JPH07107836B2 - Explosion-proof battery - Google Patents

Explosion-proof battery

Info

Publication number
JPH07107836B2
JPH07107836B2 JP63015539A JP1553988A JPH07107836B2 JP H07107836 B2 JPH07107836 B2 JP H07107836B2 JP 63015539 A JP63015539 A JP 63015539A JP 1553988 A JP1553988 A JP 1553988A JP H07107836 B2 JPH07107836 B2 JP H07107836B2
Authority
JP
Japan
Prior art keywords
explosion
battery
plate
proof device
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63015539A
Other languages
Japanese (ja)
Other versions
JPH01189856A (en
Inventor
慶雄 植谷
碌郎 池端
修 渡辺
富夫 北村
修 梶井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP63015539A priority Critical patent/JPH07107836B2/en
Publication of JPH01189856A publication Critical patent/JPH01189856A/en
Publication of JPH07107836B2 publication Critical patent/JPH07107836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は封口体に防爆装置を備えさせた防爆型電池に関
する。
TECHNICAL FIELD The present invention relates to an explosion-proof battery having a sealing body provided with an explosion-proof device.

〔従来の技術〕[Conventional technology]

例えば、有機電解液を用いる筒形のリチウム電池などで
は、電池に内部短絡の発生など不慮の事故が生じて電池
内部にガスが発生し、電池内部の圧力が異常上昇を起こ
しかけたときに、可撓性薄板が上方に撓んで切刃に接触
して破壊することにより、電池内部のガスを電池外部に
排出し、電池の急激な破裂、いわゆる電池の爆発を防止
する防爆装置を封口体に備えさせることが行われている
(例えば、実公昭59-15398号公報)。
For example, in a cylindrical lithium battery using an organic electrolyte, when an unexpected accident such as the occurrence of an internal short circuit occurs in the battery, gas is generated inside the battery, and the pressure inside the battery is about to rise abnormally, The flexible thin plate bends upward and contacts the cutting edge to destroy it, thereby discharging the gas inside the battery to the outside of the battery and using an explosion-proof device to prevent sudden explosion of the battery, so-called battery explosion. Provision is made (for example, Japanese Utility Model Publication No. 59-15398).

本発明者らも、そのような防爆装置を封口体に備えさせ
た防爆型電池について研究を重ね、これまでに第4図に
示すような電池を開発してきた。
The inventors of the present invention have conducted extensive research on an explosion-proof battery having such an explosion-proof device provided in a sealing body, and have so far developed a battery as shown in FIG.

この第4図に示す電池では、封口板10のガス通気孔11を
閉塞する可撓性薄板40の周縁部と環状パッキング30とを
端子板20の鍔状周縁部22と封口板10とで挾持し、電池内
部に不慮の事故が生じてガスが発生し、電池内部の圧力
が上昇すると、第5図に示すように、可撓性薄板40の中
央部が上方に撓んで端子板20に設けた切刃24に接触して
破壊されることにより、防爆装置が作動して、電池内部
のガスを封口板10のガス通気孔11を介して端子板20のガ
ス排気孔23から電池外部へ排出して電池の破裂を未然に
防止する。
In the battery shown in FIG. 4, the peripheral edge of the flexible thin plate 40 that closes the gas vent hole 11 of the sealing plate 10 and the annular packing 30 are sandwiched between the flange-shaped peripheral edge portion 22 of the terminal plate 20 and the sealing plate 10. However, when an unexpected accident occurs inside the battery, gas is generated, and the pressure inside the battery rises, the central portion of the flexible thin plate 40 bends upward and is installed on the terminal plate 20, as shown in FIG. The explosion-proof device operates by contacting the cutting edge 24 and being destroyed, and the gas inside the battery is discharged from the gas exhaust hole 23 of the terminal plate 20 to the outside of the battery through the gas vent hole 11 of the sealing plate 10. To prevent the battery from bursting.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、これまでの電池においては、いずれもその防爆
装置の作動圧力が温度にかかわらずほとんど一定に設定
されており、常温でも高温でも電池内部の圧力が上昇す
れば防爆装置が作動してしまう。
However, in the batteries so far, the operating pressure of the explosion-proof device is set to be almost constant regardless of the temperature, and the explosion-proof device is activated if the pressure inside the battery rises at normal temperature or high temperature.

また、リチウムを負極活物質とし、有機電解液を電解液
として用いる有機電解液系のリチウム電池では、安全性
面から、アルカリ電池などの水溶液系電解液を用いる防
爆型電池よりも、防爆装置の作動圧力をかなり低く設定
しているため、通常の使用温度範囲(一般に60℃以下)
内での温度変化により電池内部の圧力が一時的に上昇し
て、防爆装置が作動し、電池機能を喪失したり、防爆装
置の作動により漏出した電解液によって電池使用機器が
損傷を受けるなどの問題が発生する。
In addition, in an organic electrolyte-based lithium battery that uses lithium as a negative electrode active material and an organic electrolyte as an electrolyte, from the viewpoint of safety, it is more likely that an explosion-proof device will be used than an explosion-proof battery that uses an aqueous electrolyte such as an alkaline battery. Normal operating temperature range (generally below 60 ° C) because the operating pressure is set quite low
Due to the temperature change inside the battery, the pressure inside the battery temporarily rises, the explosion-proof device operates, and the battery function is lost, or the electrolyte leaked by the operation of the explosion-proof device damages the equipment using the battery. The problem occurs.

本発明は、上述したように従来の防爆型電池が通常の使
用温度範囲内での温度変化による一時的な圧力上昇によ
って防爆装置が作動し、電池機能を喪失したり、漏出し
た電解液によって電池使用機器が損傷を受けるといった
問題点を解決し、通常の使用温度範囲内での一時的な圧
力上昇では防爆装置が作動せず、内部短絡の発生など温
度上昇を伴い圧力上昇が電池活物質がなくなるまで継続
するような継続的な圧力上昇に対しては防爆装置が作動
して電池破裂を防止することができる防爆型電池を提供
することを目的とする。
In the present invention, as described above, the conventional explosion-proof battery is operated by the explosion-proof device due to a temporary pressure increase due to the temperature change within the normal operating temperature range, the battery function is lost, or the battery leaks due to the leaked electrolyte. It solves the problem that the equipment used is damaged, and the explosion-proof device does not operate with a temporary pressure increase within the normal operating temperature range, and the battery active material causes a pressure increase due to temperature rise such as internal short circuit. It is an object of the present invention to provide an explosion-proof battery capable of preventing the battery from bursting by operating the explosion-proof device against a continuous increase in pressure that continues until it disappears.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するための手段を本発明の実施例に対応
する第1図に基づいて説明すると、本発明は、封口板10
と端子板20の本体部分21とで形成される空間部60の可撓
性薄板40より上側の部分に環状の熱変形部材50を配置す
ることによって、防爆装置の作動圧力を温度によって変
え得るようにしたものである。
The means for achieving the above object will be described with reference to FIG. 1 corresponding to the embodiment of the present invention.
By disposing the annular thermal deformation member 50 in the space above the flexible thin plate 40 in the space 60 formed by the main body 21 of the terminal board 20, the operating pressure of the explosion-proof device can be changed depending on the temperature. It is the one.

〔作用〕[Action]

上記のように封口板10と端子板20の本体部分21とで形成
される空間部60の可撓性薄板40より上側の部分に環状の
熱変形部材50を配置しておくと、通常の使用温度範囲内
での圧力上昇では、第2図に示すように可撓性薄板40が
上方に撓むときの支点が環状の熱変形部材50の内周端に
なり、可撓性薄板40の撓む部分の径は環状の熱変形部材
50によって規制される。その結果、可撓性薄板40の撓む
部分の径が小さくなるので、大きな圧力上昇がないかぎ
り、可撓性薄板40は切刃24に接触する程度にまで撓まな
くなり、防爆装置の作動圧力が高くなる。したがって、
通常の使用温度範囲内での一時的な圧力上昇による防爆
装置の作動は防止されるようになる。一方、それ自体が
温度上昇を伴う継続的な圧力上昇では、その温度が環状
の熱変形部材50の融点近くまで上昇すると、上記環状の
熱変形部材50が熱によって変形するので第3図に示すよ
うに可撓性薄板40が上方に撓むときの支点は端子板20の
本体部分21と鍔状周縁部22との境界の折曲点になり、可
撓性薄板40の撓みは端子板20で規制されるようになっ
て、可撓性薄板40の撓む部分の径は通常の使用温度範囲
内での一時的な圧力上昇の場合よりも大きくなる。その
結果、通常の使用温度範囲内での圧力上昇よりも低い圧
力で可撓性薄板40が切刃24に接触する程度に撓むように
なり、安全性が確保できる範囲内の圧力で防爆装置が作
動するようになる。上記のような環状の熱変形部材50の
材料としては、融点が90〜130℃の熱変形材料、特に成
形の容易さから、ポリエチレン、エチレン−酢酸ビニル
樹脂などの融点が90〜130℃の熱可塑性合成樹脂を用い
るのが好ましい。
As described above, if the annular heat-deformable member 50 is arranged in the space 60 formed by the sealing plate 10 and the main body portion 21 of the terminal plate 20 above the flexible thin plate 40, normal use is possible. When the pressure rises within the temperature range, as shown in FIG. 2, the fulcrum when the flexible thin plate 40 bends upward becomes the inner peripheral end of the annular thermal deformation member 50, and the flexible thin plate 40 bends. The diameter of the hollow part is an annular thermal deformation member
Regulated by 50. As a result, since the diameter of the flexible portion of the flexible thin plate 40 becomes small, unless there is a large pressure increase, the flexible thin plate 40 does not bend to the extent that it contacts the cutting edge 24, and the operating pressure of the explosion-proof device is reduced. Becomes higher. Therefore,
The operation of the explosion-proof device due to a temporary pressure increase within the normal operating temperature range is prevented. On the other hand, in the continuous pressure increase itself accompanied by the temperature rise, when the temperature rises up to near the melting point of the ring-shaped heat deformable member 50, the ring-shaped heat deformable member 50 is deformed by heat, so that it is shown in FIG. As described above, the fulcrum when the flexible thin plate 40 bends upward is the bending point of the boundary between the main body portion 21 of the terminal plate 20 and the brim-shaped peripheral portion 22, and the bending of the flexible thin plate 40 is the terminal plate 20. As a result, the diameter of the flexible portion of the flexible thin plate 40 becomes larger than that in the case of a temporary pressure increase within the normal operating temperature range. As a result, the flexible thin plate 40 will bend to the extent that it contacts the cutting edge 24 at a pressure lower than the pressure increase within the normal operating temperature range, and the explosion-proof device will operate at a pressure within the range where safety can be secured. Come to do. As the material of the annular heat-deformable member 50 as described above, a heat-deformable material having a melting point of 90 to 130 ° C., particularly polyethylene, ethylene-vinyl acetate resin, or the like having a melting point of 90 to 130 ° C. is used because of its ease of molding. It is preferable to use a plastic synthetic resin.

〔実施例〕〔Example〕

第1図は本発明の防爆型電池の一実施例を示す拡大断面
図である。同図において、1は防爆装置を備えた封口体
であって、この封口体1は、ガス通気孔11を穿設した封
口板11と、本体部分21と鍔状周縁部22からなり本体部分
21にガス排気孔23および切刃24を設けた帽子状の端子板
20と、封口板10の周縁部上に配置する環状パッキング30
と、周縁部が上記環状パッキング30上に配置し前記封口
板10の折曲縁12のかしめによって該環状パッキング30と
共に端子板20の鍔状周縁部22と封口板10とで挾持される
可撓性薄板40を有し、上記封口板10と端子板20の本体部
分21とで形成される空間部60の可撓性薄板40より上側の
部分には環状の熱変形部材50が配置されている。
FIG. 1 is an enlarged sectional view showing an embodiment of the explosion-proof battery of the present invention. In the figure, reference numeral 1 is a sealing body provided with an explosion-proof device, and this sealing body 1 is composed of a sealing plate 11 having a gas vent hole 11 formed therein, a main body portion 21 and a flange-shaped peripheral portion 22.
Cap-shaped terminal board with gas exhaust hole 23 and cutting edge 24 in 21
20 and annular packing 30 to be placed on the periphery of the sealing plate 10.
A peripheral edge portion is disposed on the annular packing 30, and the flexible edge is clamped by the flange-shaped peripheral edge portion 22 of the terminal plate 20 and the sealing plate 10 together with the annular packing 30 by caulking the bent edge 12 of the sealing plate 10. A heat-deformable thin plate 40, and an annular heat-deformable member 50 is arranged at a portion above the flexible thin plate 40 in the space 60 formed by the sealing plate 10 and the main body portion 21 of the terminal plate 20. .

上記封口板10は浅い容器状のものが用いられているが、
その開口縁は封口体1の組立にあたって内方へ折曲げら
れ、さらにその折曲縁12をかしめることによって端子板
20の鍔状周縁部22を押圧して封口体1を気密液密状態に
している。端子板20は本体部分21と鍔状周縁部22からな
る高さの低い帽子状のものからなり、本体部分21には切
刃24とガス排気孔23が設けられているが、該本体部分21
は上板部と周壁部とからなり、上記切刃24は端子板20の
本体部分21の上板部に部分的に切込みを入れその部分を
先端側から内側(図面では下側)に折曲げることによっ
て形成されたものであり、該切刃24の形成によって本体
部分21の上板部にあいた孔がガス排気孔23となってい
る。端子板20の鍔状周縁部22は斜め上方に向けて折曲げ
られ、本実施例のものではさらにその先端部がほぼ水平
に折曲げられている。環状パッキング30はその内径が端
子板20の本体部分21の外径より大きく形成されていて、
端子板20の本体部分21より径方向外方側に封じ込められ
ている。可撓性薄板40の周縁部は環状パッキング30と共
に端子体20の鍔状周縁部22と封口板とで挾持されている
が、可撓性薄板40の中央部は平常時には封口体10のガス
通気孔11を閉塞している。環状の熱変形部材50は例えば
ポリエチレンで成形され、前述のように通常の使用温度
範囲内で生じる一時的な圧力上昇に対して可撓性薄板40
の撓む部分の径を規制して防爆装置の誤作動を防止し、
また、電池の内部短絡発生など、温度上昇を伴うような
圧力上昇があった場合にはその温度上昇が環状の熱変形
部材50の融点に近付くと該熱変形部材50が熱変形を起こ
して可撓性薄板40の撓む部分を大きくして、安全性が確
保できる範囲内の低い圧力で防爆装置が作動するように
させる。そして、上記環状の熱変形部材50は、温度上昇
を伴う内圧上昇時に熱変形が生じやすいように、下部側
の内径が上部側の内径より大きく形成されている。
Although the sealing plate 10 has a shallow container shape,
The opening edge is bent inward when the sealing body 1 is assembled, and the bent edge 12 is caulked to make a terminal plate.
The flange-shaped peripheral portion 22 of 20 is pressed to make the sealing body 1 air-tight and liquid-tight. The terminal plate 20 is composed of a body having a body portion 21 and a brim-shaped peripheral portion 22 and having a low height. The body portion 21 is provided with a cutting edge 24 and a gas exhaust hole 23.
Is composed of an upper plate portion and a peripheral wall portion, and the cutting blade 24 partially cuts into the upper plate portion of the main body portion 21 of the terminal plate 20 and bends the portion from the tip side to the inner side (lower side in the drawing). The hole formed in the upper plate portion of the main body portion 21 by the formation of the cutting edge 24 serves as a gas exhaust hole 23. The brim-shaped peripheral edge portion 22 of the terminal plate 20 is bent obliquely upward, and in the present embodiment, the tip end portion is bent substantially horizontally. The inner diameter of the annular packing 30 is formed larger than the outer diameter of the main body portion 21 of the terminal plate 20,
The terminal plate 20 is sealed radially outward from the main body portion 21. The peripheral edge of the flexible thin plate 40 is sandwiched between the collar-shaped peripheral edge 22 of the terminal body 20 and the sealing plate together with the annular packing 30, but the central portion of the flexible thin plate 40 is provided with the gas passage of the sealing body 10 in normal times. The pores 11 are closed. The ring-shaped heat-deformable member 50 is formed of, for example, polyethylene, and as described above, the flexible thin plate 40 is resistant to a temporary pressure increase that occurs within the normal operating temperature range.
By controlling the diameter of the flexible part of the explosion-proof device to prevent malfunction,
Further, when there is a pressure increase that causes a temperature rise such as the occurrence of an internal short circuit of the battery, when the temperature rise approaches the melting point of the annular heat deformable member 50, the heat deformable member 50 may be thermally deformed. The flexible portion of the flexible thin plate (40) is enlarged so that the explosion-proof device operates at a low pressure within a range where safety can be ensured. The inner diameter of the annular heat-deformation member 50 is formed to be larger than the inner diameter of the upper side so that thermal deformation is likely to occur when the internal pressure rises accompanying temperature rise.

上記封口体1の組立は次に示すように行われる。The assembling of the sealing body 1 is performed as follows.

まず、まだ開口縁を内方に折曲げていない容器状の封口
板10の底部周縁部上に環状パッキング30を配置し、さら
にその上に周縁部が上記環状パッキング30上に載置する
ようにして可撓性薄板40を封口板10内に配置する。つぎ
に環状の熱変形部材50を上記可撓性薄板40上に配置し、
その上から端子板20を配置し、封口板10の開口縁を内方
へ折曲げ、さらにその折曲縁12をかしめて可撓性薄板40
の周縁部と環状パッキング30とを端子板20の鍔状周縁部
22と封口板10とで挾持することにより、封口体1の組立
が完了する。
First, the annular packing 30 is arranged on the bottom peripheral edge of the container-shaped sealing plate 10 whose opening edge is not bent inward, and the peripheral edge is placed on the annular packing 30. The flexible thin plate 40 is placed in the sealing plate 10. Next, an annular thermal deformation member 50 is arranged on the flexible thin plate 40,
A terminal plate (20) is arranged from above, the opening edge of the sealing plate (10) is bent inward, and the bent edge (12) is caulked to form a flexible thin plate (40).
Of the terminal plate 20 and the ring-shaped packing 30 on the brim-shaped peripheral portion of the terminal plate 20.
The assembly of the sealing body 1 is completed by sandwiching the sealing plate 22 with the sealing plate 10.

そして、上記のように組み立てられた封口体1は、あら
かじめ発電要素3を内填しておいた電池ケース2の開口
部に絶縁パッキング4を介して装着されて防爆型電池が
作製される。つまり、電池ケース2にはあらかじめ発電
要素3、すなわち、正極活物質、負極活物質、電解液、
セパレータなどをそれぞれ必要時に電池反応が生じるの
に適した状態で装填し、ついで電池ケース2の開口端近
傍に封口体1の下部周縁部を支えるためのくびれ部を形
成し、封口体1を絶縁パッキング4と共に電池ケース2
の開口部に挿入したのち、電池ケース2の開口縁を内方
に締め付けて電池ケース2の開口部を封口する。これに
よって、この電池は平常時には密閉状態に保たれる。発
電要素3は公知の構成のものでよく、その代表的なもの
を例示すると、有機電解液系の発電要素、例えばリチウ
ムを負極活物質として用いその板状物を集電体に圧着し
た負極板と二酸化マンガンを正極活物質とする正極合剤
(上記二酸化マンガンと黒鉛とフッ素樹脂系バインダー
とを混合して調製した正極合剤)を集電体に保持させた
正極板とをセパレータを介在させて渦巻状に巻回した渦
巻電極と、例えばプロピレンカーボネートと1,2−ジメ
トキシエタンとの混合溶媒に過塩素酸リチウムを1モル
/l溶解したものなどの有機電解液とからなるものなどが
あげられる。
Then, the sealing body 1 assembled as described above is attached to the opening of the battery case 2 in which the power generating element 3 has been filled in advance through the insulating packing 4 to produce an explosion-proof battery. That is, in the battery case 2, the power generating element 3, that is, the positive electrode active material, the negative electrode active material, the electrolytic solution,
Insulate the sealing body 1 by loading a separator or the like in a state suitable for causing a battery reaction when necessary, and then forming a constriction near the opening end of the battery case 2 for supporting the lower peripheral edge of the sealing body 1. Battery case 2 with packing 4
After that, the opening edge of the battery case 2 is tightened inward to close the opening of the battery case 2. As a result, this battery is kept in a sealed state in normal times. The power generation element 3 may have a publicly known configuration, and a representative example thereof is an organic electrolyte-based power generation element, for example, a negative electrode plate in which lithium is used as a negative electrode active material and the plate-like material is pressure-bonded to a current collector. And a positive electrode plate in which a positive electrode mixture containing manganese dioxide as a positive electrode active material (a positive electrode mixture prepared by mixing the above manganese dioxide, graphite, and a fluororesin-based binder) is held by a current collector with a separator interposed A spirally wound electrode and a mixed solvent of, for example, propylene carbonate and 1,2-dimethoxyethane, with 1 mol of lithium perchlorate.
/ l Examples include those that are composed of dissolved organic electrolytes.

そして、この電池に通常の使用温度範囲内での一時的な
圧力上昇が生じた場合、可撓性薄板40が上方に撓むが、
その際の撓む部分の支点は第2図に示すように環状の熱
変形部材50の内周端となり、可撓性薄板40の撓む部分の
径は小さくなる。つまり、可撓性薄板40の撓む部分の径
が環状の熱変形部材50によって規制され、可撓性薄板40
の撓む部分の径は小さくなる。その結果、可撓性薄板40
は撓みにくくなり、よほど大きな圧力上昇が生じないか
ぎり、可撓性薄板40が切刃24に接触する程度にまで撓ま
なくなって、通常の使用温度範囲内で生じる一時的な圧
力上昇では防爆装置が作動せず、電池は密閉状態に保た
れ、電池としての機能が保持される。しかし、電池内部
での内部短絡の発生など、大きな温度上昇を伴い、かつ
電池活物質がなくなるまで電池内部の圧力がどんどん高
くなるような継続的な圧力上昇が生じた場合は、温度上
昇が環状の熱変形部材50の融点に近付くと、該熱変形部
材50が熱変形を生じて、可撓性薄板40の撓む部分の支点
は、第3図に示すように端子板20の本体部分21と鍔状周
縁部22との境界の折曲点となり、可撓性薄板40の撓む部
分の径が端子板20で規制されるようになって、通常の使
用温度範囲内での一時的な圧力上昇の場合より大きくな
る。その結果、前記通常の使用温度範囲内で生じる一時
的な圧力上昇の場合より低い圧力で可撓性薄板40が切刃
24に接触するように撓み、防爆装置が作動するようにな
る。
Then, when a temporary pressure rise occurs in this battery within the normal operating temperature range, the flexible thin plate 40 bends upward,
The fulcrum of the flexible portion at that time is the inner peripheral end of the annular thermal deformation member 50, as shown in FIG. 2, and the diameter of the flexible portion of the flexible thin plate 40 is reduced. That is, the diameter of the flexible portion of the flexible thin plate 40 is regulated by the annular thermal deformation member 50, and the flexible thin plate 40
The diameter of the flexible portion of the is reduced. As a result, the flexible thin plate 40
Is hard to bend, and unless a large pressure rise occurs, the flexible thin plate 40 does not bend enough to contact the cutting edge 24, and the explosion-proof device is used for a temporary pressure rise that occurs within the normal operating temperature range. Does not work, the battery is kept in a sealed state, and the function as a battery is maintained. However, if there is a large temperature rise such as the occurrence of an internal short circuit inside the battery, and a continuous pressure rise such that the internal pressure of the battery rises until the battery active material is exhausted, the temperature rise will increase. When the melting point of the heat-deformable member 50 approaches, the heat-deformable member 50 undergoes heat deformation, and the fulcrum of the flexible portion of the flexible thin plate 40 is, as shown in FIG. It becomes a bending point of the boundary between the brim-shaped peripheral portion 22 and the flange-shaped peripheral portion 22, and the diameter of the flexible portion of the flexible thin plate 40 is regulated by the terminal plate 20, so that it is temporary within the normal operating temperature range. It becomes larger than the case of pressure increase. As a result, the flexible thin plate 40 cuts the blade with a lower pressure than in the case of a temporary pressure increase that occurs within the normal operating temperature range.
Bends against 24 and activates explosion protection.

このように、この電池では防爆装置の作動圧力が温度に
よって異なり、通常の使用温度範囲内での温度変化によ
り生じる一時的な圧力上昇では防爆装置が作動せず、い
わゆる誤作動が防止され、一方、内部短絡の発生など、
防爆装置が作動しないと電池破裂を招くような、温度上
昇を伴う継続的な圧力上昇が生じかけたときには、低い
圧力で防爆装置が作動して電池破裂が防止され安全性が
確保される。
Thus, in this battery, the operating pressure of the explosion-proof device varies depending on the temperature, and the explosion-proof device does not operate due to a temporary pressure increase caused by a temperature change within the normal operating temperature range, and so-called malfunction is prevented. , The occurrence of internal short circuit, etc.
When a continuous pressure increase accompanied by a temperature rise occurs, which causes the battery to burst if the explosion-proof device does not operate, the explosion-proof device operates at a low pressure to prevent the battery from bursting and ensure safety.

このような本発明の電池に使用される封口体と第4図に
示すような従来電池に使用されている封口体の防爆装置
の作動状況を示すと第6図のとおりである。つまり、第
6図は横軸に温度をとり、縦軸は防爆装置の作動圧力を
示し、両封口体の防爆装置の作動圧力と温度との関係を
示している。
FIG. 6 shows the operating state of the explosion-proof device of the sealing body used in the battery of the present invention and the conventional sealing body used in the battery as shown in FIG. That is, FIG. 6 shows the temperature on the horizontal axis and the operating pressure of the explosion-proof device on the vertical axis, and shows the relationship between the operating pressure and the temperature of the explosion-proof device for both sealing bodies.

上記防爆装置の作動試験は封口体を容器状の試験治具の
開口部に装着し、温度を20℃、60℃、80℃、100℃、110
℃、120℃、130℃、140℃、150℃と変え、この試験治具
にその底部側からアルゴンガスを供給し、封口体の防爆
装置の作動圧力を調べたものである。封口体1の部材と
しては、封口板10には厚さ0.3mmのステンレス鋼板(SUS
430板)で浅い容器状に成形したものを用い、環状パッ
キング30はポリプロピレン製であり、可撓性薄板40には
厚さ0.015mmのチタン板を用い、環状の熱変形部材50は
ポリエチレン(融点105℃)で第1図に示す形状に成形
されたもので、端子板20は表面にニッケルメッキを施し
た厚さ0.3mmの圧延鋼板(SPC板)で成形されたものであ
る。
In the operation test of the above explosion-proof device, the sealing body was attached to the opening of the container-shaped test jig, and the temperature was set to 20 ° C, 60 ° C, 80 ° C, 100 ° C, 110 ° C.
C., 120.degree. C., 130.degree. C., 140.degree. C. and 150.degree. C. were changed, and argon gas was supplied to the test jig from the bottom side, and the operating pressure of the explosion-proof device for the sealing body was examined. As a member of the sealing body 1, the sealing plate 10 has a thickness of 0.3 mm of a stainless steel plate (SUS
(430 plates) molded into a shallow container, the annular packing 30 is made of polypropylene, the flexible thin plate 40 is a 0.015 mm thick titanium plate, and the annular heat-deformable member 50 is polyethylene (melting point). The terminal plate 20 is formed of a rolled steel plate (SPC plate) having a thickness of 0.3 mm, the surface of which is nickel-plated.

第6図に示すように、従来電池に使用された封口体(従
来品)の場合は、防爆装置の作動圧力は温度にかかわら
ず約6kg/cm2と一定であるが、本発明の電池に使用され
る封口体の場合は、温度が低いときは防爆装置の作動圧
力が高く、温度が高くなると防爆装置の作動圧力は約6k
g/cm2と低くなり従来電池に使用された封口体(従来
品)の場合と同様になる。したがって、本発明の電池に
用いる封口体では温度によって防爆装置の作動圧力が変
わり、温度が低い間は防爆装置の作動圧力が高く、高温
では防爆装置の作動圧力が低くなるので、電池の通常使
用温度範囲内で生じる一時的な圧力上昇では防爆装置は
作動せず、大きな温度上昇を伴う継続的な圧力上昇が生
じたときには防爆装置が低い圧力で作動して安全性が確
保される。
As shown in FIG. 6, in the case of the sealing body used in the conventional battery (conventional product), the operating pressure of the explosion-proof device is constant at about 6 kg / cm 2 regardless of the temperature. In the case of the seal used, the operating pressure of the explosion-proof device is high when the temperature is low, and the operating pressure of the explosion-proof device is about 6k when the temperature is high.
The value is as low as g / cm 2, which is the same as the case of the sealing body (conventional product) used for conventional batteries. Therefore, in the sealing body used for the battery of the present invention, the operating pressure of the explosion-proof device changes depending on the temperature, the operating pressure of the explosion-proof device is high while the temperature is low, and the operating pressure of the explosion-proof device is low at high temperature, so that the battery is normally used. The explosion-proof device does not operate with a temporary pressure increase that occurs within the temperature range, and when a continuous pressure increase with a large temperature increase occurs, the explosion-proof device operates at a low pressure to ensure safety.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では、封口板10と端子板20
の本体部分21とで形成される空間部60の可撓性薄板40よ
り上側の部分に環状の熱変形部材50を配置することによ
り、防爆装置の作動圧力を温度によって変え得るように
し、電池の通常使用温度範囲内で生じる一時的な圧力上
昇では防爆装置を作動させず、いわゆる防爆装置の誤作
動を防止し、一方、温度上昇を伴う継続的な圧力上昇が
生じたときには防爆装置が安全性の確保できる範囲内の
低い圧力で作動して電池破裂を防止し、安全性を確保で
きるようにすることができた。
As described above, in the present invention, the sealing plate 10 and the terminal plate 20
By disposing the annular thermal deformation member 50 in a portion of the space 60 formed by the main body portion 21 and above the flexible thin plate 40, the operating pressure of the explosion-proof device can be changed depending on the temperature, and The temporary explosion in the normal operating temperature range does not activate the explosion proof device, preventing the so-called malfunction of the explosion proof device, while the explosion proof device is safe when a continuous pressure increase accompanying temperature rise occurs. It was possible to prevent the battery from bursting by operating at a low pressure within the range that can be secured and to ensure safety.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の防爆型電池の一実施例を示す拡大断面
図である。第2図は第1図に示す電池の通常の使用温度
範囲内での可撓性薄板が撓む状態を示す要部拡大断面図
であり、第3図は第1図に示す電池の高温下での可撓性
薄板が撓む状態を示す要部拡大断面図である。第4図は
従来の防爆型電池を示す要部拡大断面図であり、第5図
は第4図に示す従来電池の防爆装置の作動状態における
要部拡大断面図である。第6図は本発明の電池に使用さ
れる封口体と従来電池に使用されている封口体の防爆装
置の作動圧力と温度との関係を示す図である。 1……封口体、2……電池ケース、3……発電要素、4
……絶縁パッキング、10……封口板、11……ガス通気
孔、12……折曲縁、20……端子板、21……本体部分、22
……鍔状周縁部、23……ガス排気孔、24……切刃、30…
…環状パッキング、40……可撓性薄板、50……環状の熱
変形部材、60……空間部
FIG. 1 is an enlarged sectional view showing an embodiment of the explosion-proof battery of the present invention. FIG. 2 is an enlarged cross-sectional view of an essential part showing a state in which the flexible thin plate is bent in the normal operating temperature range of the battery shown in FIG. 1, and FIG. FIG. 7 is an enlarged cross-sectional view of a main part showing a state in which the flexible thin plate in FIG. FIG. 4 is an enlarged sectional view of an essential part showing a conventional explosion-proof battery, and FIG. 5 is an enlarged sectional view of an essential part of the conventional battery shown in FIG. 4 in an operating state. FIG. 6 is a diagram showing the relationship between the operating pressure and temperature of the explosion-proof device of the sealing body used in the battery of the present invention and the conventional sealing body used in the battery. 1 ... Sealing body, 2 ... Battery case, 3 ... Power generation element, 4
...... Insulating packing, 10 ...... Seal plate, 11 ...... Gas vent, 12 ...... Bend edge, 20 ...... Terminal plate, 21 ...... Main body part, 22
…… Brim edge, 23 …… Gas exhaust hole, 24 …… Cut blade, 30…
… Annular packing, 40… Flexible thin plate, 50… Annular heat deformation member, 60… Space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 富夫 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)発明者 梶井 修 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (56)参考文献 実公 昭60−20282(JP,Y2) ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Tomio Kitamura 1-88, Tora, Ibaraki-shi, Osaka Prefecture Hitachi Maxell Co., Ltd. (72) Inventor Osamu Kajii 1-1-88, Tora, Ibaraki-shi, Osaka Hitachi Maxel Co., Ltd. (56) Bibliography Sho 60-20282 (JP, Y2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】発電要素3を内填した電池ケース2の開口
部に防爆装置を備えた封口体1を絶縁パッキング4を介
して装着した防爆型電池であって、上記封口体1は、ガ
ス通気孔11を穿設した封口板10と、本体部分21と鍔状周
縁部22からなり本体部分21にガス排気孔23および切刃24
を設けた帽子状の端子板20と、上記封口板10の周縁部上
に配置する環状パッキング30と、周縁部が上記環状パッ
キング30上に配置し前記封口板10の折曲縁12のかしめに
より上記環状パッキング30と共に端子板20の鍔状周縁部
22と封口板10とで挾持される可撓性薄板40を有し、かつ
上記封口体1には、上記封口板10と端子板20の本体部分
21とで形成される空間部60の可撓性薄板40より上側の部
分に環状の熱変形部材50が配置されていて、該環状の熱
変形部材50により防爆装置の作動圧力を温度によって変
え得るようにしたことを特徴とする防爆型電池。
1. An explosion-proof battery in which a sealing body 1 equipped with an explosion-proof device is attached to an opening of a battery case 2 containing a power-generating element 3 through an insulating packing 4, the sealing body 1 being a gas. A gas exhaust hole 23 and a cutting edge 24 are formed in the main body portion 21 and are composed of a sealing plate 10 having a ventilation hole 11 formed therein, a main body portion 21 and a flange-shaped peripheral portion 22.
The cap-shaped terminal plate 20 provided with, the annular packing 30 arranged on the peripheral portion of the sealing plate 10, the peripheral portion is arranged on the annular packing 30 by caulking the bent edge 12 of the sealing plate 10. A flange-shaped peripheral portion of the terminal board 20 together with the annular packing 30.
A flexible thin plate 40 sandwiched between 22 and the sealing plate 10 is provided, and the sealing body 1 has a main body portion of the sealing plate 10 and the terminal plate 20.
An annular thermal deformation member 50 is arranged in a space 60 formed by 21 and above the flexible thin plate 40, and the annular thermal deformation member 50 can change the operating pressure of the explosion-proof device depending on the temperature. Explosion-proof battery characterized by doing so.
【請求項2】環状の熱変形部材50の融点が90〜130℃で
ある請求項1記載の防爆型電池。
2. An explosion-proof battery according to claim 1, wherein the melting point of the annular heat-deformable member 50 is 90 to 130 ° C.
JP63015539A 1988-01-25 1988-01-25 Explosion-proof battery Expired - Lifetime JPH07107836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015539A JPH07107836B2 (en) 1988-01-25 1988-01-25 Explosion-proof battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015539A JPH07107836B2 (en) 1988-01-25 1988-01-25 Explosion-proof battery

Publications (2)

Publication Number Publication Date
JPH01189856A JPH01189856A (en) 1989-07-31
JPH07107836B2 true JPH07107836B2 (en) 1995-11-15

Family

ID=11891602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015539A Expired - Lifetime JPH07107836B2 (en) 1988-01-25 1988-01-25 Explosion-proof battery

Country Status (1)

Country Link
JP (1) JPH07107836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043902A1 (en) * 2019-08-07 2021-02-11 Contemporary Amperex Technology Co., Limited Cover assembly of secondary battery and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043902A1 (en) * 2019-08-07 2021-02-11 Contemporary Amperex Technology Co., Limited Cover assembly of secondary battery and secondary battery
US11637348B2 (en) * 2019-08-07 2023-04-25 Contemporary Amperex Technology Co., Limited Cover assembly of secondary battery and secondary battery

Also Published As

Publication number Publication date
JPH01189856A (en) 1989-07-31

Similar Documents

Publication Publication Date Title
US3617386A (en) Sealed cell construction
JPH07105933A (en) Anti-explosive enclosed battery
JP2701375B2 (en) Explosion-proof sealed battery
US4822377A (en) Method for sealing an electrochemical cell employing an improved reinforced cover assembly
JPH06203818A (en) Explosion-proof sealed battery
JP2792098B2 (en) Safety device for organic electrolyte battery
CN210006815U (en) Button type battery with path cut-off protection function
JP4817217B2 (en) Liquid active substance battery
JPH10247483A (en) Safety structure of sealed battery
JPH04215245A (en) Secondary battery
JPH07107836B2 (en) Explosion-proof battery
CN217405562U (en) Battery upper cover and battery
JP2825868B2 (en) Cylindrical alkaline battery
JPH10172528A (en) Non-aqueous electrolyte battery
US3839092A (en) Electro-chemical, gasproof button cell
JP3527548B2 (en) Safety device for secondary battery and non-aqueous electrolyte secondary battery with safety device
JPH02117063A (en) Cylindrical alkaline battery
JPH0615400Y2 (en) Explosion-proof battery
JPH0329883Y2 (en)
JPH01112653A (en) Organic electrolyte battery
JPH097572A (en) Cylindrical alkaline battery
JP2515109Y2 (en) Flat lithium battery
JPS60198051A (en) Sealed battery
JPH01175164A (en) Sealed type cell
JPH07107837B2 (en) Explosion-proof battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13