いて多層膜を大面積ガラス基板上に製膜したLow
−Eガラス、熱線遮断ガラスが用いられている。建築
用、自動車用に用いられるこれらのガラスは省エネルギ
ー効果、意匠性に優れているため、近年その普及が著し
い。
2. Description of the Related Art Conventionally, a low-layer structure in which a multilayer film is formed on a large-area glass substrate by using a magnetron sputtering method.
-E glass and heat ray shielding glass are used. These glasses used for buildings and automobiles have excellent energy-saving effects and excellent design properties, and have been widely used in recent years.

【0003】Agを用いたLow−Eガラスでは、Zn
O/Ag/ZnOの3層構成、またはZnO/Ag/Z
nO/Ag/ZnOの5層構成の多層膜を有するものが
一般的である。このタイプのLow−Eガラスは耐久性
に難があるので、単板ガラスでは使えず、複層ガラス、
または合わせガラスの形にして用いられる。自動車の風
防ガラスとリアガラスにもZnO/Ag/ZnOの3層
膜が合わせガラスの接着面側にコーティングされ、熱線
遮断ガラスとして実用化されている。
In the Low-E glass using Ag, Zn is
Three-layer structure of O / Ag / ZnO, or ZnO / Ag / Z
It is common to have a multi-layer film having a five-layer structure of nO / Ag / ZnO. Since this type of Low-E glass has poor durability, it cannot be used as a single plate glass, and as a double-layer glass,
Alternatively, it is used in the form of laminated glass. A three-layer film of ZnO / Ag / ZnO is also coated on the windshield glass and rear glass of an automobile on the adhesive surface side of the laminated glass, and is put into practical use as a heat ray shielding glass.

【0004】熱線遮断ガラスの生産は基板洗浄、スパッ
タリング製膜、後洗浄と一貫したラインで行われてお
り、近年では、さらにラインへの素板載せ、ラインから
の板取りまで無人化、自動化される傾向にある。
Production of heat-ray shielding glass is carried out in a line consistent with substrate cleaning, sputtering film formation, and post-cleaning. In recent years, the process of placing a blank on the line and removing the plate from the line has been automated and automated. Tend to

【0005】[0005]

【発明が解決しようとする課題】しかし、Agを用いた
Low−Eガラスは膜の耐擦傷性が弱いため、複層ガラ
スまたは合わせガラスにされるまでには取扱いに非常な
注意が必要で、生産を自動化できなかった。
However, the low-E glass using Ag has a weak scratch resistance of the film, and thus it must be handled with extreme care before being made into a double-glazing or laminated glass. The production could not be automated.

【0006】具体的には生産を自動化しようとする際、
板取り時にガラス同士の密着を防ぐため、ガラス間に樹
脂製のパウダーの撒布が行われるが、Agを用いたLo
w−Eガラスは膜の耐擦傷性が弱いため、このパウダー
によって膜面に疵がついてしまう。したがって、Low
−Eガラスでは板取りを自動化できず、人手によって板
取りが行われ、ガラス間にはパウダーの代わりに紙など
を挟んでいる。そのため、生産時間を短縮できず、ま
た、コストも余計にかかっていた。
Specifically, when trying to automate the production,
In order to prevent the glass from sticking to each other during plate cutting, resin powder is sprinkled between the glass, but Lo using Ag is used.
Since w-E glass has a weak scratch resistance of the film, this powder causes flaws on the film surface. Therefore, Low
-It is not possible to automate board removal with E-glass, and it is done manually, and paper or the like is sandwiched between the glasses instead of powder. Therefore, the production time could not be shortened and the cost was also increased.

【0007】本発明は、前述の課題を解決すべくなされ
たものであり、膜面の耐擦傷性が改善され、板取りも自
動化できるようにした、Agを用いたLow−Eガラス
の提供を目的とする。
The present invention has been made to solve the above-mentioned problems, and provides a Low-E glass using Ag, which has improved scratch resistance of the film surface and can be automatically machined. To aim.

【0008】[0008]

【課題を解決するための手段】本発明は、透明基体上
に、透明酸化物層とAg層とが順次に積層され、合計
(2n+1)層(n≧1)が形成されてなる機能性物品
において、最外層の上にさらにSnとSiを含む酸化物
を主成分とする酸化物膜が形成されたことを特徴とする
機能性物品を提供する。
The present invention provides a functional article in which a transparent oxide layer and an Ag layer are sequentially laminated on a transparent substrate to form a total of (2n + 1) layers (n ≧ 1). 2. In the functional article, there is further provided an oxide film containing an oxide containing Sn and Si as a main component on the outermost layer.

【0009】本発明は、また、Ag層とその上に形成さ
れる透明酸化物層との間に、金属膜バリア層が形成され
た上記機能性物品を提供する。
The present invention also provides the above functional article in which a metal film barrier layer is formed between the Ag layer and the transparent oxide layer formed thereon.

【0010】本発明は、Agを用いたLow−E膜にさ
らにSnとSiを含む酸化物を主成分とする酸化物膜を
保護膜としてオーバーコートし、Low−E膜の耐擦傷
性を向上させることを主眼としている。
In the present invention, the low-E film using Ag is further overcoated with an oxide film mainly containing an oxide containing Sn and Si as a protective film to improve the scratch resistance of the low-E film. The main purpose is to let you.

【0011】図1は本発明の実施例1、5の機能性物品
の、図2は本発明の実施例2の機能性物品の、図3は本
発明の実施例3の、図4は本発明の実施例4の機能性物
品の、それぞれ断面図であるが、本発明はこれのみに限
定されない。
FIG. 1 is a functional article of Examples 1 and 5 of the present invention, FIG. 2 is a functional article of Example 2 of the present invention, FIG. 3 is of Example 3 of the present invention, and FIG. It is each sectional drawing of the functional article of Example 4 of invention, but this invention is not limited only to this.

【0012】図において、1はガラスやプラスチックな
どの透明基体、2は透明酸化物層、3はAg層、4はA
g層3とその上に形成される透明酸化物層2との間に形
成された金属バリア層、5はSnとSiを含む酸化物を
主成分とする酸化物膜(以下、STO膜という)を示
す。
In the figure, 1 is a transparent substrate such as glass or plastic, 2 is a transparent oxide layer, 3 is an Ag layer, and 4 is A.
A metal barrier layer 5 formed between the g layer 3 and the transparent oxide layer 2 formed thereon is an oxide film containing an oxide containing Sn and Si as a main component (hereinafter referred to as an STO film). Indicates.

【0013】本発明におけるnは、特に制限されず、n
が大きいほどLow−E性能が向上する。しかし、それ
に伴いコストも増大するので、実用上十分なLow−E
性能が得られるn=1またはn=2程度の系が好ましく
採用される。
In the present invention, n is not particularly limited, and n
Is larger, the Low-E performance is improved. However, the cost also increases accordingly, so that the practically sufficient Low-E
A system with a performance of about n = 1 or n = 2 is preferably adopted.

【0014】Ag層3は、Agの他に、Pd、Al、C
uなどの元素を含んでいてもよい。Ag層の膜厚は特に
限定されないが、5〜25nm、特には8〜15nm、
が好ましい。5nm未満であるとLow−E性能が不十
分であり、25nm超であると本発明の機能性物品の耐
久性が低下してしまう。
The Ag layer 3 is made of Pd, Al, C in addition to Ag.
It may contain an element such as u. The film thickness of the Ag layer is not particularly limited, but is 5 to 25 nm, particularly 8 to 15 nm,
Is preferred. If it is less than 5 nm, the Low-E performance is insufficient, and if it exceeds 25 nm, the durability of the functional article of the present invention is reduced.

【0015】金属バリア層4はAgの酸化防止のために
設けられる。金属バリア層4を構成する物質は特に限定
されないが、Zn、Ti、Cr、Sn、Ni、ステンレ
ス、Ni−Cr、SiNX 、AlNX 、BNなどが好ま
しく挙げられ、Znが特に好ましい。金属バリア層4の
膜厚は1〜5nmが好ましい。1nm未満であると酸化
防止機能が不十分であり、5nm超であると本発明の機
能性物品の透過率が低下してしまう。
The metal barrier layer 4 is provided to prevent Ag oxidation. The material forming the metal barrier layer 4 is not particularly limited, but Zn, Ti, Cr, Sn, Ni, stainless steel, Ni—Cr, SiN x , AlN x , BN and the like are preferably mentioned, and Zn is particularly preferable. The film thickness of the metal barrier layer 4 is preferably 1 to 5 nm. If it is less than 1 nm, the antioxidant function is insufficient, and if it exceeds 5 nm, the transmittance of the functional article of the present invention is lowered.

【0016】STO膜5は、SnとSiの他に、Zr、
Ti、Ta、Biなど、他の元素を含んでいてもよい。
STO膜の屈折率は1.5〜2.0であることが好まし
い。この屈折率は、ターゲットのSnとSiの組成とス
パッタリング条件に依存するが、主にターゲット組成で
制御できる。
The STO film 5 includes Zr,
Other elements such as Ti, Ta and Bi may be contained.
The STO film preferably has a refractive index of 1.5 to 2.0. This refractive index depends on the composition of Sn and Si of the target and the sputtering conditions, but can be controlled mainly by the target composition.

【0017】STO膜5におけるSnとSiの割合は特
に限定されないが、原子比で、SnとSiの総量に対し
てSnが5〜95%、好ましくは20〜90%、特に好
ましくは40〜90%、とされる。Snの割合が少なす
ぎると、直流スパッタリング法により製膜するときにア
ーキングが発生しやすくなり、印加電圧が制限され、製
膜速度が著しく制限され、生産性が低下する。Snの量
が多すぎると、屈折率が上記した好ましい範囲になりに
くく、オーバーコートしたときに光学干渉による色調の
変化が著しくなる。
The ratio of Sn to Si in the STO film 5 is not particularly limited, but in atomic ratio, Sn is 5 to 95%, preferably 20 to 90%, and particularly preferably 40 to 90% with respect to the total amount of Sn and Si. %, And If the proportion of Sn is too small, arcing is likely to occur when the film is formed by the direct current sputtering method, the applied voltage is limited, the film forming speed is significantly limited, and the productivity is reduced. If the amount of Sn is too large, the refractive index is unlikely to fall within the preferred range described above, and when overcoated, the color tone changes significantly due to optical interference.

【0018】STO膜5の膜厚は特に限定されないが、
1〜50nmの範囲が好ましい。十分な耐擦傷性を付与
するには、10nm程度以上が必要である。膜厚の増加
に応じて耐擦傷性が向上し、40〜50nmであればさ
らに十分な耐擦傷性が得られる。あまり厚くつけると光
学干渉による色調の変化が著しくなる。このため、オー
バーコート膜厚としては10〜30nmが特に好まし
い。
The thickness of the STO film 5 is not particularly limited,
The range of 1 to 50 nm is preferable. To impart sufficient scratch resistance, it is necessary to have a thickness of about 10 nm or more. The scratch resistance improves as the film thickness increases, and if it is 40 to 50 nm, more sufficient scratch resistance can be obtained. If it is made too thick, the change in color tone due to optical interference becomes significant. Therefore, the overcoat film thickness is particularly preferably 10 to 30 nm.

【0019】Agを用いたLow−Eガラスの多層膜
は、前述したように、ZnO/Ag/ZnOの3層構
成、またはZnO/Ag/ZnO/Ag/ZnOの5層
構成が一般的である。この場合、最上層がZnO(屈折
率約2.0)なので、STO膜5をオーバーコートする
際に、最上層のZnO膜の膜厚とSTO膜5の屈折率と
膜厚を調整することにより、オーバーコートによる色調
の変化を最小限に抑えることができる。
As described above, the low-E glass multilayer film using Ag generally has a three-layer structure of ZnO / Ag / ZnO or a five-layer structure of ZnO / Ag / ZnO / Ag / ZnO. . In this case, since the uppermost layer is ZnO (refractive index of about 2.0), by adjusting the film thickness of the uppermost ZnO film and the refractive index and film thickness of the STO film 5 when overcoating the STO film 5. , It is possible to minimize the change in color tone due to overcoating.

【0020】Agを用いたLow−Eガラスの最上層は
一般には酸化物(ZnO等)であり、STO膜5も酸化
物であり、同じ雰囲気中で反応性スパッタリングで製膜
できるので、ZnターゲットとSn−Si系のターゲッ
トを同じチャンバー内に設置して、例えば、ZnO膜と
STO膜5を続けて形成できる。
The uppermost layer of the Low-E glass using Ag is generally an oxide (ZnO etc.), and the STO film 5 is also an oxide, which can be formed by reactive sputtering in the same atmosphere. And Sn—Si based targets can be placed in the same chamber to form, for example, a ZnO film and an STO film 5 in succession.

【0021】STO膜5は、SnとSiをCIP法(冷
間等方性プレス)で固めたターゲットから酸素雰囲気中
での反応性スパッタリング法で得られる。ターゲットは
これに限定されず、SnO2 とSiO2 の混合酸化物タ
ーゲットから製膜してもよい。その他、真空蒸着法、イ
オンプレーティング法、CVD法などでもよい。
The STO film 5 is obtained by a reactive sputtering method in an oxygen atmosphere from a target obtained by hardening Sn and Si by a CIP method (cold isotropic press). The target is not limited to this, and a film may be formed from a mixed oxide target of SnO 2 and SiO 2 . In addition, a vacuum deposition method, an ion plating method, a CVD method or the like may be used.

【0022】耐擦傷性を向上させるための透明酸化物膜
としては、例えばZrとSiまたはBを含む酸化物を主
成分とする酸化物膜が知られている(例えば、特開平2
−289339号公報)。金属ターゲットから反応性ス
パッタリングで製膜する場合、本発明におけるSnとS
iを含む酸化物を主成分とする酸化物膜は、ZrとSi
を含む酸化物を主成分とする酸化物膜に比べて、製膜速
度が速い。
As a transparent oxide film for improving the scratch resistance, for example, an oxide film containing an oxide containing Zr and Si or B as a main component is known (for example, Japanese Patent Application Laid-Open No. HEI-2).
-289339 gazette). When a film is formed from a metal target by reactive sputtering, Sn and S in the present invention are used.
The oxide film whose main component is an oxide containing i is Zr and Si.
The film forming speed is higher than that of an oxide film containing an oxide containing as a main component.

【0023】ターゲットに印加する電力密度が同じ場
合、Zr−Si(原子比1:2)ターゲットを用いて酸
化物膜を製膜する場合に比べて、Sn−Si(原子比
1:1)ターゲットを用いて酸化物膜を製膜する場合に
は製膜速度が約2.5倍であり、Sn−Si(原子比
4:1)ターゲットを用いる場合には製膜速度が約2.
6倍である。実際にはZr−Si系ターゲットにはアー
キング等によりあまり大きな電力密度を印加できない
が、Sn−SiターゲットにはZr−Siターゲットの
約1.6倍程度の電力密度を印加できる。
When the power density applied to the target is the same, as compared with the case where an oxide film is formed using a Zr-Si (atomic ratio 1: 2) target, a Sn-Si (atomic ratio 1: 1) target is used. When an oxide film is formed by using, the film forming speed is about 2.5 times, and when an Sn-Si (atomic ratio 4: 1) target is used, the film forming speed is about 2.
6 times. In reality, a large power density cannot be applied to the Zr-Si target due to arcing or the like, but a power density about 1.6 times that of the Zr-Si target can be applied to the Sn-Si target.

【0024】したがって、可能な限りの大きな電力をタ
ーゲットに印加した際には、Sn−Si系ターゲットか
ら製膜する場合の製膜速度はZr−Si系ターゲットか
ら製膜する場合の約4倍になり、生産効率上、きわめて
有効である。
Therefore, when a power as large as possible is applied to the target, the film forming speed in the case of forming the film from the Sn-Si target is about four times that in the case of forming the film from the Zr-Si target. It is extremely effective in terms of production efficiency.

【0025】[0025]

【作用】本発明において、Agを用いたLow−E膜は
オーバーコートにより膜の耐擦傷性が向上している。オ
ーバーコート膜としては様々な膜が考えられるが、本発
明におけるSnとSiを含む酸化物を主成分とする酸化
物膜は、1)金属ターゲットからの反応性直流スパッタ
リングが安定してでき、製膜速度が速い、2)ターゲッ
ト組成により屈折率が1.5〜2.0の範囲で可変であ
る、3)SnO2に比べ硬い、などの特徴を持つ。
In the present invention, the low-E film using Ag has improved scratch resistance of the film due to overcoating. Although various films are conceivable as the overcoat film, the oxide film containing Sn and Si as the main component in the present invention is 1) capable of stably producing reactive DC sputtering from a metal target. It has features such as high film speed, 2) variable refractive index in the range of 1.5 to 2.0 depending on target composition, and 3) harder than SnO 2 .

【0026】[0026]

【実施例】【Example】

[実施例1]洗浄した厚さ2mmのフロートガラス板を
スパッタリング装置内にセットし、10-6Torr台ま
で排気した。次にO2 ガスをチャンバー内に導入し、圧
力を2×10-3Torrにし、Znターゲットをターゲ
ットの電力密度5.2W/cm2 でスパッタリングし、
基板上にZnO(第1層)を40nm製膜した。
[Example 1] A washed float glass plate having a thickness of 2 mm was set in a sputtering apparatus and exhausted to a level of 10 -6 Torr. Next, O 2 gas was introduced into the chamber, the pressure was set to 2 × 10 −3 Torr, and a Zn target was sputtered at a target power density of 5.2 W / cm 2 ,
A 40 nm film of ZnO (first layer) was formed on the substrate.

【0027】次にガスをArだけにし、圧力を2×10
-3Torrにし、Agターゲットを電力密度0.8W/
cm2 でスパッタリングし、Ag(第2層)を15nm
製膜した。
Next, Ar is used as a gas and the pressure is set to 2 × 10.
-3 Torr, Ag target 0.8W / power density
Sputtering with cm 2 and Ag (second layer) of 15 nm
The film was formed.

【0028】次に、再びガスをO2 ガスにし、第1層と
同じ条件でZnO(第3層)を20nm製膜した。
Next, the gas was changed to O 2 gas again, and ZnO (third layer) was formed to a thickness of 20 nm under the same conditions as the first layer.

【0029】最後にガスをArとO2 の混合ガス(流量
比1:1)にし、圧力を2×10-3Torrにし、Sn
とSiの合金ターゲット(原子比1:1)を電力密度
7.8W/cm2 でスパッタリングし、SnとSiを含
む屈折率約1.7の酸化物膜(第4層)を10nm製膜
した。以下、この膜をSTO−1という。
Finally, the gas is a mixed gas of Ar and O 2 (flow ratio 1: 1), the pressure is 2 × 10 -3 Torr, and Sn is used.
And an alloy target of Si (atomic ratio 1: 1) were sputtered at a power density of 7.8 W / cm 2 to form a 10 nm oxide film (fourth layer) containing Sn and Si and having a refractive index of about 1.7. . Hereinafter, this film is referred to as STO-1.

【0030】[実施例2]実施例1と同じ方法、条件で
厚さ2mmのフロートガラス基板上にZnO/Ag/Z
nOの3層膜を製膜した。膜厚は、それぞれ40nm、
10nm、80nmとした。引き続いて、同じようにし
てAg(第4層)、ZnO(第5層)をそれぞれ10n
m、10nm製膜した。さらに引き続いて、実施例1の
第4層の場合と同じ方法、条件でSTO−1(第6層)
を膜厚10nm製膜した。
[Example 2] ZnO / Ag / Z was formed on a float glass substrate having a thickness of 2 mm under the same method and conditions as in Example 1.
A three-layer film of nO was formed. The film thickness is 40 nm,
It was set to 10 nm and 80 nm. Subsequently, in the same manner, Ag (4th layer) and ZnO (5th layer) were each added to 10n.
m, 10 nm was formed into a film. Further, subsequently, STO-1 (sixth layer) was formed under the same method and conditions as in the case of the fourth layer of Example 1.
To a film thickness of 10 nm.

【0031】[実施例3]実施例1と同様にして、第1
層および第2層を製膜した。次にガスをArのままに保
ち、圧力を2×10-3Torrにし、Znターゲットを
電力密度3.0W/cm2 でスパッタリングし、Zn膜
(バリア層)を5nm製膜した。
[Embodiment 3] In the same manner as in Embodiment 1, the first
The layer and the second layer were formed into a film. Next, the gas was kept as Ar, the pressure was set to 2 × 10 −3 Torr, and the Zn target was sputtered at a power density of 3.0 W / cm 2 to form a Zn film (barrier layer) with a thickness of 5 nm.

【0032】次にガスをO2 ガスにし、圧力を2×10
-3Torrにし、Znターゲットを電力密度5.2W/
cm2 でスパッタリングし、ZnO膜(第3層)を20
nm製膜した。
Next, the gas is changed to O 2 gas and the pressure is set to 2 × 10.
-3 Torr, Zn target with power density of 5.2 W /
The ZnO film (third layer) is sputtered at a density of 20 cm 2
nm film was formed.

【0033】最後にガスをArとO2 の混合ガス(流量
比1:1)にし、SnとSiの合金ターゲット(原子比
1:1)を電力密度7.8W/cm2 でスパッタリング
し、STO−1(第4層)を10nm製膜した。
Finally, the gas is a mixed gas of Ar and O 2 (flow ratio 1: 1), an alloy target of Sn and Si (atomic ratio 1: 1) is sputtered at a power density of 7.8 W / cm 2 , and STO is used. -1 (4th layer) was formed into a film of 10 nm.

【0034】[実施例4]実施例3と同じ方法、条件で
フロートガラス基板上にZnO/Ag/Zn(バリア
層)/ZnOの3層膜を製膜した。膜厚は、それぞれ4
0nm、10nm、5nm、80nmとした。引き続い
て、同じようにしてAg(第4層)、Zn(バリア
層)、ZnO(第5層)を、それぞれ10nm、5n
m、10nm製膜した。さらに引き続いて、実施例3の
第5層の場合と同じ方法、条件で、STO−1(第6
層)を厚さ10nm製膜した。
[Example 4] A three-layer film of ZnO / Ag / Zn (barrier layer) / ZnO was formed on a float glass substrate under the same method and conditions as in Example 3. The film thickness is 4
It was set to 0 nm, 10 nm, 5 nm, and 80 nm. Subsequently, in the same manner, Ag (fourth layer), Zn (barrier layer), and ZnO (fifth layer) of 10 nm and 5 n, respectively.
m, 10 nm was formed into a film. Further subsequently, STO-1 (sixth layer) was prepared by the same method and condition as the fifth layer of the third embodiment.
Layer) was formed into a film having a thickness of 10 nm.

【0035】[実施例5]実施例1と同じ方法、条件で
厚さ2mmのフロートガラス基板上にZnO/Ag/Z
nOの3層膜を製膜した。次に、ArとO2 の混合ガス
(流量比1:1)にし、圧力を2×10-3Torrに
し、SnとSiの原子比が2:8の合金ターゲットを電
力密度7.8W/cm2 でスパッタリングし、SnとS
iとの原子比が2:8の屈折率約1.6の酸化物膜(第
4層)を10nm製膜した。この膜をSTO−2とい
う。
[Example 5] ZnO / Ag / Z was formed on a float glass substrate having a thickness of 2 mm under the same method and conditions as in Example 1.
A three-layer film of nO was formed. Next, a mixed gas of Ar and O 2 (flow rate ratio of 1: 1) is used, the pressure is set to 2 × 10 −3 Torr, and an alloy target having an atomic ratio of Sn and Si of 2: 8 is set to a power density of 7.8 W / cm. Sputter with 2 , Sn and S
An oxide film (fourth layer) having a refractive index of about 1.6 and an atomic ratio of i to 2: 8 was formed to a thickness of 10 nm. This film is called STO-2.

【0036】[比較例1]実施例1と同じ方法、条件で
厚さ2mmのフロートガラス基板上に、ZnO/Ag/
ZnOの3層膜を実施例1と同じ膜厚だけ製膜した。
Comparative Example 1 ZnO / Ag / on a float glass substrate having a thickness of 2 mm under the same method and conditions as in Example 1.
A ZnO three-layer film was formed to the same thickness as in Example 1.

【0037】[比較例2]実施例1と同じ方法、条件で
厚さ2mmのフロートガラス基板上に、ZnO/Ag/
ZnOの3層膜を実施例1と同じ膜厚だけ製膜した。引
き続いてチャンバー内にArとO2 の混合ガス(流量比
1:1)を導入し、圧力を2×10-3Torrにし、S
nターゲットを電力密度7W/cm2 でスパッタリング
し、SnO2 膜(第4層)を10nm製膜した。
[Comparative Example 2] ZnO / Ag / on a 2 mm thick float glass substrate under the same method and conditions as in Example 1.
A ZnO three-layer film was formed to the same thickness as in Example 1. Subsequently, a mixed gas of Ar and O 2 (flow ratio 1: 1) was introduced into the chamber, the pressure was adjusted to 2 × 10 −3 Torr, and S was added.
An n target was sputtered at a power density of 7 W / cm 2 to form a SnO 2 film (fourth layer) with a thickness of 10 nm.

【0038】[比較例3]実施例1と同じ方法、条件で
厚さ2mmのフロートガラス基板上にZnO/Ag/Z
nOの3層膜を製膜した。膜厚は、それぞれ40nm、
10nm、80nmとした。引き続いて、同じようにし
てAg(第4層)、ZnO(第5層)を、それぞれ10
nm、10nm製膜した。
[Comparative Example 3] ZnO / Ag / Z was formed on a float glass substrate having a thickness of 2 mm under the same method and conditions as in Example 1.
A three-layer film of nO was formed. The film thickness is 40 nm,
It was set to 10 nm and 80 nm. Subsequently, in the same manner, Ag (4th layer) and ZnO (5th layer) were respectively added to 10
nm, 10 nm was formed into a film.

【0039】[比較例4]実施例3と同じ方法、条件で
フロートガラス基板上にZnO/Ag/Zn(バリア
層)/ZnOの3層膜を製膜した。それぞれの膜の膜厚
は実施例3の場合と同じとした。
[Comparative Example 4] A three-layer film of ZnO / Ag / Zn (barrier layer) / ZnO was formed on a float glass substrate under the same method and conditions as in Example 3. The film thickness of each film was the same as in Example 3.

【0040】[比較例5]実施例3と同じ方法、条件で
フロートガラス基板上にZnO/Ag/Zn(バリア
層)/ZnOの3層膜を製膜した。膜厚は、それぞれ4
0nm、10nm、5nm、80nmとした。引き続い
て、同じようにしてAg(第4層)、Zn(バリア
層)、ZnO(第5層)を、それぞれ10nm、5n
m、10nm製膜した。
[Comparative Example 5] A three-layer film of ZnO / Ag / Zn (barrier layer) / ZnO was formed on a float glass substrate under the same method and conditions as in Example 3. The film thickness is 4
It was set to 0 nm, 10 nm, 5 nm, and 80 nm. Subsequently, in the same manner, Ag (fourth layer), Zn (barrier layer), and ZnO (fifth layer) of 10 nm and 5 n, respectively.
m, 10 nm was formed into a film.

【0041】このようにして得た各種Low−Eガラス
の膜面の耐摩耗性をテーバー摩耗試験およびパウダーを
用いる摩耗試験で調べた。その結果を表1に示す。表1
のA欄はテーバー試験後の可視光線透過率変化(単位:
%)を示す。表1のB欄は摩耗試験後の膜面疵の有無を
示す。
The wear resistance of the film surface of the various Low-E glasses thus obtained was examined by a Taber wear test and a wear test using powder. The results are shown in Table 1. Table 1
The column A indicates the change in visible light transmittance after the Taber test (unit:
%) Is shown. Column B of Table 1 shows the presence or absence of film surface flaws after the abrasion test.

【0042】なお、テーバー試験は荷重500g、回転
数100回転で行った。テーバー試験前後の可視光透過
率の変化は、朝日分光(株)製304型簡易透過率計で
測定した。
The Taber test was performed under a load of 500 g and a rotation speed of 100 rotations. The change in visible light transmittance before and after the Taber test was measured by a 304 type simple transmittance meter manufactured by Asahi Bunko Co., Ltd.

【0043】また、パウダーを用いる摩耗試験は次のよ
うにして行った。すなわち、作成したLow−Eガラス
を膜面を上にして固定した。上からパウダーを撒布し、
もう1枚、通常のフロートガラス板を重ねた。上のガラ
ス板に荷重(150g/cm2 )をかけ、一定のストロ
ークで往復運動させた。
A wear test using powder was conducted as follows. That is, the prepared Low-E glass was fixed with the film surface facing upward. Sprinkle the powder from above,
Another normal float glass plate was stacked. A load (150 g / cm 2 ) was applied to the upper glass plate, and the glass plate was reciprocated with a constant stroke.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明のAg系のLow−Eガラスは生
産の無人化、自動化を可能にする。特に生産ラインへの
素板載せ、生産ラインからの板取りも無人ででき、生産
タクト、コストを低減できる。
Industrial Applicability The Ag-based Low-E glass of the present invention enables unmanned and automated production. In particular, it is possible to place a bare plate on the production line and remove the plate from the production line without any operator, and the production tact and the cost can be reduced.

【0046】また、本発明で保護コートとして用いたS
nとSiを含む酸化物を主成分とする酸化物膜は、スパ
ッタリング時にアーキングの心配がなく、製膜速度が速
いので、この酸化物膜用のターゲットを生産ラインの最
後に置いてスパッタリングすることにより、1パスモー
ドで連続した生産が可能である。
Further, S used as a protective coat in the present invention
Since an oxide film containing an oxide containing n and Si as the main component does not have a risk of arcing during sputtering and has a high film formation rate, the target for this oxide film should be placed at the end of the production line for sputtering. This enables continuous production in the 1-pass mode.

【0047】また、SnとSiを含む酸化物を主成分と
する酸化物膜は、屈折率が1.5〜2.0の範囲で可変
であるので、保護コートとして低屈折率の膜を用いるこ
とにより、保護コートしたときの色調等の光学特性やL
ow−E性能を最小限に抑えることができる。
Since the oxide film containing an oxide containing Sn and Si as a main component has a variable refractive index in the range of 1.5 to 2.0, a film having a low refractive index is used as the protective coat. Therefore, the optical characteristics such as color tone and L
The ow-E performance can be minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1、5の機能性物品の断面図FIG. 1 is a sectional view of a functional article according to Examples 1 and 5 of the present invention.

【図2】本発明の実施例2の機能性物品の断面図FIG. 2 is a sectional view of a functional article of Example 2 of the present invention.

【図3】本発明の実施例3の機能性物品の断面図FIG. 3 is a sectional view of a functional article according to Example 3 of the present invention.

【図4】本発明の実施例4の機能性物品の断面図FIG. 4 is a sectional view of a functional article according to Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1:透明基体 2:透明酸化物層 3:Ag層 4:金属バリア層 5:SnとSiを含む酸化物を主成分とする酸化物膜 1: Transparent substrate 2: Transparent oxide layer 3: Ag layer 4: Metal barrier layer 5: Oxide film containing an oxide containing Sn and Si as a main component

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】透明基体上に、透明酸化物層とAg層とが
順次に積層され、合計(2n+1)層(n≧1)が形成
されてなる機能性物品において、最外層の上にさらにS
nとSiを含む酸化物を主成分とする酸化物膜が形成さ
れたことを特徴とする機能性物品。
1. A functional article in which a transparent oxide layer and an Ag layer are sequentially laminated on a transparent substrate to form a total of (2n + 1) layers (n ≧ 1). S
A functional article, wherein an oxide film containing an oxide containing n and Si as a main component is formed.
【請求項2】Ag層とその上に形成される透明酸化物層
との間に、金属膜バリア層が形成されたことを特徴とす
る請求項1の機能性物品。
2. The functional article according to claim 1, wherein a metal film barrier layer is formed between the Ag layer and the transparent oxide layer formed thereon.
【請求項3】前記SnとSiを含む酸化物を主成分とす
る酸化物膜の可視光の屈折率が1.5〜2.0であるこ
とを特徴とする請求項1または2の機能性物品。
3. The functionality according to claim 1 or 2, wherein the oxide film containing an oxide containing Sn and Si as a main component has a refractive index of visible light of 1.5 to 2.0. Goods.
【請求項4】前記SnとSiを含む酸化物を主成分とす
る酸化物膜におけるSnの割合が、原子比で5〜95%
であることを特徴とする請求項1〜3のいずれかの機能
性物品。
4. The proportion of Sn in the oxide film containing the oxide containing Sn and Si as a main component is 5 to 95% in atomic ratio.
The functional article according to any one of claims 1 to 3, wherein
【請求項5】前記SnとSiを含む酸化物を主成分とす
る酸化物膜の厚さが1〜50nmであることを特徴とす
る請求項1〜4のいずれかの機能性物品。
5. The functional article according to claim 1, wherein the oxide film containing an oxide containing Sn and Si as a main component has a thickness of 1 to 50 nm.
JP15898494A 1993-08-20 1994-07-11 Functional article and manufacturing method thereof Expired - Fee Related JP3373298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15898494A JP3373298B2 (en) 1993-08-20 1994-07-11 Functional article and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-228310 1993-08-20
JP22831093 1993-08-20
JP15898494A JP3373298B2 (en) 1993-08-20 1994-07-11 Functional article and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07108642A true JPH07108642A (en) 1995-04-25
JP3373298B2 JP3373298B2 (en) 2003-02-04

Family

ID=26485929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15898494A Expired - Fee Related JP3373298B2 (en) 1993-08-20 1994-07-11 Functional article and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3373298B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505810A (en) * 2003-09-17 2007-03-15 サン−ゴバン グラス フランス Transparent substrate with thin film laminate for electromagnetic shielding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505810A (en) * 2003-09-17 2007-03-15 サン−ゴバン グラス フランス Transparent substrate with thin film laminate for electromagnetic shielding
JP4800947B2 (en) * 2003-09-17 2011-10-26 サン−ゴバン グラス フランス Transparent substrate with thin film laminate for electromagnetic shielding

Also Published As

Publication number Publication date
JP3373298B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
EP1140721B1 (en) Methods and apparatus for producing silver based low emissivity coatings without the use of metal primer layers
JP4519136B2 (en) Corrosion resistant low emissivity coating
CA2374768C (en) Protective layers for sputter coated article
US6833194B1 (en) Protective layers for sputter coated article
DK166536B1 (en) PRODUCT WITH HIGH TRANSMITTANCE AND LOW EMISSIVITY
US5942338A (en) Coated articles
EP2251311A2 (en) Heat treatable low-e coated articles and methods of making same
US20070163872A1 (en) Heat treatable low-E coated articles and methods of making same by sputtering AG in oxygen inclusive atmosphere
JPH0791089B2 (en) Heat ray reflective glass
WO2003042122A9 (en) Coated article with improved barrier layer structure and method of making the same
CN1747907A (en) Glazing panel carrying a coating stack
JPH029731A (en) Matter of high gray color-permeability and low radioactivity and method for its manufacture
CA2530443C (en) Concentration-modulated coatings
EP3589592B1 (en) Coated article with low-e coating having ir reflecting system with silver and zinc based barrier layer(s)
EP4058417B1 (en) Coated glass substrate
CN113173712A (en) Low-emissivity coated glass and preparation method thereof
EP1238950B2 (en) Heat treatable low-E coated articles and methods of making same
US5993617A (en) Functional product
EP0140032A1 (en) Method for coating substrates with a film by cathode sputtering
JPH07108642A (en) Functional article
JP3200637B2 (en) Heat shielding glass
JP2576637B2 (en) Heat ray reflective glass
JPH02901A (en) Optical body having excellent durability
JP3028576B2 (en) Heat shielding glass
JP3057785B2 (en) Heat shielding glass

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees