JPH07108292A - Fluidized bed carrier and method for accelerating precipitation thereof, and carrier recovery method - Google Patents

Fluidized bed carrier and method for accelerating precipitation thereof, and carrier recovery method

Info

Publication number
JPH07108292A
JPH07108292A JP25825793A JP25825793A JPH07108292A JP H07108292 A JPH07108292 A JP H07108292A JP 25825793 A JP25825793 A JP 25825793A JP 25825793 A JP25825793 A JP 25825793A JP H07108292 A JPH07108292 A JP H07108292A
Authority
JP
Japan
Prior art keywords
carrier
fluidized bed
tank
magnetically
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25825793A
Other languages
Japanese (ja)
Other versions
JP3244365B2 (en
Inventor
Masahiro Imura
正博 井村
Yoshihiko Sato
吉彦 佐藤
Eiichi Suzuki
栄一 鈴木
Masashi Goto
雅司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujiclean Co Ltd
Original Assignee
Fujiclean Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiclean Co Ltd filed Critical Fujiclean Co Ltd
Priority to JP25825793A priority Critical patent/JP3244365B2/en
Publication of JPH07108292A publication Critical patent/JPH07108292A/en
Application granted granted Critical
Publication of JP3244365B2 publication Critical patent/JP3244365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To maintain high speed treatment performance and to achieve miniaturization by a method wherein a fluidized bed carrier is constituted from a magnetically reactive material which is magnetically attracted by exciting action and magnetically released by demagnetizing action. CONSTITUTION:The interior of a reaction tank R is partitioned by means of an intermediate partition wall 1 to form a reaction tank 2 using anaerobic bacteria on the front inflow side and a reaction tank 3 using aerobic bacteria on the rear outflow side. A proper amount of carriers X having magnetic reactivity are put into both of the reaction tanks 2, 3. The carriers X are made of synthetic resin, as base material, such as polypropylene, and iron powder is mixed into the base material, which is formed into granules so that the granules are magnetically attracted by exciting action and magnetically released by demagnetizing action. Water treated in the tank 3 is sent together with the carriers X from an outflow pipe 12 to a settling tank 13. In the tank 13, an electromagnet 15 is energized to magnetically attract the carriers X to which bacteria have been attached, thereby precipitating them to the bottom of the tank 13, following which electricity is cut off to demagnetize the electromagnet 15 to release the carriers X to lift them through an air lift tube 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流動床方式の生物膜処
理に使用すると有益な、磁気反応性を帯有してなる流動
床担体とその沈澱促進方法並びに担体回収方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed carrier having magnetic reactivity, which is useful for a fluidized bed biofilm treatment, a method for promoting precipitation of the same, and a method for recovering the carrier.

【0002】[0002]

【従来の技術】従来、流動床方式の生物膜処理において
は、微生物の付着媒体として砂、アンスラサイト(無煙
炭)、活性炭、多孔質セラミック、プラスチック、スポ
ンジ、ガラス球等の担体物質が採択され、これをリアク
ターと称する反応槽で流動化させることで、微生物が付
着する担体の表面積を飛躍的に高め、大量の微生物によ
る生物膜処理の高速化を可能としている。このような生
物処理の高速化は、反面、処理設備の小型コンパクト化
の要請に貢献でき、近時、流動床生物膜処理装置に対す
る実用化の要請が極めて強い。ところが、反応槽に投入
した担体の流動化と、当該担体に付着した微生物の成長
による槽内汚水に対する生物処理が進行するに伴って、
或いは、新たな処理汚水の流入による影響を受けると、
微生物が付着した流動床担体が、処理水に混入して反応
槽から流れ出し、それが系外へ流出されることになる。
そこで、従来では、、反応槽の上方部に三角堰と称す
る越流堰を設けたり、、反応槽の処理水排出口の直前
に担体流出を防止するネットやスクリーンを設けたり、
、特公平2−5153号公報の従来例を示す第2図の
ように傾斜板を設けたり、また、特公平1−59037
号公報に開示するように、下部を開口した斜向仕切板を
設けたり、或いは、、特公平2−5153号公報に開
示する多孔性隔壁を槽内中間部に傾設したり、また、
、特公平2−5154号公報の第1図に開示するよう
な、槽内中間部に下端を開口した隔壁と邪魔板とで斜向
通路を傾設したり、また、その第2図に示すように、隔
壁と多数の邪魔板とで多数段の斜向通路を形成すること
で、微生物が付着した流動床担体の槽外への流出を防止
している。
2. Description of the Related Art Conventionally, in a fluidized bed biofilm treatment, carrier materials such as sand, anthracite (anthracite), activated carbon, porous ceramics, plastics, sponges and glass spheres have been adopted as a microorganism attachment medium. By fluidizing this in a reaction tank called a reactor, the surface area of the carrier on which microorganisms adhere is dramatically increased, and the biofilm treatment by a large amount of microorganisms can be accelerated. On the other hand, the speeding up of such biological treatment can contribute to the demand for downsizing and compaction of the treatment equipment, and recently, the demand for practical application of the fluidized bed biofilm treatment device is extremely strong. However, with the fluidization of the carrier put into the reaction tank, and as the biological treatment of the wastewater in the tank due to the growth of microorganisms attached to the carrier progresses,
Or, if affected by the inflow of new treated wastewater,
The fluidized bed carrier to which the microorganisms adhere is mixed with the treated water and flows out of the reaction tank, which then flows out of the system.
Therefore, conventionally, an overflow weir called a triangular weir is provided in the upper part of the reaction tank, or a net or screen for preventing carrier outflow is provided immediately before the treated water discharge port of the reaction tank,
As shown in FIG. 2 which shows a conventional example of Japanese Patent Publication No. 2-5153, Japanese Patent Publication No. 1-59037.
As disclosed in Japanese Patent Publication No. JP-A No. 2003-242242, a diagonal partition plate with a lower opening is provided, or the porous partition wall disclosed in Japanese Patent Publication No. 2-5153 is tilted in the middle part of the tank, or
As disclosed in FIG. 1 of Japanese Patent Publication No. 2-5154, a slanted passage is inclined by a partition wall and a baffle plate whose lower end is opened in the middle portion of the tank, and as shown in FIG. As described above, the partition walls and the many baffle plates form a large number of inclined passages to prevent the fluidized bed carrier to which the microorganisms adhere from flowing out of the tank.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記や
のような流出防止策の場合には、流出しようとする流動
床担体で、スクリーンや多孔性隔壁等が目詰まり現象を
引き起こすことになり、それでは実用化装置としての日
常的な維持管理を煩わしいものとする。また、それ以外
の前記、のような防止策や、の越流構造の場合に
は、目詰まりは起こさないにしても、依然として流動床
担体の流出を防止することができない。このことから、
反応槽から流出する微生物の付着担体を、後工程の沈澱
槽へ流入させ、それを比較的時間をかけて沈降分離させ
た上で、その上澄み液を消毒処理して排水すると共に、
沈澱物を汚泥濃縮貯留槽へ送り出し、その脱離液を前工
程へ返送し、濃縮汚泥をバキューム車で回収して後処理
することを不可欠としたり、或いは、沈澱槽の沈澱物を
汚泥濃縮槽へ送り出した上で、比較的時間をかけて汚泥
濃縮し、その脱離液を前工程へ返送し、また、その濃縮
汚泥を汚泥貯留槽へ送り出し、それをバキューム車で回
収して後処理することにならざるを得ない。ところが、
前記の濃縮汚泥には、依然として担体が混在したままで
あり、そのため、搬出汚泥量の増加を招来することにな
る上に、反応槽からの消失担体の相当量に見合うだけの
新たな流動床担体の補充を不可欠とする。また、前記の
沈澱槽や汚泥濃縮槽では、自然沈降や重力沈降による沈
澱分離する処理構造であるため、それが静置状態で沈澱
分離するに(凝集剤を使用しない場合)、かなりの処理
時間を必要とする。また、流動床担体それ自体も処理水
との比重差が小さく、槽内を浮遊する傾向にあることか
ら、その重力沈澱に多くの時間を要し、結果として、此
種の沈澱槽や汚泥濃縮槽等が小型コンパクト化できない
ことになり、それでは流動床生物膜処理の高速化という
長所を生かすことができない。
However, in the case of the outflow prevention measures such as those mentioned above, the fluidized bed carrier which is about to flow out causes a clogging phenomenon of the screen or the porous partition wall. Make daily maintenance as a practical device troublesome. In addition, in the case of the above-mentioned other preventive measures or the overflow structure, the outflow of the fluidized bed carrier cannot be prevented even if the clogging does not occur. From this,
The carrier adhering to the microorganisms flowing out of the reaction tank is allowed to flow into the precipitation tank in the subsequent step, and after it is precipitated and separated for a relatively long period of time, the supernatant liquid is sterilized and drained,
It is indispensable to send the sediment to the sludge thickening storage tank and return the desorbed liquid to the previous process to collect the thickened sludge with a vacuum car for post-treatment, or to settle the sludge thickening tank to the sludge thickening tank. After being sent to the sludge, the sludge is concentrated over a relatively long time, the desorbed liquid is returned to the previous process, and the concentrated sludge is sent to the sludge storage tank, which is then collected by a vacuum truck for post-treatment. I have no choice. However,
The above-mentioned concentrated sludge still contains a mixture of carriers, which leads to an increase in the amount of sludge to be carried out and, in addition, a new fluidized bed carrier which is commensurate with a considerable amount of the carriers lost from the reaction tank. Replenishment is essential. In addition, since the sedimentation tank and sludge thickening tank described above have a treatment structure that causes sedimentation by natural sedimentation or gravity sedimentation, a considerable amount of treatment time is required for sedimentation separation in a stationary state (when no coagulant is used). Need. Also, since the fluid bed carrier itself has a small difference in specific gravity from the treated water and tends to float in the tank, it takes a lot of time for its gravity settling, and as a result, this type of settling tank and sludge concentration The tanks cannot be made compact and compact, and the advantage of speeding up the fluidized bed biofilm treatment cannot be utilized.

【0004】[0004]

【課題を解決するための手段】そこで、本発明では、前
記のような流動床方式の生物膜処理における課題を解決
するために、磁気反応性を帯有する流動床担体、即ち、
電磁石への励磁作用によって磁力吸引され、電磁石の消
磁作用によって磁力解放される磁気反応性の素材で構成
した流動床担体、より具体的には、ポリプロピレン、ポ
リエチレン、ポリ塩化ビニール等の合成樹脂性基材をベ
ースにし、それに鉄粉を混合して造粒化するか、ペレッ
ト化した担体を新たに開発し、これを使用した流動床生
物膜処理方法を提供することにより、流動床担体の系外
への流出防止と沈澱処理の促進に対処したり、或いは、
固液分離時における担体に対する沈澱処理の促進と担体
回収効率の向上等に対処したのである。
Therefore, in the present invention, in order to solve the above-mentioned problems in the fluidized bed biofilm treatment, a fluidized bed carrier having magnetic reactivity, that is,
A fluidized bed carrier composed of a magnetically responsive material that is magnetically attracted by the exciting action of the electromagnet and released by the demagnetizing action of the electromagnet, more specifically, a synthetic resin group such as polypropylene, polyethylene, or polyvinyl chloride. Of a fluidized bed carrier by providing a method for treating a fluidized bed biofilm using a base material, which is mixed with iron powder for granulation or a pelletized carrier is newly developed. To prevent spills to the river and promote precipitation, or
This is to cope with the promotion of the precipitation treatment on the carrier during the solid-liquid separation and the improvement of the carrier recovery efficiency.

【0005】[0005]

【作用】沈澱槽で流動床担体を沈澱処理したり、担体分
離槽で担体と汚泥分とを固液分離し、槽内を浮遊する担
体を沈澱処理したり、回収する場合に、これらの沈澱槽
や担体分離槽に設けた電磁石に通電し、当該電磁石を励
磁させることで、浮遊する担体が磁力吸引され、比較的
短時間で担体が磁力沈澱したり、或いは、槽内外に設け
た磁性ベルトに磁力吸着させることで担体回収される。
When a fluidized bed carrier is subjected to a precipitation treatment in a settling tank, or a carrier and a sludge component are subjected to solid-liquid separation in a carrier separation tank, and a carrier floating in the tank is subjected to a precipitation treatment or recovery, these precipitates are precipitated. By energizing an electromagnet provided in a tank or carrier separation tank and exciting the electromagnet, the floating carrier is magnetically attracted, and the carrier magnetically precipitates in a relatively short time, or a magnetic belt provided inside or outside the tank. The carrier is recovered by magnetically adsorbing onto the substrate.

【0006】[0006]

【実施例】先ず、本発明における担体素材としては、ポ
リプロピレン、ポリエチレン、ポリ塩化ビニール等の合
成樹脂性基材と、磁気反応性を有する磁性体としての鉄
粉とからなる混合物であって、合成樹脂性基材が100
gに対し、鉄粉を15〜50gの混合割合とし、この混
合物を溶融した上で引き出し成形機又は押し出し成形機
により線状又は棒状に成形した後、冷却槽を通した上で
細断することによりペレット状に成形加工することで、
その長さが3〜6mm程度で、幅が3mm程度で、厚み
が2mm程度の扁平サイズのペレット状の担体Xが得ら
れる。勿論、これに代えて担体Xを造粒化し、その直径
が2〜5mm程度の粒状物とすることもできる。尚、合
成樹脂性基材の100gに対し、鉄粉を15〜50g程
度の混合割合とした場合には、担体の比重を1.03〜
1.50程度とすることができ、流動床生物膜処理に使
用する担体Xとして、適度な流動性と沈降性を兼ね備え
ている。以下、本発明に係る磁気反応性を帯有する担体
Xを使用すると好適な、流動床生物膜処理装置における
第1応用例として、図1や図3に示す嫌気処理と好気処
理を組み合わせた嫌気好気流動床タイプの場合を、同じ
く第2応用例として、図4に示す好気流動床タイプの場
合を、同じく第3応用例として、図5に示す回分式流動
床タイプの場合について説明する。
EXAMPLES First, as a carrier material in the present invention, a mixture of a synthetic resin base material such as polypropylene, polyethylene, or polyvinyl chloride, and iron powder as a magnetic substance having magnetic reactivity is used. 100 resin base material
The iron powder is mixed in an amount of 15 to 50 g per g, and the mixture is melted and then formed into a linear shape or a rod shape by an extrusion molding machine or an extrusion molding machine, and then shredded after passing through a cooling tank. By forming into pellets with
A flat-shaped pellet-shaped carrier X having a length of about 3 to 6 mm, a width of about 3 mm, and a thickness of about 2 mm is obtained. Of course, instead of this, the carrier X may be granulated to form a granular material having a diameter of about 2 to 5 mm. When the mixing ratio of iron powder is about 15 to 50 g relative to 100 g of the synthetic resin base material, the specific gravity of the carrier is 1.03 to
It can be about 1.50, and has both appropriate fluidity and sedimentability as the carrier X used for the fluidized bed biofilm treatment. Hereinafter, as a first application example of a fluidized bed biofilm treatment apparatus, in which the carrier X having magnetic reactivity according to the present invention is suitable, an anaerobic method combining anaerobic treatment and aerobic treatment shown in FIGS. 1 and 3 is used. A case of the aerobic fluidized bed type will be described as a second application example, a case of the aerobic fluidized bed type shown in FIG. 4 will be described, and a case of the batch type fluidized bed type shown in FIG. 5 will be described as a third application example. .

【0007】[0007]

【第1応用例】先ず、流動床生物膜処理装置の装置全体
の概要を示す図1において、Rは中間隔壁1で間仕切り
形成した反応槽であって、その前部流入側を嫌気性微生
物による反応槽2(以下、嫌気反応槽という)に区画
し、後部流出側を好気性微生物による反応槽3(以下、
好気反応槽という)に区画し、これらの嫌気反応槽2と
好気反応槽3には、本発明に係る磁気反応性を帯有する
担体Xの適量が投入される。4は嫌気反応槽2への汚水
流入管、5は流入水を降流案内する流入通路、6は嫌気
反応槽2の槽内に設けた攪拌装置であって、槽内汚水と
担体Xを攪拌混合することで担体Xを流動化し、流動化
した担体Xに付着して成長する嫌気性微生物による槽内
汚水の嫌気処理が繰り返される。7は嫌気処理水の移流
通路、8は中間隔壁1の上方部に設けた嫌気処理水の移
流口であって、汚水流入官4からの新たな汚水の流入を
受けて、移流通路7の嫌気処理水を移流口8を越流させ
て次の好気反応槽3へ送り込む。9は好気反応槽3の槽
底部に配管した散気装置であって、槽外に設けたブロア
Bから送り込まれる空気により、槽内汚水と担体Xを曝
気状態で攪拌混合することで担体Xを流動化し、流動化
した担体Xに付着して成長する好気性微生物による槽内
汚水の好気処理が繰り返される。10は好気反応槽3に
設けた汲み上げポンプであって、好気反応槽3で曝気処
理された好気処理水、即ち、硝化液の適量を汲み上げ、
それを循環返送管11により嫌気反応槽2の流入側へ返
送し、これが嫌気反応槽2の槽内汚水と攪拌混合される
ことで、槽内汚水に対する脱窒処理がなされる。尚、前
記の汲み上げポンプ10に代えて、図3に示すエアリフ
ト管と空気管(図示せず)とからなるエアリフトポンプ
装置により硝化液を汲み上げて循環返送することもでき
る。12は好気反応槽3で処理された好気処理水の流出
管であって、移流口8からの嫌気処理水の流入を受け
て、次の沈澱槽13へ好気処理水を送り出す。この段階
の処理水には、好気反応槽3での曝気処理によって浮遊
するSSや、好気性微生物が付着して浮遊する担体Xが
混入した状態で送り出される。14は沈澱槽13の中心
位置に設けたセンターウエルであって、流入した好気処
理水を下方へ沈降案内する。15は沈澱槽13の底部
(底部を含む下部外周部分でも可)に設けた電磁石であ
って、通電することにより励磁され、センターウエル1
4を降流する好気性微生物を付着した状態の担体Xや、
センターウエル14の下端開口部を回曲して、再び、上
方へ緩やかに浮上しようとする担体Xや、槽内を浮遊す
る担体Xを磁力吸引することで、沈澱槽13の槽底部に
微生物の付着した担体Xを比較的短時間で磁力沈澱せし
める。16は沈澱槽13に設けたエアリフト管であっ
て、その下端部を沈澱槽13の槽底部に開口形成され、
槽底部の沈澱物を空気管(図示せず)から送り込まれる
空気で汲み上げるようにしている。このエアリフト管1
6と空気管とでエアリフトポンプ装置が構成される。そ
こで、電磁石15への通電を遮断することで、電磁石1
5を消磁し、沈澱した担体Xに対する磁力を解放した
後、エアリフト管16へ空気が供給されると、槽底部に
沈澱した担体Xを含む沈澱物が、そのエアリフト作用で
汲み上げられ、移流管17により次の担体分離槽18へ
送り込まれる。19は沈澱槽13の上端部に設けた越流
堰であって、浮上するスカムの流出を防止しつつ、沈澱
槽13の上澄み液を移流管20で次の消毒槽21へ流出
させた上で、放流管22から外部放流される。23は担
体分離槽18に設けた散気装置であって、ブロアBから
の空気の供給を受けて担体Xを含む槽内汚水に対する曝
気処理が繰り返され、これにて担体Xから付着物を剥離
して固液分離する。24は担体分離槽18の底部に設け
た電磁石であって、励磁することにより曝気処理中の担
体Xを磁力吸引して比較的短時間で磁力沈澱させる。2
5は担体分離槽18に設けたエアリフト管であって、そ
の下端部を担体分離槽18の槽底部に開口形成され、沈
澱した担体Xを含む沈澱物を空気管(図示せず)から送
り込まれる空気のエアリフト作用で汲み上げるようにし
ている。そこで、電磁石24への通電を遮断すること
で、沈澱した担体Xに対する磁力を解放した後、エアリ
フト管25へ空気が供給されると、槽底部に沈澱した担
体Xがそのエアリフト作用で汲み上げられ、それを担体
返送管26により嫌気反応槽2の流入側へ返送すること
により、再び、嫌気性生物処理における流動床担体Xと
して再利用に供される。また、担体分離槽18で固液分
離された剥離汚泥を含む懸濁液は、移流管27から次の
汚泥貯留槽28へ排出された後、バキューム車に汲み上
げられて搬出される。従って、流動床生物膜処理におけ
る担体Xとして、磁気反応性を具有する素材を使用すれ
ば、その沈澱処理を比較的短時間で行なうことができる
上に、その担体Xの系外への流出も防止でき、その回収
や再利用にも優れることになる。
[First application example] First, in FIG. 1 showing an outline of the entire apparatus of a fluidized bed biofilm treatment apparatus, R is a reaction tank partitioned by an intermediate partition wall 1, and the front inflow side thereof is formed by anaerobic microorganisms. It is divided into a reaction tank 2 (hereinafter referred to as an anaerobic reaction tank), and the rear outflow side is a reaction tank 3 for aerobic microorganisms (hereinafter,
The anaerobic reaction tank 2 and the aerobic reaction tank 3 are charged with an appropriate amount of the carrier X having magnetic reactivity according to the present invention. Reference numeral 4 is a sewage inflow pipe into the anaerobic reaction tank 2, 5 is an inflow passage for guiding the inflow water downward, and 6 is an agitation device provided in the anaerobic reaction tank 2 for agitating the in-tank wastewater and the carrier X. The carrier X is fluidized by mixing, and the anaerobic treatment of the in-tank wastewater by the anaerobic microorganisms attached to the fluidized carrier X and growing is repeated. Reference numeral 7 is an advection passage for the anaerobic treated water, 8 is an admission port for the anaerobic treated water provided in the upper part of the intermediate partition wall 1, and receives the new inflow of the sewage from the sewage inflow officer 4, and anaerobics the advection passage 7. The treated water is allowed to flow through the advection port 8 and sent to the next aerobic reaction tank 3. Reference numeral 9 is an air diffuser installed at the bottom of the aerobic reaction tank 3, and the carrier X is agitated and mixed with the waste water in the tank and the carrier X in an aerated state by the air sent from the blower B provided outside the tank. Is aerated, and the aerobic treatment of the in-tank wastewater with aerobic microorganisms that grow by adhering to the fluidized carrier X is repeated. Reference numeral 10 denotes a pumping pump provided in the aerobic reaction tank 3, which pumps up aerobic treated water aerated in the aerobic reaction tank 3, that is, an appropriate amount of nitrification liquid,
It is returned to the inflow side of the anaerobic reaction tank 2 through the circulation return pipe 11, and this is agitated and mixed with the in-tank wastewater of the anaerobic reaction tank 2, whereby denitrification treatment is performed on the in-tank wastewater. Instead of the pump 10, the nitrification solution may be pumped and returned by an air lift pump device including an air lift pipe and an air pipe (not shown) shown in FIG. Reference numeral 12 denotes an outflow pipe for the aerobic treated water treated in the aerobic reaction tank 3, which receives the inflow of the anaerobic treated water from the advection port 8 and sends the aerobic treated water to the next settling tank 13. The treated water at this stage is sent out in a state where SS suspended by the aeration treatment in the aerobic reaction tank 3 and the carrier X in which aerobic microorganisms adhere and float are mixed. Reference numeral 14 denotes a center well provided at the center of the settling tank 13 for guiding the inflowing aerobic treated water downward. Reference numeral 15 denotes an electromagnet provided at the bottom of the settling tank 13 (or the lower outer peripheral portion including the bottom may be used), which is excited by energization to cause the center well 1
Carrier X with aerobic microorganisms flowing down 4 attached,
By curling the lower end opening of the center well 14 and magnetically attracting the carrier X which is going to gently float upward again or the carrier X which floats in the tank, the microorganisms are attracted to the bottom of the precipitation tank 13. The attached carrier X is magnetically precipitated in a relatively short time. Reference numeral 16 is an air lift pipe provided in the settling tank 13, the lower end of which is formed at the bottom of the settling tank 13,
The sediment at the bottom of the tank is pumped up by the air sent from an air pipe (not shown). This air lift pipe 1
An air lift pump device is configured by 6 and the air pipe. Therefore, by cutting off the power supply to the electromagnet 15, the electromagnet 1
When the air is supplied to the air lift pipe 16 after demagnetizing 5 and releasing the magnetic force to the precipitated carrier X, the precipitate containing the carrier X precipitated at the bottom of the tank is pumped up by the air lift action and the advection pipe 17 Is sent to the next carrier separation tank 18. Reference numeral 19 denotes an overflow weir provided at the upper end of the settling tank 13, which prevents the floating scum from flowing out and allows the supernatant of the settling tank 13 to flow to the next disinfection tank 21 through the advection pipe 20. The water is discharged from the discharge pipe 22 to the outside. Reference numeral 23 denotes an air diffuser provided in the carrier separation tank 18, which receives the supply of air from the blower B and repeats the aeration process for the in-tank wastewater containing the carrier X, whereby the adherents are separated from the carrier X. Solid-liquid separation. Reference numeral 24 is an electromagnet provided at the bottom of the carrier separation tank 18, and when excited, magnetically attracts the carrier X during the aeration process to cause magnetic precipitation in a relatively short time. Two
Reference numeral 5 denotes an air lift pipe provided in the carrier separation tank 18, the lower end of which is opened at the bottom of the carrier separation tank 18 and a precipitate containing the precipitated carrier X is fed from an air pipe (not shown). The air is lifted by the air lift action. Therefore, when the air is supplied to the air lift pipe 25 after releasing the magnetic force to the precipitated carrier X by cutting off the power supply to the electromagnet 24, the carrier X precipitated at the bottom of the tank is pumped up by the air lift action, By returning it to the inflow side of the anaerobic reaction tank 2 through the carrier return pipe 26, it is reused as the fluidized bed carrier X in the anaerobic biological treatment. Further, the suspension containing the separated sludge that has been subjected to solid-liquid separation in the carrier separation tank 18 is discharged from the advection pipe 27 to the next sludge storage tank 28, and then pumped up to the vacuum vehicle and carried out. Therefore, if a material having magnetic reactivity is used as the carrier X in the fluidized bed biofilm treatment, the precipitation treatment can be performed in a relatively short time, and the carrier X also flows out of the system. It can be prevented, and it will be excellent in the collection and reuse.

【0008】[0008]

【変形例1】前記の第1応用例における担体分離槽18
の場合には、散気装置23で固液分離した担体Xを磁力
沈澱させ、それをエアリフト管25と空気管とからなる
エアリフトポンプ装置で汲み上げて回収するようにした
場合について説明したが、それに代えて図2に示すよう
に、担体分離槽18の槽内外にかけて磁性ベルト29を
回転可能に掛架支持した構成とすることもできる。この
場合には、磁性ベルト29を励磁して回転すれば、槽内
で固液分離した担体Xが磁性ベルト29に磁力吸着さ
れ、これが槽外へ搬出される。それをスクレイパー30
で掻き落すことで担体Xが回収される。
[Modification 1] Carrier separation tank 18 in the first application example
In the case of, the case was explained in which the carrier X solid-liquid separated by the air diffuser 23 was magnetically precipitated, and the carrier X was pumped up and collected by the air lift pump device composed of the air lift pipe 25 and the air pipe. Alternatively, as shown in FIG. 2, a magnetic belt 29 may be rotatably suspended and supported between the inside and the outside of the carrier separation tank 18. In this case, when the magnetic belt 29 is excited and rotated, the carrier X solid-liquid separated in the tank is magnetically attracted to the magnetic belt 29 and is carried out of the tank. Scraper it 30
The carrier X is recovered by scraping off with.

【0009】[0009]

【変形例2】第1応用例では、反応槽Rを中間隔壁1で
間仕切り形成することで、嫌気反応槽2と好気反応槽3
に区画形成したが、図3に示すように、汚水流入側に嫌
気反応槽2の単体を、処理水の排水側に好気反応槽3の
単体を設け、両槽を移流管31で接続した上で、両槽に
本発明の担体Xを適量投入した上で、流動床生物膜処理
に供することもできる。図3において、32は好気反応
槽3の処理水である硝化液を汲み上げるエアリフト管で
あって、これと空気管(図示せず)とでエアリフトポン
プ装置が構成され、好気反応槽3の槽内汚水を好気性微
生物の付着した担体Xの流動化と、曝気処理によって浄
化した硝化液の適量を嫌気反応槽2の流入側へ循環返送
し、当該嫌気反応槽2における嫌気性の槽内汚水と混合
させることで脱窒処理に供される。それ以外の諸構成と
処理方法は、第1応用例の場合と同様であるので、同一
の符号を付して、その説明を省略する。
[Modification 2] In the first application example, the anaerobic reaction tank 2 and the aerobic reaction tank 3 are formed by partitioning the reaction tank R with the intermediate partition wall 1.
As shown in FIG. 3, the anaerobic reaction tank 2 is provided on the wastewater inflow side, and the aerobic reaction tank 3 is provided on the treated water drainage side, and both tanks are connected by the advection pipe 31. It is also possible to add the appropriate amount of the carrier X of the present invention to both tanks, and then subject it to the fluidized bed biofilm treatment. In FIG. 3, reference numeral 32 is an air lift pipe for pumping up the nitrification liquid which is the treated water in the aerobic reaction tank 3, and this and an air pipe (not shown) constitute an air lift pump device. In the anaerobic tank of the anaerobic reaction tank 2, the sewage in the tank is fluidized by the carrier X to which aerobic microorganisms are adhered and an appropriate amount of nitrification liquid purified by aeration treatment is circulated back to the inflow side of the anaerobic reaction tank 2. It is used for denitrification by mixing with sewage. The other configurations and processing methods other than the above are the same as those in the case of the first application example, and therefore, the same reference numerals are given and the description thereof is omitted.

【0010】[0010]

【第2応用例】図4に示す好気流動床タイプの生物膜処
理装置の場合には、図1や図3の嫌気好気流動床タイプ
の生物膜処理装置における嫌気反応槽2がない場合であ
って、流入管4から好気反応槽3へ流入した汚水を散気
装置9で曝気処理することで、槽内に投入した本発明の
担体Xを流動化しながら、当該担体Xに付着した好気性
微生物による生物膜を成長させ、槽内汚水に対する好気
処理が行なわれる。新たな汚水が流入すると、好気反応
槽3の上層部の処理水は流出管12から送り出され、次
の沈澱槽13のセンターウエル14へ送り込まれる。セ
ンターウエル14を降流する微生物の付着した担体X
は、沈澱槽13の底部に設けた電磁石15の励磁により
磁力吸引されて沈降が促進され、これにて比較的短時間
で担体X又は微生物が付着した担体Xを磁力沈澱せしめ
る。また、上澄み液は沈澱槽13の上方部の越流堰19
を溢流し、消毒処理して外部放流される。そして、沈澱
槽4の槽底部に沈澱した担体Xは、電磁石15を消磁し
て磁力解放した段階で、エアリフト管16と空気管(図
示せず)とからなるエアリフトポンプ装置により汲み上
げられ、別途、沈澱汚泥に対する固液分離施設へ搬出さ
れて処理を委ねる(処理容量が比較的少ない小規模槽の
場合)。或いは、前記した第1応用例とその変形例1に
示すように、担体Xを含む沈澱汚泥を汲み上げて次の担
体分離槽18へ送り出し、担体分離した上で好気反応槽
3の流入側へ担体返送するか、図2のような磁性ベルト
29により担体Xの回収がなされる。
[Second application example] In the case of the aerobic fluidized bed type biofilm treatment device shown in FIG. 4, when the anaerobic reaction tank 2 in the anaerobic aerobic fluidized bed type biofilm treatment device of FIGS. That is, the wastewater that has flowed into the aerobic reaction tank 3 from the inflow pipe 4 is subjected to aeration treatment by the air diffuser 9, so that the carrier X of the present invention charged into the tank is adhered to the carrier X while being fluidized. A biofilm is grown by aerobic microorganisms, and aerial treatment of sewage in the tank is performed. When fresh sewage flows in, the treated water in the upper layer of the aerobic reaction tank 3 is sent out from the outflow pipe 12 and sent to the center well 14 of the next settling tank 13. Carrier X with attached microorganisms flowing down the center well 14.
Is magnetically attracted by excitation of the electromagnet 15 provided at the bottom of the settling tank 13 to promote settling, whereby the carrier X or the carrier X to which microorganisms are attached is magnetically precipitated in a relatively short time. Also, the supernatant liquid is the overflow weir 19 at the upper part of the settling tank 13.
Spilled, disinfected and discharged to the outside. Then, the carrier X settled on the bottom of the settling tank 4 is pumped up by an air lift pump device composed of an air lift pipe 16 and an air pipe (not shown) at the stage of demagnetizing the electromagnet 15 to release the magnetic force, and separately. The settled sludge is sent to a solid-liquid separation facility for processing (for small-scale tanks with a relatively small processing capacity). Alternatively, as shown in the above-described first application example and its first modification, the settled sludge containing the carrier X is pumped up and sent to the next carrier separation tank 18, the carrier is separated, and then to the inflow side of the aerobic reaction tank 3. The carrier X is returned or the carrier X is recovered by the magnetic belt 29 as shown in FIG.

【0011】[0011]

【第3応用例】次に、第3応用例として、図5に示す回
分式流動床タイプの生物膜処理装置の場合について説明
する。33は回分反応槽であって、槽内汚水を嫌気攪
拌、好気攪拌した上で沈澱処理し、その上澄み液を排出
し、余剰汚泥を排出する、との一連の回分処理がなされ
る。34は前工程の流量調整槽(図示せず)に設けた汲
み上げポンプであって、回分式反応槽33での一連の回
分処理終了を受けて作動開始し、図6(a)に示すよう
に、流入管4から新たな汚水を回分反応槽33へ流入
し、図6(a)(b)に示すように、攪拌装置6の作動
により槽内汚水を嫌気攪拌すると共に、槽内水位が所定
のハイレベルHとなった段階で、汲み上げポンプ33の
作動を停止する。これにて磁気反応性を具有する担体X
を槽内で流動化させ、それに付着した嫌気性微生物によ
る嫌気処理がなされる。次いで、図6(c)に示すよう
に散気装置9を作動させることで、槽内汚水を曝気しな
がら攪拌すると、担体Xに付着した好気性微生物による
槽内汚水の好気処理がなされる。35は回分反応槽33
の底部に設けた電磁石であって、通電することにより励
磁され、槽内を浮遊する流動床担体Xを磁力吸引するこ
とで、図7(d)に示すように、回分反応槽33の槽底
部に微生物が付着した担体Xやそれが剥離された担体X
を比較的短時間で磁力沈澱せしめる。36は処理水流出
側の上方部に張出したスカム流出防止コーンであって、
その下部位置に流出管12を配管している。37は流出
管12に設けた排水ポンプであって、図7(e)に示す
ように、スカム流出防止コーン36の下方部から上槽部
の上澄み液を排出作動することで、表層部に浮遊するス
カムの流出を防止しつつ、槽内水位がローレベルLまで
の範囲にある処理水を速やかに引き抜き、次の消毒槽2
1へ送り出された上で放流される。この上澄み液の排出
時にも、電磁石35への励磁状態が保持されることで、
磁力沈澱物が巻き上げられて排出されないようにしてい
る。38は担体Xを含む余剰汚泥の汲み上げポンプであ
って、電磁石35を消磁して沈澱物に対する磁力解放し
た後、槽底部の余剰汚泥を汲み上げ作動し、移流管17
から次の担体分離槽18へ送り出す。担体分離槽18で
は、前記した第1応用例の場合に示すように、槽内が散
気装置23で曝気され、電磁石24が励磁作動してい
る。これにて担体Xと微生物を含む汚泥分を剥離処理
し、その剥離汚泥分を次の汚泥貯留槽28へ排出した上
で、電磁石24を消磁して担体Xに対する磁力解放後、
エアリフト管25と空気管(図示せず)とからなるエア
リフトポンプ装置を作動させることで、回分反応槽33
の流入側へ担体返送するか、図2の変形例に示すよう
に、磁性ベルト29に担体Xを磁力吸着させて回収する
ようにしている。尚、図6、図7において、39は流入
汚水のスクリーンであって、流量調整槽(図示せず)か
ら汲み上げた汚水に混入する異物を除去する。
[Third Application Example] Next, as a third application example, a case of a batch type fluidized bed type biofilm treatment apparatus shown in FIG. 5 will be described. Reference numeral 33 denotes a batch reaction tank, which is a series of batch processing in which sewage water in the tank is anaerobically stirred and aerobically stirred, followed by precipitation treatment, discharge of the supernatant liquid, and discharge of excess sludge. Reference numeral 34 denotes a pumping pump provided in a flow rate adjusting tank (not shown) in the previous step, which starts its operation after receiving a series of batch processing in the batch type reaction tank 33, and as shown in FIG. , New sewage is flown into the batch reaction tank 33 from the inflow pipe 4, and as shown in FIGS. The operation of the pump 33 is stopped at the high level H level. With this, the carrier X having magnetic reactivity
Is fluidized in the tank, and anaerobic treatment is performed by the anaerobic microorganisms attached to it. Next, by operating the air diffuser 9 as shown in FIG. 6C, the tank wastewater is agitated while being aerated, and aerobic treatment of the tank wastewater by the aerobic microorganisms attached to the carrier X is performed. . 35 is a batch reaction tank 33
An electromagnet provided at the bottom of the batch reaction tank 33, which is excited by energization and magnetically attracts the fluidized-bed carrier X floating in the tank, as shown in FIG. 7 (d). Carrier X with microorganisms attached to it or carrier X from which it has been peeled
Magnetically precipitate in a relatively short time. Reference numeral 36 denotes a scum outflow prevention cone that is bulged above the treated water outflow side,
The outflow pipe 12 is provided in the lower position. Reference numeral 37 denotes a drainage pump provided in the outflow pipe 12, and as shown in FIG. 7 (e), the supernatant liquid of the upper tank portion is discharged from the lower portion of the scum outflow prevention cone 36 to float on the surface layer portion. While preventing the outflow of scum, the treated water whose tank water level is in the range up to the low level L is quickly drawn out, and the next disinfection tank 2
It is sent to No. 1 and then released. Even when the supernatant liquid is discharged, the excited state of the electromagnet 35 is maintained,
The magnetic precipitate is rolled up so that it is not discharged. Denoted at 38 is a pump for pumping excess sludge containing the carrier X. After demagnetizing the electromagnet 35 to release the magnetic force to the precipitate, the excess sludge is pumped up to operate, and the advection pipe 17
To the next carrier separation tank 18. In the carrier separation tank 18, as shown in the case of the first application example, the inside of the tank is aerated by the air diffuser 23, and the electromagnet 24 is excited. With this, the carrier X and sludge containing microorganisms are stripped, the stripped sludge is discharged to the next sludge storage tank 28, and the electromagnet 24 is demagnetized to release the magnetic force to the carrier X.
The batch reaction tank 33 is operated by operating an air lift pump device including an air lift pipe 25 and an air pipe (not shown).
The carrier X is returned to the inflow side or the carrier X is magnetically attracted to the magnetic belt 29 for recovery as shown in the modification of FIG. In FIGS. 6 and 7, 39 is a screen for inflowing dirty water, which removes foreign substances mixed in the dirty water pumped up from a flow rate adjusting tank (not shown).

【0012】[0012]

【発明の効果】本発明は、前記のように流動床生物膜処
理用の担体として、磁気反応性を帯有する流動床担体、
即ち、電磁石への励磁作用によって磁力吸引され、電磁
石の消磁作用によって磁力解放される磁気反応性の素材
で構成した流動床担体、より具体的には、ポリプロピレ
ン、ポリエチレン、ポリ塩化ビニール等の合成樹脂性基
材をベースにし、それに鉄粉を混合して造粒化するか、
ペレット化した流動床担体を新たに開発し、これを使用
した流動床生物膜処理方法を提供することにより、流動
床担体の沈澱処理を著しく促進することができる上に、
系外への担体の流出防止にも優れる。その為、流動床生
物膜処理の高速化という長所を生かすべく、例えば、反
応槽の小型コンパクト化に応じて沈澱槽、担体分離槽等
も小型コンパクトな容量のもので対処できることにな
り、流動床生物膜処理装置の実用化に大いに貢献するこ
とができる。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a fluidized bed carrier having magnetic reactivity as a carrier for treating a fluidized bed biofilm,
That is, a fluidized bed carrier composed of a magnetically responsive material that is magnetically attracted by the exciting action of the electromagnet and released by the demagnetizing action of the electromagnet, more specifically, a synthetic resin such as polypropylene, polyethylene, or polyvinyl chloride. Based on a permeable base material and mixed with iron powder for granulation,
By newly developing a pelletized fluidized bed carrier and providing a fluidized bed biofilm treatment method using the same, it is possible to significantly accelerate the precipitation treatment of the fluidized bed carrier.
It is also excellent in preventing the carrier from flowing out of the system. Therefore, in order to take advantage of the speedup of fluidized bed biofilm treatment, for example, depending on the downsizing of the reaction tank, the precipitation tank, carrier separation tank, etc. can be handled with a small and compact capacity. It can greatly contribute to the practical application of the biofilm treatment device.

【図面の簡単な説明】[Brief description of drawings]

【図1】嫌気好気流動床生物膜処理装置の全体概要図で
ある。
FIG. 1 is an overall schematic view of an anaerobic aerobic fluidized bed biofilm treatment apparatus.

【図2】担体分離槽の変形例を示す図である。FIG. 2 is a diagram showing a modified example of a carrier separation tank.

【図3】嫌気反応槽と好気反応槽を独立させた変形例を
示す図である。
FIG. 3 is a view showing a modified example in which an anaerobic reaction tank and an aerobic reaction tank are independent.

【図4】好気流動床生物膜処理装置の概要図である。FIG. 4 is a schematic diagram of an aerobic fluidized bed biofilm treatment device.

【図5】回分式流動床生物膜処理装置の全体概要図であ
る。
FIG. 5 is an overall schematic view of a batch type fluidized bed biofilm treatment apparatus.

【図6】回分処理工程の前半を示す図であって、図
(a)は汚水流入工程、図(b)は嫌気攪拌工程、図
(c)は好気攪拌工程を示している。
6A and 6B are diagrams showing the first half of a batch treatment process, wherein FIG. 6A shows a sewage inflow process, FIG. 6B shows an anaerobic stirring process, and FIG. 6C shows an aerobic stirring process.

【図7】回分処理工程の後半を示す図であって、図
(d)は磁力沈澱工程、図(e)は上澄み液の排出工
程、図(f)は汚泥移送工程を示している。
FIG. 7 is a diagram showing the latter half of the batch treatment process, wherein FIG. 7 (d) shows the magnetic precipitation process, FIG. 7 (e) shows the supernatant liquid discharging process, and FIG. 7 (f) shows the sludge transfer process.

【符号の説明】[Explanation of symbols]

X 担体 R 反応槽 2 嫌気反応槽 3 好気反応槽 6 攪拌装置 9、23 散気装置 10、34、38 汲み上げポンプ 13 沈澱槽 14 センターウエル 15、24、35 電磁石 16、25、32 エアリフト管 18 担体分離槽 19 越流堰 21 消毒槽 26 担体返送管 28 汚泥貯留槽 29 磁性ベルト 30 スクレバー 33 回分反応槽 36 スカム流出防止コーン 37 排水ポンプ X carrier R Reaction tank 2 Anaerobic reaction tank 3 Aerobic reaction tank 6 Stirrer 9, 23 Air diffuser 10, 34, 38 Pumping pump 13 Precipitation tank 14 Center well 15, 24, 35 Electromagnet 16, 25, 32 Air lift tube 18 Carrier separation tank 19 Overflow weir 21 Disinfection tank 26 Carrier return pipe 28 Sludge storage tank 29 Magnetic belt 30 Scrubber 33 batch reaction tank 36 Scum outflow prevention cone 37 Drainage pump

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 担体に磁気反応性を帯有させたことを特
徴とする流動床担体。
1. A fluidized bed carrier, wherein the carrier has magnetic reactivity.
【請求項2】 担体を、励磁作用によって磁力吸引さ
れ、消磁作用によって磁力解放される磁気反応性の素材
で構成したことを特徴とする流動床担体。
2. A fluidized bed carrier characterized in that the carrier is made of a magnetically reactive material that is magnetically attracted by an exciting action and released by a demagnetizing action.
【請求項3】 担体が、合成樹脂性基材と磁性素材との
混合物である請求項1又は請求項2に記載の流動床担
体。
3. The fluidized bed carrier according to claim 1, wherein the carrier is a mixture of a synthetic resin base material and a magnetic material.
【請求項4】 担体が、ポリプロピレン、ポリエチレ
ン、ポリ塩化ビニール等の合成樹脂性基材をベースに
し、それに鉄粉を混合して造粒化するか、ペレット化し
た構成とする請求項1、請求項2又は請求項3に記載の
流動床担体。
4. The carrier according to claim 1, wherein the carrier is based on a synthetic resin base material such as polypropylene, polyethylene, or polyvinyl chloride, and iron powder is mixed with the base material for granulation or pelletization. The fluidized bed carrier according to claim 2 or 3.
【請求項5】 担体が、合成樹脂性基材の100gに対
し、鉄粉を15〜50gの混合割合となし、その比重を
1.03〜1.50としてなる請求項1、請求項2、請
求項3又は請求項4に記載の流動床担体。
5. The carrier according to claim 1, wherein the ratio of iron powder is 15 to 50 g and the specific gravity is 1.03 to 1.50 per 100 g of the synthetic resin base material. The fluidized bed carrier according to claim 3 or 4.
【請求項6】 担体が、合成樹脂性基材と鉄粉との混合
物を溶融した上で線状又は棒状に成形し、それを冷却し
た上で細断することによりペレット化した構成としてな
る請求項1、請求項2、請求項3、請求項4又は請求項
5に記載の流動床担体。
6. The carrier has a structure in which a mixture of a synthetic resin base material and iron powder is melted, formed into a linear or rod-like shape, cooled, and then shredded into pellets. The fluidized bed carrier according to claim 1, claim 2, claim 3, claim 4 or claim 5.
【請求項7】 反応槽に投入した担体を流動化させ、担
体に付着した微生物により槽内汚水を生物膜処理する流
動床生物膜処理方法において、前記流動床担体に磁気反
応性を帯有させ、電磁石を励磁させることにより担体を
磁力吸引するように構成したことを特徴とする流動床担
体の沈澱促進方法。
7. A fluidized bed biofilm treatment method in which a carrier charged in a reaction tank is fluidized, and wastewater in the tank is treated with a biofilm by microorganisms attached to the carrier, wherein the fluidized bed carrier has magnetic reactivity. A method for promoting the precipitation of a fluidized bed carrier, wherein the carrier is magnetically attracted by exciting an electromagnet.
【請求項8】 流動床担体が、ポリプロピレン、ポリエ
チレン、ポリ塩化ビニール等の合成樹脂性基材をベース
にし、それに鉄粉を混合して造粒化するか、ペレット化
した構成とする請求項7に記載の流動床担体の沈澱促進
方法。
8. The fluidized bed carrier is composed of a synthetic resin base material such as polypropylene, polyethylene, or polyvinyl chloride, and iron powder is mixed with the base material for granulation or pelletization. The method for accelerating the precipitation of a fluidized bed carrier as described in 1.
【請求項9】 流動床担体が、合成樹脂性基材の100
gに対し、鉄粉を15〜50gの混合割合となし、その
比重を1.03〜1.50としてなる請求項7又は請求
項8に記載の流動床担体の沈澱促進方法。
9. The fluidized bed carrier comprises a synthetic resin base material 100.
The method for promoting precipitation of a fluidized bed carrier according to claim 7 or 8, wherein the iron powder is mixed in an amount of 15 to 50 g with respect to g, and the specific gravity thereof is set to 1.03 to 1.50.
【請求項10】 沈澱槽や担体分離槽や反応槽等に設け
た電磁石を励磁し、槽内を流動したり、浮遊する流動床
担体を磁力吸引してなる請求項7、請求項8又は請求項
9に記載の流動床担体の沈澱促進方法。
10. The method according to claim 7, wherein an electromagnet provided in a precipitation tank, a carrier separation tank, a reaction tank, or the like is excited to flow in the tank or magnetically attract a floating bed carrier. Item 10. A method for promoting precipitation of a fluidized bed carrier according to Item 9.
【請求項11】 反応槽に投入した担体を流動化させ、
担体に付着した微生物により槽内汚水を生物膜処理する
流動床生物膜処理方法において、前記流動床担体に磁気
反応性を帯有させ、沈澱槽や担体分離槽や反応槽等に設
けた電磁石を励磁することにより、槽内を流動したり、
浮遊する流動床担体を磁力吸引して沈澱処理し、磁力沈
澱した流動床担体又は流動床担体を含む沈澱物を、電磁
石を消磁して磁力解放した後に、ポンプ装置で汲み上げ
るように構成したこと特徴とする担体回収方法。
11. A carrier charged in a reaction vessel is fluidized,
In a fluidized bed biofilm treatment method for treating biofilm in a tank with microorganisms attached to a carrier, the fluidized bed carrier is provided with magnetic reactivity, and an electromagnet provided in a precipitation tank, a carrier separation tank or a reaction tank is used. By exciting, it will flow in the tank,
The floating fluidized bed carrier is magnetically attracted to perform precipitation treatment, and the magnetically precipitated fluidized bed carrier or the precipitate containing the fluidized bed carrier is pumped up by a pump device after demagnetizing the electromagnet to release the magnetic force. A method for recovering a carrier.
【請求項12】 担体分離槽に磁力沈澱した流動床担体
を、エアリフトポンプ装置で汲み上げて反応槽へ返送し
てなる請求項11に記載の担体回収方法。
12. The carrier recovery method according to claim 11, wherein the fluidized bed carrier magnetically precipitated in the carrier separation tank is pumped up by an air lift pump device and returned to the reaction tank.
【請求項13】 反応槽に投入した担体を流動化させ、
担体に付着した微生物により槽内汚水を生物膜処理する
流動床生物膜処理方法において、前記流動床担体に磁気
反応性を帯有させ、担体分離槽や反応槽等に設けた電磁
石を励磁することにより、槽内を流動したり、浮遊する
流動床担体を磁力吸引して沈澱処理し、磁力沈澱した流
動床担体又は流動床担体を含む沈澱物を、電磁石を消磁
して磁力解放した後に、ポンプ装置で汲み上げ反応槽へ
担体返送するように構成したこと特徴とする担体回収方
法。
13. A carrier charged in a reaction vessel is fluidized,
In a fluidized bed biofilm treatment method for treating biofilm in a tank with microorganisms attached to a carrier, the fluidized bed carrier has magnetic reactivity, and an electromagnet provided in a carrier separation tank or a reaction tank is excited. The fluidized bed carrier that flows in the tank or is suspended by magnetic force is subjected to precipitation treatment, and the magnetically precipitated fluidized bed carrier or the precipitate containing the fluidized bed carrier is demagnetized by demagnetizing the electromagnet to release the magnetic force. A method for recovering a carrier, characterized in that the device is configured to return the carrier to a pumping reaction tank.
【請求項14】 担体分離槽で固液分離されて槽内を流
動したり、浮遊する流動床担体を、当該担体分離槽に臨
ませた磁性ベルトに磁力吸着させて回収するように構成
したことを特徴とする担体回収方法。
14. A carrier separation tank is so constructed that it is solid-liquid separated and flows in the tank, or a floating fluidized bed carrier is magnetically attracted to a magnetic belt facing the carrier separation tank to be collected. A method for recovering a carrier, comprising:
JP25825793A 1993-10-15 1993-10-15 Fluid bed carrier recovery method Expired - Fee Related JP3244365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25825793A JP3244365B2 (en) 1993-10-15 1993-10-15 Fluid bed carrier recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25825793A JP3244365B2 (en) 1993-10-15 1993-10-15 Fluid bed carrier recovery method

Publications (2)

Publication Number Publication Date
JPH07108292A true JPH07108292A (en) 1995-04-25
JP3244365B2 JP3244365B2 (en) 2002-01-07

Family

ID=17317723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25825793A Expired - Fee Related JP3244365B2 (en) 1993-10-15 1993-10-15 Fluid bed carrier recovery method

Country Status (1)

Country Link
JP (1) JP3244365B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048947A1 (en) * 1999-02-19 2000-08-24 Japan Science And Technology Corporation Method of removing phosphoric acid contained in wastewater
WO2005014486A1 (en) * 2003-08-07 2005-02-17 Niki Glass Co., Ltd. Waste water treatment system by superconductive magentic separation
JP2006263489A (en) * 2005-03-22 2006-10-05 Inoac Corp Microorganism carrier for water treatment
KR100981519B1 (en) * 2007-12-24 2010-09-10 재단법인서울대학교산학협력재단 Membrane bioreactor process for water treatment using enzyme for inhibiting biofilm formation
JP2014172032A (en) * 2013-03-13 2014-09-22 Toshiba Corp Method and apparatus for recovering phosphorus from phosphorus-containing waste water
CN104843952A (en) * 2015-05-27 2015-08-19 陈洪伍 Magnetic-frequency resonant oxidative remediation system for river and lake water quality
CN106477691A (en) * 2016-12-26 2017-03-08 兰州交通大学 A kind of magnetic suspension fluid bed for water process
JPWO2016152363A1 (en) * 2015-03-26 2017-07-06 日立化成株式会社 CO2 concentration reduction device
CN111233133A (en) * 2020-01-16 2020-06-05 浙江永续环境工程有限公司 Fluidized bed biological filler, preparation method thereof and flowing composite active biological bacteria biological bed
JP2020199488A (en) * 2019-06-11 2020-12-17 南京大学 New method for preparing bio-magnetic suspension filler for water treatment
CN114573080A (en) * 2022-02-16 2022-06-03 中节能兆盛环保有限公司 Magnetic material retrieval and utilization hoisting device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048947A1 (en) * 1999-02-19 2000-08-24 Japan Science And Technology Corporation Method of removing phosphoric acid contained in wastewater
US6716357B1 (en) 1999-02-19 2004-04-06 Japan Science And Technology Corporation Method of removing phosphoric acid containting wastewater
WO2005014486A1 (en) * 2003-08-07 2005-02-17 Niki Glass Co., Ltd. Waste water treatment system by superconductive magentic separation
JPWO2005014486A1 (en) * 2003-08-07 2006-11-09 仁木工芸株式会社 Wastewater treatment system by superconducting magnetic separation
US7473356B2 (en) 2003-08-07 2009-01-06 Niki Glass Co., Ltd Wastewater treatment system by superconducting magnetic separation
JP4597862B2 (en) * 2003-08-07 2010-12-15 仁木工芸株式会社 Wastewater treatment system by superconducting magnetic separation
JP2006263489A (en) * 2005-03-22 2006-10-05 Inoac Corp Microorganism carrier for water treatment
JP4722518B2 (en) * 2005-03-22 2011-07-13 株式会社イノアックコーポレーション Microbial carrier for water treatment and production method thereof
US7867392B2 (en) 2007-12-24 2011-01-11 Snu R&Db Foundation Magnetic carrier and membrane bioreactor comprising enzyme for inhibiting biofilm formation
KR100981519B1 (en) * 2007-12-24 2010-09-10 재단법인서울대학교산학협력재단 Membrane bioreactor process for water treatment using enzyme for inhibiting biofilm formation
JP2014172032A (en) * 2013-03-13 2014-09-22 Toshiba Corp Method and apparatus for recovering phosphorus from phosphorus-containing waste water
JPWO2016152363A1 (en) * 2015-03-26 2017-07-06 日立化成株式会社 CO2 concentration reduction device
CN104843952A (en) * 2015-05-27 2015-08-19 陈洪伍 Magnetic-frequency resonant oxidative remediation system for river and lake water quality
CN106477691A (en) * 2016-12-26 2017-03-08 兰州交通大学 A kind of magnetic suspension fluid bed for water process
JP2020199488A (en) * 2019-06-11 2020-12-17 南京大学 New method for preparing bio-magnetic suspension filler for water treatment
CN111233133A (en) * 2020-01-16 2020-06-05 浙江永续环境工程有限公司 Fluidized bed biological filler, preparation method thereof and flowing composite active biological bacteria biological bed
CN114573080A (en) * 2022-02-16 2022-06-03 中节能兆盛环保有限公司 Magnetic material retrieval and utilization hoisting device

Also Published As

Publication number Publication date
JP3244365B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
US20100133196A1 (en) Combined gravity separation-filtration for conducting treatment processes in solid-liquid systems
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
KR101686484B1 (en) Method of sewage treatment
JP3244365B2 (en) Fluid bed carrier recovery method
CN110386724A (en) A kind of sewage whole process processing system and method based on MBBR and Magneto separate
JP2007136365A (en) Method for producing granular microbe sludge
JP2004526561A (en) Process and backflow loop reactor for sewage purification
JP3732025B2 (en) Waste water treatment method and waste water treatment equipment
JPH02214597A (en) Device for nitrifying sewage
CN105621601B (en) A kind of biofilm wastewater treatment method using mix suspending carrier
JP3469797B2 (en) Sewage treatment method and apparatus
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
JPH0210717B2 (en)
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
JPH08224588A (en) Biological treatment utilizing carrier stuck with microorganism and device therefor
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JPS61287498A (en) Biological treatment of organic sewage
JP2005137992A (en) Drainage treatment apparatus
JPH1015582A (en) Fluidized bed type denitrification method of waste water
JP3155457B2 (en) Wastewater treatment equipment
JP3534157B2 (en) Bypass type wastewater treatment equipment
JPH10211499A (en) Apparatus for treating wastewater
JPH02184398A (en) Moving bed-type denitrification device
JPH10202281A (en) Waste water treating device
JPH04110099A (en) Method and device for purifying sewage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees