JPH07108280A - Treating agent for water containing hexavalent chromium and method for treating it - Google Patents

Treating agent for water containing hexavalent chromium and method for treating it

Info

Publication number
JPH07108280A
JPH07108280A JP25722793A JP25722793A JPH07108280A JP H07108280 A JPH07108280 A JP H07108280A JP 25722793 A JP25722793 A JP 25722793A JP 25722793 A JP25722793 A JP 25722793A JP H07108280 A JPH07108280 A JP H07108280A
Authority
JP
Japan
Prior art keywords
hexavalent chromium
weight
chromium
wastewater
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25722793A
Other languages
Japanese (ja)
Inventor
Gitaku Kin
義澤 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B M KK
Original Assignee
B M KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B M KK filed Critical B M KK
Priority to JP25722793A priority Critical patent/JPH07108280A/en
Publication of JPH07108280A publication Critical patent/JPH07108280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE: To enhance removal efficiency by using a treating agent formed by mixing prescribed amts. of a specified alumina - silica stock containing prescribed amts. of silicon dioxide, aluminum oxide, sodium oxide and potassium oxide, metal iron powder and an inorg. acid.
CONSTITUTION: A mixture is formed by stirring and mixing 1-8 wt.% alumina - silica stock contg. ≥46% silicon dioxide, ≥13% aluminum oxide, ≥2% sodium oxide and ≥1% potassium oxide, 5-45 wt.% metal iron powder and about 30-50 wt.% inorg. acid such as concd. sulfuric acid. The mixture is added to water contg. hexavalent Cr, a flocculant is added and they are mixed to reduce the hexavalent Cr to trivalent Cr, which is precipitated and removed. The alumina - silica stock is prepd., e.g. by crushing quartz porphyry to ≤200 mesh and carrying out sieving.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば工場排水などに
含有する6価クロム(Cr6+)含有水の処理剤および処
理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment agent and treatment method for hexavalent chromium (Cr 6 + )-containing water contained in, for example, industrial wastewater.

【0002】[0002]

【従来の技術】従来、例えばメッキ工場、冶金工場、化
学・医薬品工場などの工場排水や鉱山排水中に含有され
る6価クロム(Cr6+)を処理する方法としては、排水
中に硫化水素を曝気したり、亜硫酸水溶液を投入して、
6価のクロム化合物を水酸化クロム(Cr2 3 ・nH
2 O)などの3価のクロム化合物に還元して沈殿除去す
る方法が知られている。
2. Description of the Related Art Conventionally, as a method for treating hexavalent chromium (Cr 6+ ) contained in factory wastewater such as a plating factory, a metallurgical factory, a chemical / pharmaceutical factory or a mine wastewater, hydrogen sulfide is contained in the wastewater. Aeration or adding a sulfite aqueous solution,
Hexavalent chromium compound is converted to chromium hydroxide (Cr 2 O 3 · nH
A method is known in which a trivalent chromium compound such as 2 O) is reduced to remove the precipitate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、排水中の6価クロム(Cr6+)を70%
程度しか除去できず、排水中の6価クロム(Cr6+)含
有量を放水基準の0.5mg/l以下に低減するには、処理
を数回繰り返して行わなければならず、処理操作が煩雑
で複雑化し、装置も大型となる問題がある。さらに、硫
化水素は毒性があり、取り扱いも煩雑である。
However, according to the above conventional method, 70% of hexavalent chromium (Cr 6+ ) in the waste water is removed.
In order to reduce the amount of hexavalent chromium (Cr 6+ ) contained in the wastewater to less than 0.5 mg / l, which is the water discharge standard, the treatment must be repeated several times. There is a problem that it is complicated and complicated, and the device becomes large. Furthermore, hydrogen sulfide is toxic and complicated to handle.

【0004】本発明は、上記の問題点に鑑みなされたも
ので、容易に効率よく6価クロム(Cr6+)を3価クロ
ム(Cr3+)に還元して除去する6価クロム含有水の処
理剤および処理方法を提供することを目的とする。
The present invention has been made in view of the above problems, and hexavalent chromium-containing water for easily and efficiently reducing hexavalent chromium (Cr 6+ ) to trivalent chromium (Cr 3+ ) and removing it. It is an object of the present invention to provide a treating agent and a treating method.

【0005】[0005]

【課題を解決するための手段】請求項1記載の6価クロ
ム含有水の処理剤は、46%以上の酸化珪素、13%以
上の酸化アルミニウム、2%以上の酸化ナトリウムおよ
び1%以上の酸化カリウムを含有する1重量%以上8重
量%以下のアルミナ−シリカ系原料と、2.5重量%以
上45重量%以下の金属鉄粉と、無機酸とを混合してな
るものである。
A treatment agent for hexavalent chromium-containing water according to claim 1 is 46% or more of silicon oxide, 13% or more of aluminum oxide, 2% or more of sodium oxide and 1% or more of oxidation. 1% by weight or more and 8% by weight or less of an alumina-silica-based raw material containing potassium, 2.5% by weight or more and 45% by weight or less of metallic iron powder, and an inorganic acid are mixed.

【0006】請求項2記載の6価クロム含有水の処理方
法は、6価クロム含有水に、請求項1記載の6価クロム
含有水の処理剤および無機塩基を混合して中和するとと
もに凝集剤を混合して、前記6価クロム含有水に含まれ
る6価クロムを3価クロムとして沈殿除去するものであ
る。
According to a second aspect of the present invention, there is provided a method for treating hexavalent chromium-containing water, wherein the hexavalent chromium-containing water is mixed with a treatment agent for the hexavalent chromium-containing water and an inorganic base to neutralize and coagulate. The agent is mixed to precipitate and remove hexavalent chromium contained in the hexavalent chromium-containing water as trivalent chromium.

【0007】[0007]

【作用】請求項1記載の6価クロム含有水の処理剤は、
無機酸と金属鉄粉との反応により生成する2価鉄が、排
水中の6価クロムとの反応により、3価鉄に酸化され水
酸化第二鉄のコロイド粒子となるとともに、6価クロム
を3価クロムに還元して水酸化クロムのコロイド粒子を
生成させ、この水酸化クロムのコロイド粒子を、無機酸
とアルミナ−シリカ系原料とにより生成する珪酸塩のコ
ロイド粒子および水酸化第二鉄のコロイド粒子とによ
り、凝集させて分離除去する。
The treatment agent for water containing hexavalent chromium according to claim 1 is
The divalent iron produced by the reaction between the inorganic acid and the metallic iron powder is oxidized to trivalent iron by the reaction with hexavalent chromium in the waste water to form ferric hydroxide colloidal particles, and the hexavalent chromium is removed. It is reduced to trivalent chromium to produce chromium hydroxide colloidal particles, and these chromium hydroxide colloidal particles are produced by an inorganic acid and an alumina-silica-based raw material, and colloidal particles of silicate and ferric hydroxide. With the colloidal particles, they are aggregated and separated and removed.

【0008】請求項2記載の6価クロム含有水の処理方
法は、請求項1記載の処理剤により、排水中の6価クロ
ムが3価クロムに還元され無機塩基の中和により生成す
る水酸化クロムのコロイド粒子を、凝集剤により水酸化
第二鉄のコロイド粒子および珪酸塩のコロイド粒子とと
もに凝集させて沈殿除去する。
The method for treating hexavalent chromium-containing water according to claim 2 is a hydroxylation produced by neutralizing an inorganic base by reducing hexavalent chromium in waste water to trivalent chromium by the treating agent according to claim 1. The chromium colloidal particles are coagulated by a coagulant together with the ferric hydroxide colloidal particles and the silicate colloidal particles to be removed by precipitation.

【0009】[0009]

【実施例】以下、本発明の6価クロム含有水の処理剤の
製造の一実施例を説明する。
EXAMPLES An example of the production of the treating agent for hexavalent chromium-containing water of the present invention will be described below.

【0010】まず、各種原料を反応性を考慮して、所定
の粒径以下となるように調整する。すなわち、タイラー
標準篩を用いて、例えば活性炭を100メッシュ以下に
篩い分けして、凝集剤として活性炭粉末(C)を調整す
る。また、アルミナ−シリカ系(Al2 3 −Si
2 )原料としては、酸化珪素(SiO2 ) を46%以
上、酸化アルミニウム(Al2 3 )を13%以上、酸
化ナトリウム(Na2 O)を2%以上、酸化カリウム
(K2 O)を1%以上含有する、例えば石英斑岩(quar
tz porphyry )を、例えば200メッシュ以下に粉砕し
篩い分けして調整する。さらに、金属亜鉛粉末(Zn)
および金属鉄粉(Fe)は、例えば20メッシュ以下に
篩い分けして調整する。
First, in consideration of reactivity, various raw materials are adjusted to have a predetermined particle size or less. That is, activated carbon powder (C) is prepared as a coagulant by sieving activated carbon into 100 mesh or less using a Tyler standard sieve. In addition, an alumina-silica system (Al 2 O 3 -Si
As the O 2 ) raw material, silicon oxide (SiO 2 ) is 46% or more, aluminum oxide (Al 2 O 3 ) is 13% or more, sodium oxide (Na 2 O) is 2% or more, and potassium oxide (K 2 O) is used. Containing 1% or more of, for example, quartz porphyry (quar
tz porphyry) is crushed to, for example, 200 mesh or less, and sieved to prepare. Furthermore, metallic zinc powder (Zn)
The metal iron powder (Fe) is adjusted by, for example, sieving to 20 mesh or less.

【0011】そして、これら調整した各原料を、攪拌手
段を備え、耐熱性および耐酸性を有する反応塔に、表1
に示す配合表に基づいて投入する。この際、活性炭粉末
(C)は0.8重量%以上1.2重量%以下、好ましく
は1重量%、粉末の石英斑岩は1重量%以上8重量%以
下、好ましくは5重量%、金属鉄粉(Fe)は2.5重
量%以上45重量%以下、好ましくは33.5重量%投
入する。
Then, each of the adjusted raw materials was placed in a reaction tower having a heat resistance and an acid resistance, which was equipped with a stirring means, and was placed in Table 1.
It is added based on the formulation table shown in. At this time, the activated carbon powder (C) is 0.8% by weight or more and 1.2% by weight or less, preferably 1% by weight, and the powdered quartz porphyry is 1% by weight or more and 8% by weight or less, preferably 5% by weight, metal. Iron powder (Fe) is added in an amount of 2.5% by weight or more and 45% by weight or less, preferably 33.5% by weight.

【0012】なお、金属亜鉛粉末(Zn)は、処理され
る排水中に有機水銀化合物が含有されていない場合に
は、金属亜鉛粉末(Zn)は必要ない。また、有機水銀
化合物が含有されている場合には、金属亜鉛粉末(Z
n)を0.8重量%以下、例えば電気工場排水などの水
銀含有量が3〜5mg/l含む場合には、0.5重量%投
入する。
The metal zinc powder (Zn) is not necessary when the wastewater to be treated does not contain an organic mercury compound. When an organic mercury compound is contained, zinc metal powder (Z
n) is 0.8% by weight or less, for example, 0.5% by weight is added when the mercury content in the wastewater of an electric plant contains 3 to 5 mg / l.

【0013】この後、水(H2 O)を20重量%以上、
好ましくは26.5重量%反応塔に加え、攪拌手段にて
攪拌しつつ、無機酸である濃硫酸(H2 SO4 )を30
重量%以上50重量%以下、好ましくは33.5重量
%、徐々に加え混和する。なお、石英斑岩の溶解を促進
させるため、例えば蛍石粉末(CaF2 )を2重量%し
てもできる。
Thereafter, 20% by weight or more of water (H 2 O) is added,
Preferably, it is added to a 26.5% by weight reaction tower, and while stirring with a stirring means, 30% of concentrated sulfuric acid (H 2 SO 4 ) which is an inorganic acid is added.
% To 50% by weight, preferably 33.5% by weight, gradually added and mixed. In order to accelerate the dissolution of quartz porphyry, for example, fluorite powder (CaF 2 ) may be added in an amount of 2 % by weight.

【0014】そして、この濃硫酸(H2 SO4 )の混和
により、反応に伴って水素ガス(H2 )が発生するた
め、この水素ガス(H2 )を除去する。
Since hydrogen gas (H 2 ) is generated by the reaction due to the mixing of the concentrated sulfuric acid (H 2 SO 4 ), the hydrogen gas (H 2 ) is removed.

【0015】[0015]

【表1】 そして、所定時間攪拌し反応終了後、すなわち、水素ガ
ス(H2 )が発生しなくなった後、攪拌を停止して処理
剤が作成される。
[Table 1] Then, after stirring for a predetermined time and after completion of the reaction, that is, after hydrogen gas (H 2 ) is no longer generated, stirring is stopped and a treating agent is prepared.

【0016】次に、上記処理剤の製造工程における反応
について説明する。
Next, the reaction in the manufacturing process of the above treatment agent will be described.

【0017】濃硫酸(H2 SO4 )の混和により、ま
ず、化1および化2に示す反応式のように、水化により
解離するH2 SO4 が金属の亜鉛(Zn)および鉄(F
e)と反応して、水素ガス(H2 )を発生しつつ、硫酸
亜鉛(ZnSO4 )および硫酸第一鉄(FeSO4 )が
生成される。
When concentrated sulfuric acid (H 2 SO 4 ) is mixed, first, as shown in the reaction formulas 1 and 2, H 2 SO 4 dissociated by hydration is zinc (Zn) and iron (F).
By reacting with e) to generate hydrogen gas (H 2 ), zinc sulfate (ZnSO 4 ) and ferrous sulfate (FeSO 4 ) are generated.

【0018】[0018]

【化1】 [Chemical 1]

【化2】 さらに、これら硫酸亜鉛(ZnSO4 )および硫酸第一
鉄(FeSO4 )は、水(H2 O)中で水化により、Z
2+、Fe2+、SO4-の各イオンに解離されている。
[Chemical 2] Furthermore, these zinc sulfate (ZnSO 4 ) and ferrous sulfate (FeSO 4 ) can be converted into Z by the hydration in water (H 2 O).
It is dissociated into n 2+ , Fe 2+ and SO 4− ions.

【0019】また、残りの解離するH2 SO4 は、石英
斑岩と反応する。この反応は、H2SO4 が石英斑岩中
のナトリウム(Na)、カリウム(K)およびその他不
純物としての鉄(Fe)、マグネシウム(Mg)、カル
シウム(Ca)、チタン(Ti)などの成分と反応し
て、硫酸ナトリウム(Na2 SO4 )、硫酸カリウム
(K2 SO4 )などの各種硫酸塩を生成するとともに、
アルミニウム(Al)および珪素(Si)と反応して、
Al2 (SO4 3 などの硫酸アルミニウム塩およびS
i(SO4 2 などの硫酸珪素塩を生成する。
The remaining dissociated H 2 SO 4 reacts with quartz porphyry. In this reaction, H 2 SO 4 is a component such as sodium (Na), potassium (K) and other impurities such as iron (Fe), magnesium (Mg), calcium (Ca) and titanium (Ti) in quartz porphyry. Reacts with sodium sulfate (Na 2 SO 4 ) and potassium sulfate (K 2 SO 4 ) to produce various sulfates,
Reacting with aluminum (Al) and silicon (Si),
Aluminum sulfate such as Al 2 (SO 4 ) 3 and S
It produces silicon sulfate salts such as i (SO 4 ) 2 .

【0020】次に、上記処理剤の配合量について説明す
る。
Next, the compounding amount of the above treating agent will be described.

【0021】まず、金属鉄粉(Fe)の配合量が45重
量%より多い場合、および、濃硫酸(H2 SO4 )の配
合量が30重量%より少ない場合には、石英斑岩との反
応に関与する水化により解離するH2 SO4 が足りなく
なり、硫酸アルミニウム塩および硫酸珪素塩をほとんど
生成できなくなる。
First, when the content of the metallic iron powder (Fe) is more than 45% by weight and the content of the concentrated sulfuric acid (H 2 SO 4 ) is less than 30% by weight, the content of the quartz porphyry is high. The amount of H 2 SO 4 dissociated by hydration involved in the reaction becomes insufficient, and aluminum sulfate and silicon sulfate can hardly be produced.

【0022】このため、処理剤を排水中に投入した際
に、後述する水酸化アルミニウム(Al(OH)3 )お
よびメタケイ酸(H2 SiO3 )などのコロイドが形成
できなくなる。さらに、石英斑岩の配合量が1重量%よ
り少ない場合にも、硫酸アルミニウム塩および硫酸珪素
塩がほとんど生成できず、水酸化アルミニウム(Al
(OH)3 )およびメタケイ酸(H2 SiO3 )などの
コロイドをほとんど形成できなくなる。
Therefore, when the treating agent is put into the waste water, colloids such as aluminum hydroxide (Al (OH) 3 ) and metasilicic acid (H 2 SiO 3 ) which will be described later cannot be formed. Further, even when the content of quartz porphyry is less than 1% by weight, almost no aluminum sulfate and silicon sulfate can be produced, and aluminum hydroxide (Al
Almost no colloid such as (OH) 3 ) and metasilicic acid (H 2 SiO 3 ) can be formed.

【0023】したがって、後述する2価の鉄イオン(F
2+)と、排水中のクロム酸(H2CrO4 )やクロム
酸塩(K2 CrO4 )などの解離による6価のクロム
(Cr6+)であるクロム酸イオン(Cr2 7 2-、Cr
4 2-)との酸化還元反応によって生成する水酸化クロ
ム(Cr2 3 ・nH2 O)のコロイドを凝集できなく
なるため、金属鉄粉(Fe)の配合量を45重量%以
下、濃硫酸(H2 SO4 )の配合量を30重量%以上、
石英斑岩を1重量%以上配合する。
Therefore, the divalent iron ion (F
e 2+ ) and chromate ion (Cr 2 O 7 ) which is hexavalent chromium (Cr 6+ ) due to dissociation of chromic acid (H 2 CrO 4 ) and chromate (K 2 CrO 4 ) in wastewater. 2- , Cr
The colloid of chromium hydroxide (Cr 2 O 3 · nH 2 O) generated by the redox reaction with O 4 2− ) cannot be aggregated. Therefore, the content of the metallic iron powder (Fe) is 45% by weight or less, The content of sulfuric acid (H 2 SO 4 ) is 30% by weight or more,
Quartz porphyry is blended at 1% by weight or more.

【0024】なお、一般に解離するH2 SO4 と金属の
亜鉛(Zn)および鉄(Fe)との反応は急速に進行す
るが、あらかじめ石英斑岩を混合することにより、反応
速度が低下し、製造における安全性が向上し処理剤の製
造が容易にできるとともに、製造装置の構造も簡略化で
きる。
In general, the reaction between dissociated H 2 SO 4 and the metals zinc (Zn) and iron (Fe) proceeds rapidly, but by mixing quartz porphyry in advance, the reaction rate decreases, The manufacturing safety is improved, the processing agent can be easily manufactured, and the structure of the manufacturing apparatus can be simplified.

【0025】また、金属鉄粉(Fe)が2.5重量%よ
り少ない場合には、硫酸第一鉄(FeSO4 )の生成量
が減少し、さらに、石英斑岩を8重量%より多く配合す
ると、全体量に対する鉄粉(Fe)および濃硫酸(H2
SO4 )の量が減少することにより、硫酸第一鉄(Fe
SO4 )の生成量が減少する。
When the amount of metallic iron powder (Fe) is less than 2.5% by weight, the amount of ferrous sulfate (FeSO 4 ) produced is reduced, and more than 8% by weight of quartz porphyry is added. Then, iron powder (Fe) and concentrated sulfuric acid (H 2
As the amount of SO 4 decreases, ferrous sulfate (Fe
The amount of SO 4 ) produced is reduced.

【0026】このため、後述する排水中の6価のクロム
(Cr6+)であるクロム酸イオン(Cr2 7 2-、Cr
4 2-)を3価のクロム(Cr3+)である亜クロム酸イ
オン(CrO2 - )に還元させる2価の鉄イオン(Fe
2+)が減少するため、効率よく確実に6価のクロム(C
6+)を還元すべく、金属鉄粉(Fe)を2.5重量%
以上、石英斑岩を8重量%以下に配合する。
For this reason, chromate ions (Cr 2 O 7 2− , Cr 2 ) which are hexavalent chromium (Cr 6+ ) in the waste water described later are used.
Divalent iron ion (Fe) that reduces O 4 2− ) to chromite ion (CrO 2 ) which is trivalent chromium (Cr 3+ ).
2+ ) decreases, so hexavalent chromium (C
2.5% by weight of metallic iron powder (Fe) to reduce r 6+ )
As described above, quartz porphyry is blended in an amount of 8% by weight or less.

【0027】また、水(H2 O)が20重量%より少な
い場合、濃硫酸(H2 SO4 )が50重量%より多い場
合には、H2 SO4 が水化により2H+ とSO4 2-との
イオンに解離する量が減少し、金属鉄粉(Fe)および
石英斑岩との反応による硫酸化合物が良好に生成できな
くなるため、水(H2 O)を20重量%以上、濃硫酸
(H2 SO4 )を50重量%以下に配合する。
When the amount of water (H 2 O) is less than 20% by weight, or when the concentration of concentrated sulfuric acid (H 2 SO 4 ) is more than 50% by weight, H 2 SO 4 is converted to 2H + and SO 4 by hydration. The amount of dissociation into ions with 2- decreases, and sulfuric acid compounds cannot be produced well by the reaction with metallic iron powder (Fe) and quartz porphyry. Therefore, water (H 2 O) of 20% by weight or more Sulfuric acid (H 2 SO 4 ) is added to 50% by weight or less.

【0028】次に、上記処理剤を用いた6価クロム(C
6+)含有排水の処理工程を説明する。
Next, hexavalent chromium (C
The process of treating r 6 + )-containing wastewater will be described.

【0029】まず、6価クロム(Cr6+)を含有する排
水を、攪拌手段を備え上方を開口したプール状の処理槽
に流入する。
First, the waste water containing hexavalent chromium (Cr 6+ ) is introduced into a pool-shaped treatment tank which is equipped with a stirring means and has an open top.

【0030】次に、上述の製造された処理剤を、処理槽
内の排水中に含まれる6価クロム(Cr6+)の総量の約
100分の1の割合の量を、攪拌しつつ加える。
Next, the above-prepared treating agent is added with stirring in an amount of about 1/100 of the total amount of hexavalent chromium (Cr 6+ ) contained in the waste water in the treating tank. .

【0031】なお、排水中の6価クロム(Cr6+)の総
量は、ジフェニルカルバジド法、すなわち、6価クロム
(Cr6+)をジフェニルカルバジド((C6 5 NHN
H)2 CO)と反応させて生ずる紫紅色の錯化合物を、
吸光光度分析法により測定した吸光度に基づいて、6価
クロム(Cr6+)の濃度を排水1リットル中のミリグラ
ム量に換算し、排水全体の6価クロム(Cr6+)の総量
を求める。
The total amount of hexavalent chromium (Cr 6+ ) in the waste water is determined by the diphenylcarbazide method, that is, hexavalent chromium (Cr 6+ ) is added to diphenylcarbazide ((C 6 H 5 NHN
H) 2 CO) to form a purple-red complex compound,
Based on the absorbance measured by absorptiometry, the concentration of hexavalent chromium (Cr 6+ ) is converted into the amount of milligram in 1 liter of wastewater, and the total amount of hexavalent chromium (Cr 6+ ) in the entire wastewater is obtained.

【0032】さらに、処理槽内の攪拌中の排水に凝集剤
である凝集促進剤を適宜投入し、一定時間、例えば3分
程度攪拌後、攪拌を停止して、例えば10分程度静置さ
せ、沈殿分離させる。なお、この凝集促進剤は、ポリア
クリルアミド(Polyacrylamide)を約0.5重量%、水
酸化バリウム(Ba(OH)2 ・7H2 O)を約2重量
%、無機塩基である水酸化ナトリウム(NaOH)を約
47.5重量%、水(H2 O)を約50重量%配合して
作成する。
Further, an aggregating agent, which is an aggregating agent, is appropriately added to the waste water in the treatment tank under agitation, and after stirring for a certain period of time, for example, about 3 minutes, the stirring is stopped and allowed to stand for about 10 minutes, Allow the precipitate to separate. The aggregation promoter is about 0.5% by weight of polyacrylamide, about 2% by weight of barium hydroxide (Ba (OH) 2 .7H 2 O), and sodium hydroxide (NaOH) which is an inorganic base. 4) and about 50% by weight of water (H 2 O).

【0033】そして、上澄み液中に6価クロム(C
6+)が含有されていないことを確認して、上澄み液を
放流する。
Then, hexavalent chromium (C
After confirming that r 6+ ) is not contained, the supernatant liquid is discharged.

【0034】なお、上澄み液中の6価クロム(Cr6+
の確認は、ジフェニルカルバジド0.1gをエタノール
(C2 5 OH)50mlに溶解し、硫酸(1+9)20
0mlを混和して作成した試薬2.5mlを、上澄み液50
mlに混和し、約5分間静置して、紫紅色に変色しないこ
とを確認する。
Hexavalent chromium (Cr 6+ ) in the supernatant liquid
For confirmation, 0.1 g of diphenylcarbazide was dissolved in 50 ml of ethanol (C 2 H 5 OH), and sulfuric acid (1 + 9) 20
2.5 ml of the reagent prepared by mixing 0 ml with the supernatant liquid 50
Mix in ml and let stand for about 5 minutes to make sure it does not turn purple.

【0035】また、分離した凝集物は、石炭粉と混合焼
成し、安定構造のスピネル(Spinel)構造の焼成物に焼
成して、埋め立てやその他耐火物などの無機材料の原料
として用いる。なお、埋め立てしても、例えば珪酸塩で
あるメタケイ酸(H2 SiO3 )が珪酸(H4 Si
4 )に変換して水酸化アルミニウム(Al(O
H)3 )と結合して各種3価のコロイド粒子とともに重
金属の粒子やコロイド粒子を取り込んでスラッジ状の難
溶の珪酸塩鉱物となるので、各コロイド粒子との共沈に
より、再び6価のクロムには変換しない。また、沈殿分
離のほかに、濾過分離や遠心分離などにより分離除去す
ることもできる。さらに、3価のクロム含有量が多い場
合には、3価のクロムを精製することもできる。
The separated agglomerates are mixed and fired with coal powder to obtain a stable spinel structure fired product, which is used as a raw material for landfills and other inorganic materials such as refractories. Even if it is landfilled, for example, meta-silicic acid (H 2 SiO 3 ) which is a silicate may be converted into silicic acid (H 4 Si).
Converted to O 4 ) and converted to aluminum hydroxide (Al (O
H) 3 ) is combined with various trivalent colloidal particles to take in heavy metal particles and colloidal particles to form sludge-like hardly soluble silicate minerals. Do not convert to chrome. In addition to the separation by precipitation, it can be separated and removed by filtration separation, centrifugation, or the like. Further, when the trivalent chromium content is high, the trivalent chromium can be purified.

【0036】次に、上記処理方法における反応について
説明する。
Next, the reaction in the above processing method will be described.

【0037】排水中への処理剤の投入により、化3およ
び化4に示す反応式のように、処理剤中の硫酸第一鉄の
解離による2価の鉄イオン(Fe2+)が、排水中のクロ
ム酸(H2 CrO4 )やクロム酸塩(K2 CrO4 )な
どの解離による6価のクロム(Cr6+)であるクロム酸
イオン(Cr2 7 2-、CrO4 2-)と酸化還元反応を
生じて、3価の鉄(Fe3+)と3価のクロム(Cr3+
である亜クロム酸イオン(CrO2 - )とが生成する。
By adding the treating agent to the wastewater, divalent iron ions (Fe 2+ ) due to dissociation of ferrous sulfate in the treating agent are discharged as shown in the reaction formulas shown in Chemical formulas 3 and 4. Chromate ion (Cr 2 O 7 2− , CrO 4 2− ) which is hexavalent chromium (Cr 6+ ) due to dissociation of chromic acid (H 2 CrO 4 ) and chromate (K 2 CrO 4 ) in ) And an oxidation-reduction reaction with trivalent iron (Fe 3+ ) and trivalent chromium (Cr 3+ )
And chromite ion (CrO 2 ) which is

【0038】[0038]

【化3】 [Chemical 3]

【化4】 そして、これら3価の鉄(Fe3+)および3価のクロム
(Cr3+)であるCrO2 - は、NaOHによりpH7
〜8程度に中和されることにより、排水中の水(H
2 O)にて、それぞれ水酸化第二鉄(Fe2 3 ・nH
2 O、FeO(OH))および水酸化クロム(Cr2
3 ・nH2 O)が生成される。なお、水酸化第二鉄(F
2 3 ・nH2 O、FeO(OH))および水酸化ク
ロム(Cr23 ・nH2 O)は、コロイドを形成す
る。
[Chemical 4] Then, the trivalent iron (Fe 3+ ) and the trivalent chromium (Cr 3+ ) CrO 2 are adjusted to pH 7 by NaOH.
By neutralizing to ~ 8, the water (H
At 2 O), respectively ferric hydroxide (Fe 2 O 3 · nH
2 O, FeO (OH)) and chromium hydroxide (Cr 2 O
3 · nH 2 O) is produced. In addition, ferric hydroxide (F
e 2 O 3 .nH 2 O, FeO (OH)) and chromium hydroxide (Cr 2 O 3 .nH 2 O) form colloids.

【0039】また、排水中への処理剤の投入により、処
理剤中の硫酸アルミニウム塩および硫酸珪素塩が、排水
(H2 O)中で水酸化アルミニウム(Al(OH)3
およびメタケイ酸(H2 SiO3 )などのコロイドを形
成する。
When the treating agent is added to the wastewater, the aluminum sulfate and the silicon sulfate in the treating agent are converted into aluminum hydroxide (Al (OH) 3 ) in the wastewater (H 2 O).
And forming colloids such as metasilicic acid (H 2 SiO 3 ).

【0040】そして、処理剤に配合した活性炭粉末
(C)に、活性炭の吸着性により各種コロイドが凝集す
る。さらに、凝集促進剤の添加により、活性炭粉末
(C)を骨材として凝集した粒子が速やかに沈殿され
る。
Then, various colloids are aggregated on the activated carbon powder (C) mixed in the treating agent due to the adsorptivity of the activated carbon. Furthermore, by adding the aggregation promoter, the particles aggregated with the activated carbon powder (C) as the aggregate are rapidly precipitated.

【0041】また、排水中に銅(Cu)、カドミウム
(Cd)、ニッケル(Ni)などの各種塩が存在する場
合、これら各種塩もクロム酸イオン(Cr2 7 2-、C
rO4 2-)と同様に、2価の鉄イオン(Fe2+)により
還元されて、NaOHによるpH調整にて水酸化物とし
てコロイドを形成し、活性炭粉末(C)を骨材として凝
集する。さらに、鉛(Pb)および水銀(Hg)の一部
は硫酸塩である硫酸鉛(PbSO4 )および硫酸水銀
(Hg2 SO4 )として沈殿される。また、水銀(H
g)の一部は、排水中で水化により解離する硫酸亜鉛
(ZnSO4 )により、アマルガムとして沈殿される。
When various salts such as copper (Cu), cadmium (Cd), and nickel (Ni) are present in the waste water, these various salts also contain chromate ions (Cr 2 O 7 2− , C 2
Similar to rO 4 2− ), it is reduced by divalent iron ions (Fe 2+ ), forms a colloid as hydroxide by adjusting pH with NaOH, and aggregates with activated carbon powder (C) as aggregate. . Further, a part of lead (Pb) and mercury (Hg) is precipitated as lead sulfate (PbSO 4 ) and mercury sulfate (Hg 2 SO 4 ). In addition, mercury (H
Part of g) is precipitated as amalgam by zinc sulphate (ZnSO 4 ) which dissociates by hydration in the waste water.

【0042】なお、ヒ素(As)は、化5に示すよう
に、水酸化第二鉄(Fe2 3 ・nH2 O、FeO(O
H))との反応により沈殿分離される。
As shown in Chemical formula 5, arsenic (As) is used as ferric hydroxide (Fe 2 O 3 .nH 2 O, FeO (O)
It is separated by precipitation by reaction with H)).

【0043】[0043]

【化5】 次に、水に各種塩を溶解して排水を合成し、上記処理剤
を用いて合成した排水を処理後、各種定量分析を行った
実験結果を表2に示す。
[Chemical 5] Next, Table 2 shows the experimental results obtained by dissolving various salts in water to synthesize wastewater, treating the wastewater synthesized using the above treating agent, and performing various quantitative analyzes.

【0044】まず、実験1として、クロム酸イオン(C
2 7 2-、CrO4 2-)の濃度の異なる排水を合成
し、各排水中の6価クロム(Cr6+)の総量の1/10
0の割合で上記処理剤を混和させ、さらに凝集促進剤を
適宜添加して生成したコロイドを沈殿分離した後、ジフ
ェニルカルバジド法にて、上澄み液の6価のクロム(C
6+)の濃度を測定した。
First, as an experiment 1, chromate ion (C
r 2 O 7 2− , CrO 4 2− ) having different concentrations are synthesized, and 1/10 of the total amount of hexavalent chromium (Cr 6+ ) in each wastewater is synthesized.
The above treatment agent was mixed at a ratio of 0, and a coagulation accelerator was added as appropriate to precipitate and separate the resulting colloid. Then, diphenylcarbazide method was used to precipitate hexavalent chromium (C
The concentration of r 6+ ) was measured.

【0045】また、実験2として、クロム酸イオン(C
2 7 2-、CrO4 2-)の他に鉛(Pb)、カドミウ
ム(Cd)、ヒ素(As)、水銀(Hg)の各塩を含有
する排水を合成し、この合成した排水に、排水中の6価
クロム(Cr6+)の総量の1/100の割合で上記処理
剤を混和させ、さらに凝集促進剤を適宜添加して生成し
たコロイドを沈殿分離した後、各種定量分析により、上
澄み液のクロム(Cr6+)濃度、銅(Cu)濃度、鉛
(Pb)濃度、ヒ素(As)濃度、水銀(Hg)濃度を
それぞれ測定した。
In Experiment 2, chromate ion (C
In addition to r 2 O 7 2− , CrO 4 2− ), wastewater containing salts of lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) was synthesized, and in this synthesized wastewater After mixing the above treatment agents in a ratio of 1/100 of the total amount of hexavalent chromium (Cr 6+ ) in the waste water, and further adding a coagulation promoter as appropriate to precipitate and separate the produced colloids, various quantitative analyzes are conducted. The chromium (Cr 6+ ) concentration, copper (Cu) concentration, lead (Pb) concentration, arsenic (As) concentration, and mercury (Hg) concentration of the supernatant were measured.

【0046】[0046]

【表2】 この表2に示す実験1の結果から、例えばメッキ工場、
冶金工場、化学・医薬品工場などの工場排水や鉱山排水
中に含有されるクロム(Cr6+)濃度は、10ppm 程度
であるが、これらの排水より50倍の濃度のクロム(C
6+)を含有する合成の排水でも、処理後はクロム(C
6+)を検出することができず、1000ppm の排水で
も、放水基準の0.5ppm より遥かに少ない0.01pp
m しか検出できず、確実に6価のクロム(Cr6+)を沈
殿除去できることがわかる。
[Table 2] From the results of Experiment 1 shown in Table 2, for example,
The concentration of chromium (Cr 6+ ) contained in the wastewater of mines and effluents of metallurgical factories, chemical and pharmaceutical factories, etc. is about 10ppm, but the concentration of chromium (C 6 ) is 50 times higher than that of these wastewaters.
Even synthetic wastewater containing r 6+ ) contains chromium (C
r 6+ ) cannot be detected, and even with 1000 ppm of wastewater, 0.01 pp, which is much less than the discharge standard of 0.5 ppm.
Only m can be detected, and it can be seen that hexavalent chromium (Cr 6+ ) can be reliably removed by precipitation.

【0047】また、表2に示す実験2から、クロム(C
6+)、鉛(Pb)、カドミウム(Cd)は検出され
ず、ヒ素(As)および水銀(Hg)も大半が沈殿除去
されていることがわかる。
From Experiment 2 shown in Table 2, chromium (C
r 6+ ), lead (Pb), cadmium (Cd) were not detected, and it was found that most of arsenic (As) and mercury (Hg) were also removed by precipitation.

【0048】したがって、6価のクロム(Cr6+)およ
びその他の重金属を同時に沈殿分離可能な処理剤を、安
価な原料にて容易に製造できる。さらに、この処理剤に
て確実で容易に6価のクロム(Cr6+)を毒性のない3
価のクロム(Cr3+)に還元して沈殿分離できるととも
に、その他の重金属も同時に沈殿分離でき、排水の浄化
処理が容易にできる。
Therefore, a treating agent which can simultaneously precipitate and separate hexavalent chromium (Cr 6+ ) and other heavy metals can be easily produced from inexpensive raw materials. Furthermore, with this treatment agent, hexavalent chromium (Cr 6+ ) can be securely and easily used without toxicity 3.
It can be reduced to valent chromium (Cr 3+ ) and precipitated and separated, and other heavy metals can be simultaneously precipitated and separated, facilitating purification of wastewater.

【0049】なお、上記一実施例において、処理剤中に
活性炭粉末(C)を配合し、この処理剤にて排水の浄化
処理を行って説明したが、処理剤に活性炭粉末を配合せ
ず、排水に処理剤とともに活性炭粉末を投入して浄化処
理してもできる。また、活性炭粉末を用いず、凝集促進
剤のみにて沈殿分離したり、凝集促進剤を用いず、徐々
に沈殿分離させたり、双方を用いず、遠心分離や濾過分
離などを行って生成したコロイドを分離するなどいずれ
の方法でも分離できる。
In the above example, the activated carbon powder (C) was mixed in the treatment agent and the wastewater was purified by this treatment agent. However, the activated carbon powder was not mixed in the treatment agent. It can also be purified by adding activated carbon powder to the waste water together with a treating agent. In addition, a colloid produced by performing precipitation or separation without using activated carbon powder and only with a coagulation promoter, or by gradually separating without using a coagulation promoter, or by using both without using both. Can be separated by any method such as separation.

【0050】また、活性炭粉末の他に、木炭などいずれ
の炭素源を用いてもできる。さらに、石英斑岩の他に、
酸化珪素(SiO2 ) を46%以上、酸化アルミニウム
(Al2 3 )を13%以上、酸化ナトリウム(Na2
O)を2%以上、酸化カリウム(K2 O)を1%以上含
有する鉱石、粘土、合成原料などいずれのアルミナ−シ
リカ系(Al2 3 −SiO2 )原料を用いてもでき
る。
In addition to activated carbon powder, any carbon source such as charcoal can be used. In addition to quartz porphyry,
Silicon oxide (SiO 2 ) is 46% or more, aluminum oxide (Al 2 O 3 ) is 13% or more, sodium oxide (Na 2
Any alumina-silica (Al 2 O 3 —SiO 2 ) raw material such as ore, clay, or synthetic raw material containing 2% or more of O) and 1% or more of potassium oxide (K 2 O) can be used.

【0051】次に、本発明の6価クロム含有水の処理剤
の製造の他の実施例を説明する。
Next, another embodiment of the production of the treating agent for hexavalent chromium-containing water of the present invention will be described.

【0052】上記一実施例の石英斑岩の代わりに、アル
ミナ−シリカ系(Al2 3 −SiO2 )原料として、
石炭殻(Cinders )を用いたものである。
Instead of the quartz porphyry of the above-mentioned embodiment, as an alumina-silica (Al 2 O 3 —SiO 2 ) raw material,
It uses coal husks (Cinders).

【0053】すなわち、タイラー標準篩を用いて、石炭
殻を例えば200メッシュ以下に篩い分けして調整す
る。また、金属鉄粉(Fe)も上記実施例と同様に調整
する。
That is, using a Tyler standard sieve, the coal shell is sieved to, for example, 200 mesh or less and adjusted. Also, the metallic iron powder (Fe) is adjusted in the same manner as in the above-mentioned embodiment.

【0054】そして、表3に示す配合表に基づいて、上
記実施例と同様に反応塔に各種の原料を投入する。この
際、粉末の石炭殻は1重量%以上8重量%以下、好まし
くは1.13重量%、金属鉄粉(Fe)は2.5重量%
以上45重量%以下、好ましくは11.3重量%投入す
る。
Then, based on the formulation table shown in Table 3, various raw materials are charged into the reaction tower in the same manner as in the above-mentioned Examples. At this time, the powdered coal shell is 1% by weight or more and 8% by weight or less, preferably 1.13% by weight, and the metallic iron powder (Fe) is 2.5% by weight.
The above amount is 45% by weight or less, preferably 11.3% by weight.

【0055】なお、金属亜鉛粉末(Zn)は、処理され
る排水中に有機水銀化合物が含有されていない場合に
は、金属亜鉛粉末(Zn)は必要ない。また、有機水銀
化合物が含有されている場合には、金属亜鉛粉末(Z
n)を0.8重量%以下、例えば電気工場排水などの水
銀含有量が3〜5mg/l含む場合には、0.11重量%
投入する。
The metal zinc powder (Zn) does not need to be used if the wastewater to be treated does not contain an organic mercury compound. When an organic mercury compound is contained, zinc metal powder (Z
n) is 0.8% by weight or less, for example, 0.11% by weight when the mercury content in electric factory wastewater contains 3 to 5 mg / l.
throw into.

【0056】この後、水と濃硫酸との混合比が1:1で
ある無機酸としての(1:1)硫酸水溶液を、攪拌手段
にて攪拌しつつ1重量%以上96.5重量%以下、好ま
しくは87.46重量%混合する。
Thereafter, 1% by weight or more and 96.5% by weight or less of an (1: 1) sulfuric acid aqueous solution as an inorganic acid having a mixing ratio of water and concentrated sulfuric acid of 1: 1 is stirred with a stirring means. , Preferably 87.46% by weight.

【0057】[0057]

【表3】 そして、所定時間攪拌し反応終了後、すなわち、硫酸水
溶液の混和により、反応に伴って発生する水素ガス(H
2 )が発生しなくなった後、攪拌を停止して処理剤が作
成される。
[Table 3] After stirring for a predetermined time, the hydrogen gas (H
After 2 ) is no longer generated, stirring is stopped and the treatment agent is prepared.

【0058】次に、この作成した処理剤を、上記実施例
と同様に、6価クロム(Cr6+)を含有する排水が流入
された処理槽に、処理槽内の排水中に含まれる6価クロ
ム(Cr6+)の総量の約10分の1の割合の量を、攪拌
しつつ加え、上記実施例と同様に、処理剤の硫酸第一鉄
の解離による2価の鉄イオン(Fe2+)にて、排水中の
6価のクロム(Cr6+)であるクロム酸イオン(Cr2
7 2-、CrO4 2-)を酸化還元反応により、3価の鉄
(Fe3+)と3価のクロム(Cr3+)である亜クロム酸
イオン(CrO2 - )とを生成させる。なお、排水中の
6価クロム(Cr6+)の総量は、同様にジフェニルカル
バジド法にて求める。
Next, in the same manner as in the above-mentioned embodiment, the prepared treating agent was added to the treatment tank into which the waste water containing hexavalent chromium (Cr 6+ ) was introduced, and was contained in the waste water in the treatment tank. An amount of about 1/10 of the total amount of valent chromium (Cr 6+ ) was added with stirring, and divalent iron ions (Fe at 2+), hexavalent chromium in waste water (Cr 6+) chromate ions (Cr 2
O 7 2− , CrO 4 2− ) is produced by redox reaction to generate trivalent iron (Fe 3+ ) and trivalent chromium (Cr 3+ ) chromite ion (CrO 2 ). . In addition, the total amount of hexavalent chromium (Cr 6+ ) in the waste water is similarly determined by the diphenylcarbazide method.

【0059】さらに、処理槽内の攪拌中の排水に凝集促
進剤を適宜投入する。そして、上記実施例と同様に、N
aOHにてpH調整して3価の鉄(Fe3+)と3価のク
ロム(Cr3+)である亜クロム酸塩とをコロイド粒子と
して沈殿分離するとともに、他の重金属もコロイド粒子
などとして沈殿分離させる。さらに、上澄み液中に6価
クロム(Cr6+)が含有されていないことを確認して、
上澄み液を放流する。
Further, an aggregating accelerator is appropriately added to the waste water under stirring in the treatment tank. Then, as in the above embodiment, N
The pH is adjusted with aOH to precipitate and separate trivalent iron (Fe 3+ ) and chromite (trivalent chromium (Cr 3+ )) as colloidal particles, and other heavy metals also as colloidal particles. Allow the precipitate to separate. Furthermore, confirming that the supernatant does not contain hexavalent chromium (Cr 6+ ),
Discharge the supernatant.

【0060】したがって、上記一実施例と同様に、6価
のクロム(Cr6+)およびその他の重金属を同時に沈殿
分離可能な処理剤を、特に安価な石灰殻と原料にて容易
に製造できる。さらに、この処理剤にて確実で容易に6
価のクロム(Cr6+)を毒性のない3価のクロム(Cr
3+)に還元して沈殿分離できるとともに、その他の重金
属も同時に沈殿分離でき、排水の浄化処理が容易にでき
る。
Therefore, as in the case of the above-mentioned one embodiment, a treating agent capable of simultaneously separating and separating hexavalent chromium (Cr 6+ ) and other heavy metals can be easily produced using particularly inexpensive lime shells and raw materials. Furthermore, with this treatment agent, 6
Trivalent chromium (Cr 6+ ) is non-toxic trivalent chromium (Cr
It can be reduced to 3+ ) and precipitated and separated, and other heavy metals can be simultaneously precipitated and separated, facilitating purification of wastewater.

【0061】なお、石炭殻は、ほとんど非晶質であるた
め、石英斑岩に比べて(1:1)硫酸水溶液に溶解され
やすい。このため、蛍石粉末などの溶解促進剤などを添
加する必要がなく、短時間で容易に溶解でき、コロイド
粒子を形成する珪酸塩などを容易に形成できる。
Since the coal shell is almost amorphous, it is more easily dissolved in a (1: 1) sulfuric acid aqueous solution than quartz porphyry. Therefore, it is not necessary to add a dissolution accelerator such as fluorite powder, and it can be easily dissolved in a short time, and a silicate or the like that forms colloidal particles can be easily formed.

【0062】次に、本発明の6価クロム含有水の処理剤
の製造の他の実施例を説明する。
Next, another embodiment of the production of the treating agent for hexavalent chromium-containing water of the present invention will be described.

【0063】上記石炭殻を用いた実施例の(1:1)硫
酸水溶液の代わりに、無機酸として水と濃塩酸との混合
比が1:1である(1:1)塩酸水溶液を用いたもので
ある。
Instead of the (1: 1) sulfuric acid aqueous solution of the example using the above-mentioned coal shell, an inorganic acid (1: 1) hydrochloric acid aqueous solution in which the mixing ratio of water and concentrated hydrochloric acid was 1: 1 was used. It is a thing.

【0064】すなわち、表4に示す配合表に基づいて、
反応塔において、アルミナ−シリカ系原料である石炭殻
粉末は1重量%以上8重量%以下、好ましくは2.82
重量%、金属鉄粉(Fe)は2.5重量%以上45重量
%以下、好ましくは28.2重量%混合する。
That is, based on the formulation table shown in Table 4,
In the reaction tower, the amount of coal shell powder, which is an alumina-silica-based raw material, is 1% by weight or more and 8% by weight or less, preferably 2.82.
%, And the metallic iron powder (Fe) is mixed in the range of 2.5% by weight or more and 45% by weight or less, preferably 28.2% by weight.

【0065】なお、金属亜鉛粉末(Zn)は、処理され
る排水中に有機水銀化合物が含有されていない場合に
は、金属亜鉛粉末(Zn)は必要ない。また、有機水銀
化合物が含有されている場合には、金属亜鉛粉末(Z
n)を0.8重量%以下、例えば電気工場排水などの水
銀含有量が3〜5mg/l含む場合には、0.28重量%
混合する。
The metal zinc powder (Zn) is not necessary when the wastewater to be treated does not contain an organic mercury compound. When an organic mercury compound is contained, zinc metal powder (Z
n) is 0.8% by weight or less, for example, 0.28% by weight when the mercury content in the wastewater of an electric plant contains 3 to 5 mg / l.
Mix.

【0066】この後、水と濃塩酸との混合比が1:1で
ある(1:1)塩酸水溶液を、攪拌手段にて攪拌しつつ
1重量%以上96.5重量%以下、好ましくは68.7
重量%混合する。
After that, 1% by weight or more and 96.5% by weight or less, preferably 68% by weight of a 1: 1 (1: 1) hydrochloric acid aqueous solution in which the mixing ratio of water and concentrated hydrochloric acid is 1 is stirred. .7
Mix by weight percent.

【0067】[0067]

【表4】 そして、所定時間攪拌し反応終了後、すなわち、塩酸水
溶液の混和により、反応に伴って発生する水素ガス(H
2 )が発生しなくなった後、攪拌を停止して処理剤が作
成される。
[Table 4] After stirring for a predetermined time, the hydrogen gas (H
After 2 ) is no longer generated, stirring is stopped and the treatment agent is prepared.

【0068】次に、この作成した処理剤を、上記各実施
例と同様に、6価クロム(Cr6+)を含有する排水が流
入された処理槽に、処理槽内の排水中に含まれる6価ク
ロム(Cr6+)の総量の約10分の1の割合の量を、攪
拌しつつ加える。なお、排水中の6価クロム(Cr6+
の総量は、同様にジフェニルカルバジド法にて求める。
Then, the treatment agent thus prepared is contained in the waste water in the treatment tank in the treatment tank into which the waste water containing hexavalent chromium (Cr 6+ ) is introduced , as in the above-mentioned embodiments. An amount of about one tenth of the total amount of hexavalent chromium (Cr 6+ ) is added with stirring. In addition, hexavalent chromium (Cr 6+ ) in the wastewater
Similarly, the total amount of is determined by the diphenylcarbazide method.

【0069】さらに、上記各実施例と同様に、処理槽内
の攪拌中の排水に凝集促進剤を適宜投入し、一定時間、
例えば3分程度攪拌後、攪拌を停止して、例えば10分
程度静置させ、沈殿分離させる。そして、上澄み液中に
6価クロム(Cr6+)が含有されていないことを確認し
て、上澄み液を放流する。
Further, similarly to each of the above-mentioned examples, the aggregating promoter is appropriately added to the waste water under stirring in the treatment tank, and the agitation is performed for a certain period of time.
For example, after stirring for about 3 minutes, the stirring is stopped, and the mixture is allowed to stand for, for example, about 10 minutes to precipitate and separate. Then, after confirming that the supernatant does not contain hexavalent chromium (Cr 6+ ), the supernatant is discharged.

【0070】次に、上記処理剤の製造工程における反応
について説明する。
Next, the reaction in the process of producing the above treatment agent will be described.

【0071】(1:1)塩酸水溶液(HCl)の混和に
より、まず、化6および化7に示す反応式のように、水
化により解離するHClが金属の亜鉛(Zn)および鉄
(Fe)と反応して、水素ガス(H2 )を発生しつつ、
塩化亜鉛(ZnCl2 )や塩素酸亜鉛(Zn(Cl
3 2 )など、および、塩化第一鉄(FeCl2 )や
塩素酸鉄などが生成される。
When a (1: 1) hydrochloric acid aqueous solution (HCl) is mixed, first, HCl, which is dissociated by hydration, is zinc (Zn) and iron (Fe), which are dissociated by hydration, as shown in reaction formulas 6 and 7. Reacting with and generating hydrogen gas (H 2 ),
Zinc chloride (ZnCl 2 ) and zinc chlorate (Zn (Cl
O 3 ) 2 ) and the like, and ferrous chloride (FeCl 2 ) and iron chlorate are generated.

【0072】[0072]

【化6】 [Chemical 6]

【化7】 さらに、これら塩化亜鉛(ZnCl2 )および塩化第一
鉄(FeCl2 )などは、水(H2 O)中で水化によ
り、Zn2+、Fe2+、Cl- 、ClO3 - などのイオン
に解離されている。
[Chemical 7] Further, these zinc chloride (ZnCl 2 ) and ferrous chloride (FeCl 2 ) are ionized such as Zn 2+ , Fe 2+ , Cl , ClO 3 by hydration in water (H 2 O). Has been dissociated into.

【0073】また、残りの解離するHClは、石炭殻と
反応する。この反応は、HClが石炭殻中のアルミニウ
ム(Al)、珪素(Si)、ナトリウム(Na)、カリ
ウム(K)、鉄(Fe)、マグネシウム(Mg)、カル
シウム(Ca)、チタン(Ti)などの成分と反応し
て、各種塩化物や塩素酸塩などの塩を生成する。
The remaining dissociated HCl reacts with the coal shell. In this reaction, HCl is aluminum (Al), silicon (Si), sodium (Na), potassium (K), iron (Fe), magnesium (Mg), calcium (Ca), titanium (Ti), etc. in the coal shell. Reacts with the components of to form salts such as various chlorides and chlorates.

【0074】次に、上記処理工程における反応について
説明する。
Next, the reaction in the above processing step will be described.

【0075】排水中への処理剤の投入により、上述した
実施例の化3および化4に示す反応式のように、処理剤
中の塩化第一鉄などの解離による2価の鉄イオン(Fe
2+)が、排水中の6価のクロム(Cr6+)であるクロム
酸イオン(Cr2 7 2-、CrO4 2-)と酸化還元反応
を生じて、3価の鉄(Fe3+)と3価のクロム(C
3+)である亜クロム酸イオン(CrO2 - )とが生成
する。
By adding the treating agent to the waste water, the divalent iron ion (Fe) due to the dissociation of ferrous chloride in the treating agent can be obtained as shown in the reaction formulas shown in Chemical formulas 3 and 4 of the above-mentioned embodiment.
2+ ) undergoes a redox reaction with chromate ions (Cr 2 O 7 2− , CrO 4 2− ), which are hexavalent chromium (Cr 6+ ) in the waste water, to generate trivalent iron (Fe 3 + ) And trivalent chromium (C
r 3+ ) and chromite ion (CrO 2 ) are produced.

【0076】そして、これら3価の鉄(Fe3+)および
3価のクロム(Cr3+)であるCrO2 - は、無機塩基
のNaOHによりpH7〜8程度に中和されることによ
り、排水中の水(H2 O)にて、それぞれ水酸化第二鉄
(Fe2 3 ・nH2 O、FeO(OH))および水酸
化クロム(Cr2 3 ・nH2 O)が生成される。な
お、水酸化第二鉄(Fe2 3 ・nH2 O、FeO(O
H))および水酸化クロム(Cr2 3 ・nH2 O)
は、コロイドを形成する。
The trivalent iron (Fe 3+ ) and the trivalent chromium (Cr 3+ ) CrO 2 are neutralized to pH 7 to 8 by the inorganic base NaOH, and the wastewater is discharged. Ferric hydroxide (Fe 2 O 3 · nH 2 O, FeO (OH)) and chromium hydroxide (Cr 2 O 3 · nH 2 O) are produced in water (H 2 O) in the medium, respectively. . In addition, ferric hydroxide (Fe 2 O 3 · nH 2 O, FeO (O
H)) and chromium hydroxide (Cr 2 O 3 · nH 2 O)
Form a colloid.

【0077】また、排水中への処理剤の投入により、処
理剤中のアルミニウムおよび珪素の各種塩が、排水(H
2 O)中で水酸化アルミニウム(Al(OH)3 )およ
びメタケイ酸(H2 SiO3 )などのコロイドを形成す
る。
By adding the treatment agent to the wastewater, various salts of aluminum and silicon in the treatment agent are removed from the wastewater (H
Form colloids such as aluminum hydroxide (Al (OH) 3 ) and metasilicic acid (H 2 SiO 3 ) in 2 O).

【0078】そして、処理剤に配合した活性炭粉末
(C)に、活性炭の吸着性により各種コロイドが凝集す
る。さらに、凝集促進剤の添加により、活性炭粉末
(C)を骨材として凝集した粒子が速やかに沈殿され
る。
Then, various colloids are aggregated on the activated carbon powder (C) blended in the treating agent due to the adsorptivity of the activated carbon. Furthermore, by adding the aggregation promoter, the particles aggregated with the activated carbon powder (C) as the aggregate are rapidly precipitated.

【0079】また、排水中に銅(Cu)、カドミウム
(Cd)、ニッケル(Ni)などの各種塩が存在する場
合にも、上述した各種実施例と同様に、これら各種塩も
クロム酸イオン(Cr2 7 2-、CrO4 2-)と同様
に、2価の鉄イオン(Fe2+)による還元、および、解
離するCl- 、ClO3 - などにより沈殿される。
Also, when various salts such as copper (Cu), cadmium (Cd) and nickel (Ni) are present in the waste water, these various salts are also chromate ion (similar to the above-mentioned various examples). Similarly to Cr 2 O 7 2− , CrO 4 2− ), it is reduced by divalent iron ions (Fe 2+ ) and precipitated by dissociating Cl , ClO 3 − and the like.

【0080】したがって、上記一実施例と同様に、6価
のクロム(Cr6+)およびその他の重金属を同時に沈殿
分離可能な処理剤を、安価な原料にて容易に製造でき
る。さらに、この処理剤にて確実で容易に6価のクロム
(Cr6+)を毒性のない3価のクロム(Cr3+)に還元
して沈殿分離できるとともに、その他の重金属も同時に
沈殿分離でき、排水の浄化処理が容易にできる。
Therefore, as in the above-mentioned embodiment, a treating agent capable of simultaneously separating and separating hexavalent chromium (Cr 6+ ) and other heavy metals can be easily produced from inexpensive raw materials. Furthermore, this treatment agent can reliably and easily reduce hexavalent chromium (Cr 6+ ) to non-toxic trivalent chromium (Cr 3+ ) for precipitation and separation, and at the same time for precipitation and separation of other heavy metals. , Easy purification of waste water.

【0081】なお、上記各実施例において、無機酸とし
ては硫酸や塩酸に限られず、無機塩基としては水酸化ナ
トリウムに限られない。
In each of the above examples, the inorganic acid is not limited to sulfuric acid or hydrochloric acid, and the inorganic base is not limited to sodium hydroxide.

【0082】[0082]

【発明の効果】請求項1記載の6価クロム含有水の処理
剤によれば、生成された2価鉄が、排水中の6価クロム
との反応により、3価鉄に酸化され水酸化第二鉄のコロ
イド粒子となるとともに、6価クロムを3価クロムに還
元してコロイド粒子を生成させ、この水酸化クロムのコ
ロイド粒子を、珪酸塩のコロイド粒子および水酸化第二
鉄のコロイド粒子とにより、凝集させて分離除去するた
め、確実で容易に6価クロムを分離できる処理剤を安価
の原料にて容易に製造できる。
According to the treatment agent for hexavalent chromium-containing water according to claim 1, the produced divalent iron is oxidized to trivalent iron by the reaction with hexavalent chromium in the wastewater, and hydroxide is added. In addition to becoming ferric colloidal particles, hexavalent chromium is reduced to trivalent chromium to form colloidal particles. The chromium hydroxide colloidal particles are used as silicate colloidal particles and ferric hydroxide colloidal particles. As a result, the treating agent capable of reliably and easily separating hexavalent chromium can be easily produced from inexpensive raw materials because the coagulating agent is separated and removed.

【0083】請求項2記載の6価クロム含有水の処理方
法によれば、請求項1記載の処理剤により、排水中の6
価クロムが3価クロムに還元され無機塩基の中和により
生成する水酸化クロムのコロイド粒子を、凝集剤により
水酸化第二鉄のコロイド粒子および珪酸塩のコロイド粒
子とともに凝集させて沈殿除去するため、6価クロムを
含有する排水を確実で容易に浄化処理できる。
According to the method for treating hexavalent chromium-containing water according to claim 2, the treatment agent according to claim 1 is used to remove 6
To agglomerate the colloidal particles of chromium hydroxide, which is generated by the reduction of trivalent chromium to trivalent chromium and the neutralization of the inorganic base, with the colloidal particles of ferric hydroxide and the colloidal particles of silicate, to remove the precipitates. The wastewater containing hexavalent chromium can be reliably and easily purified.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 46%以上の酸化珪素、13%以上の酸
化アルミニウム、2%以上の酸化ナトリウムおよび1%
以上の酸化カリウムを含有する1重量%以上8重量%以
下のアルミナ−シリカ系原料と、 2.5重量%以上45重量%以下の金属鉄粉と、 無機酸とを混合してなることを特徴とする6価クロム含
有水の処理剤。
1. 46% or more silicon oxide, 13% or more aluminum oxide, 2% or more sodium oxide and 1%
1% by weight or more and 8% by weight or less of an alumina-silica-based raw material containing the above potassium oxide, 2.5% by weight or more and 45% by weight or less of metallic iron powder, and an inorganic acid A treatment agent for water containing hexavalent chromium.
【請求項2】 6価クロム含有水に、請求項1記載の6
価クロム含有水の処理剤および無機塩基を混合して中和
するとともに凝集剤を混合して、前記6価クロム含有水
に含まれる6価クロムを3価クロムとして沈殿除去する
ことを特徴とする6価クロム含有水の処理方法。
2. The method according to claim 1, wherein the water containing hexavalent chromium is used.
It is characterized in that a treatment agent for valent chromium-containing water and an inorganic base are mixed and neutralized, and a coagulant is mixed to precipitate and remove hexavalent chromium contained in the hexavalent chromium-containing water as trivalent chromium. A method for treating water containing hexavalent chromium.
JP25722793A 1993-10-14 1993-10-14 Treating agent for water containing hexavalent chromium and method for treating it Pending JPH07108280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25722793A JPH07108280A (en) 1993-10-14 1993-10-14 Treating agent for water containing hexavalent chromium and method for treating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25722793A JPH07108280A (en) 1993-10-14 1993-10-14 Treating agent for water containing hexavalent chromium and method for treating it

Publications (1)

Publication Number Publication Date
JPH07108280A true JPH07108280A (en) 1995-04-25

Family

ID=17303444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25722793A Pending JPH07108280A (en) 1993-10-14 1993-10-14 Treating agent for water containing hexavalent chromium and method for treating it

Country Status (1)

Country Link
JP (1) JPH07108280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176706A (en) * 1997-09-10 1999-03-23 Masujiro Arita Special solid fine powdery flocculant composition
JP2003181470A (en) * 2001-12-17 2003-07-02 Miyoshi Oil & Fat Co Ltd Method for treating waste
JP2006058107A (en) * 2004-08-19 2006-03-02 Atox Co Ltd Method for treating chromate liquid waste containing radioactive substance
JP2013200117A (en) * 2013-05-22 2013-10-03 Tsukishima Kankyo Engineering Ltd Incineration disposal device and incineration disposal method of chromium-containing waste liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115557A (en) * 1977-02-28 1978-10-09 Dowa Mining Co Method of removing detrimental material in drainage
JPS54154158A (en) * 1978-05-26 1979-12-05 Katsukawa Heitarou Method of disposing waste water containing heavy metal
JPH0340924A (en) * 1989-07-06 1991-02-21 Nippon Steel Corp Production of high-purity ferrous sulfate solution from sulfuric acid-based pickling waste acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115557A (en) * 1977-02-28 1978-10-09 Dowa Mining Co Method of removing detrimental material in drainage
JPS54154158A (en) * 1978-05-26 1979-12-05 Katsukawa Heitarou Method of disposing waste water containing heavy metal
JPH0340924A (en) * 1989-07-06 1991-02-21 Nippon Steel Corp Production of high-purity ferrous sulfate solution from sulfuric acid-based pickling waste acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176706A (en) * 1997-09-10 1999-03-23 Masujiro Arita Special solid fine powdery flocculant composition
JP2003181470A (en) * 2001-12-17 2003-07-02 Miyoshi Oil & Fat Co Ltd Method for treating waste
JP2006058107A (en) * 2004-08-19 2006-03-02 Atox Co Ltd Method for treating chromate liquid waste containing radioactive substance
JP2013200117A (en) * 2013-05-22 2013-10-03 Tsukishima Kankyo Engineering Ltd Incineration disposal device and incineration disposal method of chromium-containing waste liquid

Similar Documents

Publication Publication Date Title
US7001583B2 (en) Essentially insoluble heavy metal sulfide slurry for wastewater treatment
CN111170510B (en) Method for treating arsenic-containing wastewater and solidifying arsenic
US6177015B1 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
EP2036866B1 (en) Method and apparatus for treating selenium-containing wastewater
Zhu et al. Effective recycling of Cu from electroplating wastewater effluent via the combined Fenton oxidation and hydrometallurgy route
CN112010488B (en) Method for preparing nano particles from heavy metal wastewater
JP7372691B2 (en) How to obtain scorodite with a high arsenic content from an acidic solution with a high sulfuric acid content
CN106868320A (en) A kind of preparation method of the solid arsenic mineral of high stability
CA2251480A1 (en) Waste treatment of metal plating solutions
JPH07108280A (en) Treating agent for water containing hexavalent chromium and method for treating it
Yu et al. Resource utilization of hazardous Cr/Fe-rich sludge: synthesis of erdite flocculant to treat real electroplating wastewater
JP2004050096A (en) Method for treating wastewater containing harmful substance without producing sludge, and chemical agent used therein
JPS6339693A (en) Method for treating waste water containing cyanogen
CN115700221A (en) Method for treating arsenic-containing acidic wastewater without generating solid hazardous waste
JP4052428B2 (en) Treatment method and treatment agent for lead-containing wastewater
CN106823235B (en) A kind of method that regulation and control growth method prepares the solid arsenic mineral of high stability
CN105600982A (en) Process for treating polluted acid water in copper smelting by utilizing calcium and magnesium desulfurization sludge
CN113526562B (en) Method for preparing scorodite by treating arsenic-containing smoke dust through ozone microbubble oxidation method
JPH09155368A (en) Treatment process for flue gas desulfurization drain
JP4771284B2 (en) Method and apparatus for treating selenium-containing wastewater
JP2004000883A (en) Method for treating solution containing selenium
KR960003920B1 (en) Method and material for treatment of waste water including heavy metal
CN116969626A (en) Method and system for treating vanadium-containing wastewater
CN116536527A (en) Method for recovering valuable metals from arsenic-containing waste acid and preparing metal arsenic
CN106823233A (en) A kind of method that fractional crystallisation method prepares the solid arsenic mineral of high stability