JPH07107179B2 - Manufacturing method of cold rolled steel sheet for ultra deep drawing - Google Patents

Manufacturing method of cold rolled steel sheet for ultra deep drawing

Info

Publication number
JPH07107179B2
JPH07107179B2 JP63194566A JP19456688A JPH07107179B2 JP H07107179 B2 JPH07107179 B2 JP H07107179B2 JP 63194566 A JP63194566 A JP 63194566A JP 19456688 A JP19456688 A JP 19456688A JP H07107179 B2 JPH07107179 B2 JP H07107179B2
Authority
JP
Japan
Prior art keywords
less
rolling
cold
transformation point
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63194566A
Other languages
Japanese (ja)
Other versions
JPH0247222A (en
Inventor
才二 松岡
佐藤  進
俊之 加藤
浩三 角山
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63194566A priority Critical patent/JPH07107179B2/en
Publication of JPH0247222A publication Critical patent/JPH0247222A/en
Publication of JPH07107179B2 publication Critical patent/JPH07107179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、自動車用鋼板等の使途に有用な深絞り性に
優れた冷延鋼板の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a cold-rolled steel sheet having excellent deep drawability, which is useful for use in steel sheets for automobiles and the like.

(従来の技術) 自動車のパネル等に使用される冷延鋼板には、その特性
として優れた深絞り性が要求される。深絞り性向上のた
めには、鋼板の機械的特性として、高いランクフォード
値(r値)と高い延性(El)が必要である。
(Prior Art) Cold-rolled steel sheets used for automobile panels and the like are required to have excellent deep drawability. In order to improve the deep drawability, high Rankford value (r value) and high ductility (El) are required as mechanical properties of the steel sheet.

ところで、従来自動車車体の組み立ては、多数のプレス
部品をそれぞれスポット溶接しているが、最近これらの
部品の幾つかを大型化、一体化することにより部品点
数、溶接数を減らしたいという要請が高まってきた。
By the way, in the conventional assembly of automobile bodies, a large number of stamped parts are spot-welded, respectively, but recently, there has been an increasing demand to reduce the number of parts and the number of welds by enlarging and integrating some of these parts. Came.

たとえば、自動車のオイルパンは、その複雑な形状ゆえ
に、溶接を施して完成させているのが現状であるが、自
動車メーカーによる一体成形化の要求は強い。一方、多
様化するニーズに応ずるために車のデザインはより複雑
化し、そのため従来の鋼板では成形が困難な部品が増加
している。これらの要求に応ずるためには、従来よりも
格段に優れた深絞り性を有する冷延鋼板が必要となって
きた。
For example, an oil pan of an automobile is currently completed by welding due to its complicated shape, but there is a strong demand for integral molding by an automobile manufacturer. On the other hand, vehicle designs are becoming more complex to meet the diversifying needs, and the number of parts that are difficult to form using conventional steel sheets is increasing. In order to meet these requirements, a cold rolled steel sheet having a deep drawability that is far superior to the conventional one has been required.

従来、深絞り性改善のために各種の方法が提案されてい
る。ところで、鋼板の深絞り性はその集合組織と密接な
関係があり、{222}方位が多い程、また{200}方位が
少ない程、高い値が得られることは既知である。この
高値を得る従来方法としては、たとえば特公昭44−17
268号広報、特公昭44−17269号公報あるいは特公昭44−
172270号公報に開示されているような、低炭素リムド鋼
板において冷間圧延を2回に分けて行う、いわゆる2段
冷延法が提案されている。
Conventionally, various methods have been proposed for improving deep drawability. By the way, it is known that the deep drawability of a steel sheet is closely related to its texture, and a higher value is obtained as the number of {222} orientations increases and as the number of {200} orientations decreases. As a conventional method for obtaining this high value, for example, Japanese Patent Publication No. 44-17
No. 268 Public Relations, Japanese Patent Publication No. 17269/44 or Japanese Patent Publication No.
A so-called two-stage cold rolling method has been proposed, in which cold rolling is performed twice in a low carbon rimmed steel sheet as disclosed in Japanese Patent No. 172270.

この2段冷延法によれば、最終製品は{222}方位粒が
多く、{200}方位粒が少ないものとなる。これは、一
時冷延−焼鈍処理により、冷延前の熱延鋼板に比べて
{222}方位粒が増加し、一方{200}方位粒が減少する
ため、次にまた冷延−焼鈍を行うと{222}方位粒がさ
らに増加するのに対し、{200}方位粒は一層減少する
ことになり、そのため、高値を有する鋼板が製造でき
るのである。
According to this two-stage cold rolling method, the final product has many {222} oriented grains and few {200} oriented grains. This is because the temporary cold rolling-annealing treatment increases {222} oriented grains and decreases {200} oriented grains as compared with the hot rolled steel sheet before cold rolling, so that cold rolling-annealing is performed again. And the {222} oriented grains are further increased, while the {200} oriented grains are further reduced, so that a steel sheet having a high value can be manufactured.

また一方、特開昭56−62926号公報では、C:0.008%,Si:
0.57%,Mn:0.35%,Al:0.43%,Nb:0.061%になる鋼を、
通常の熱延−冷延後、950℃−1hrの箱型焼鈍を施すこと
により、=4.7のものを得る技術を提案している。
On the other hand, in JP-A-56-62926, C: 0.008%, Si:
0.57%, Mn: 0.35%, Al: 0.43%, Nb: 0.061% steel,
We propose a technique to obtain = 4.7 by performing box-type annealing at 950 ° C for 1 hr after normal hot rolling-cold rolling.

(発明が解決しようとする課題) 例示した上記技術のうち、前者の2段冷延法は深絞り性
を改善するという点では優れているものの、従来工程に
比べて冷延−焼鈍工程を一回多く行わなければならず、
そのため要するエネルギーおよびコストが莫大なものに
なるという欠点があった。
(Problems to be Solved by the Invention) Among the above-mentioned techniques, the former two-stage cold rolling method is superior in that it improves deep drawability, but one cold rolling-annealing step is required as compared with the conventional step. I have to do many times,
Therefore, there is a drawback that the energy and cost required become enormous.

また、上記従来技術のうちの後者のものは、変態集合組
織の形成機構を利用しているため、再結晶焼鈍温度をAr
3変態点以上に上げなければならず、そのためAr3変態点
未満の再結晶焼鈍に比べて、エネルギーコストの増大お
よび高温焼鈍による設備上および技術上の困難さも伴
う。さらに、SiあるいはAlを多量に添加しなくてはなら
ず、そのため鋼板表面性状が悪化するという問題もあっ
た。
Further, the latter of the above-mentioned conventional techniques utilizes the formation mechanism of the transformation texture, so the recrystallization annealing temperature is set to Ar.
The temperature must be raised to 3 transformation points or higher, and therefore, energy cost is increased and equipment and technical difficulties due to high-temperature annealing are higher than those in recrystallization annealing in which the Ar 3 transformation point is lower than that. In addition, there is a problem that a large amount of Si or Al must be added, which deteriorates the surface properties of the steel sheet.

この発明の目的は、2回の冷延を行う場合の上記問題な
らびに成分組成のみの対処によるときの上記問題を、主
として熱延条件と成分組成との絡みによる新規な方法の
採用により克服すると同時に、鋼板の深絞り性を有利に
改善できる製造方法を提案するところにある。
The object of the present invention is to overcome the above problems in the case of performing cold rolling twice and the above problems in dealing with only the component composition, mainly by adopting a novel method involving the entanglement of hot rolling conditions and component compositions. The present invention proposes a manufacturing method that can advantageously improve the deep drawability of a steel sheet.

(課題を解決するための手段) この発明の基礎となった研究結果から述べる。C:0.001
〜0.008wt%(以下単に%で示す),Si:0.01%,Mn:0.10
〜0.35%,P:0.008〜0.018%,Si:0.002〜0.02%,N:0.001
〜0.008%,Ti:0.01〜0.20%,Nb:0〜0.008%になる組成
の鋼を1150℃で加熱−均熱後、950℃〜Ar3変態点の範囲
で粗圧延を終了し、引き続き全圧下率:90%の仕上圧延
を行った。この時、仕上圧延開始温度を調整することに
より、熱延仕上温度を700℃と一定にした。引き続き、7
00℃−1hrの巻取自己焼鈍処理を施した。なお、仕上圧
延は潤滑圧延とした。さらに、得られた熱延板を酸洗
後、圧下率75%の冷間圧延を施した後、830℃−40sの再
結晶焼鈍を行った。
(Means for Solving the Problems) The research results that form the basis of this invention will be described. C: 0.001
~ 0.008wt% (simply indicated as% below), Si: 0.01%, Mn: 0.10
~ 0.35%, P: 0.008 ~ 0.018%, Si: 0.002 ~ 0.02%, N: 0.001
~ 0.008%, Ti: 0.01 ~ 0.20%, Nb: 0 ~ 0.008% of the composition of the steel is heated at 1150 ℃ -after soaking, rough rolling is completed in the range of 950 ℃ ~ Ar 3 transformation point Rolling reduction of 90% was performed. At this time, the hot rolling finish temperature was kept constant at 700 ° C by adjusting the finish rolling start temperature. Continue to 7
A winding self-annealing treatment was performed at 00 ° C for 1 hr. The finish rolling was lubrication rolling. Further, the obtained hot-rolled sheet was pickled, cold-rolled at a rolling reduction of 75%, and then recrystallized at 830 ° C for 40 seconds.

熱延板および冷延板の値におよぼす鋼成分の影響を第
1図に示す。値は鋼成分に強く依存し、1.2(C/12+N
/14+S/32)<(Ti/48+Nb/93)でかつNb=0.008%添加
することにより著しく向上した。
Fig. 1 shows the effect of steel components on the values of hot-rolled and cold-rolled sheets. The value is strongly dependent on the steel composition and is 1.2 (C / 12 + N
/ 14 + S / 32) <(Ti / 48 + Nb / 93) and the addition of Nb = 0.008% significantly improved.

また、C:0.002%,Si:0.01%,Mn:0.15%,P:0.012%,S:0.
015%,N:0.002%,Ti:0.065%,Nb:0.007%になる組成の
鋼を1150℃で加熱−均熱後、上記と同様の粗圧延を行
い、引き続き全圧下率:90%の仕上圧延を行った。この
時、粗圧延開始温度を調整することにより、粗圧延終了
温度(RDT)を1050〜880℃と変化させた。また、仕上圧
延は仕上圧延開始温度を調整することにより、熱延仕上
温度を700℃と一定にした。引き続き、700℃−1hrの巻
取自己焼鈍処理を施した。なお、仕上圧延は潤滑圧延と
した。さらに、得られた熱延板を酸洗後、圧下率75%の
冷間圧延を施した後、830℃−40sの再結晶焼鈍を行っ
た。
Also, C: 0.002%, Si: 0.01%, Mn: 0.15%, P: 0.012%, S: 0.
Steel with a composition of 015%, N: 0.002%, Ti: 0.065%, Nb: 0.007% is heated at 1150 ° C-after soaking, the same rough rolling as above is performed, and then the total rolling reduction is 90%. It was rolled. At this time, the rough rolling end temperature (RDT) was changed to 1050 to 880 ° C by adjusting the rough rolling start temperature. In the finish rolling, the hot rolling finish temperature was kept constant at 700 ° C by adjusting the finish rolling start temperature. Subsequently, a self-annealing treatment at 700 ° C. for 1 hr was performed. The finish rolling was lubrication rolling. Further, the obtained hot-rolled sheet was pickled, cold-rolled at a rolling reduction of 75%, and then recrystallized at 830 ° C for 40 seconds.

熱延板および冷延板の値におよぼす粗圧延終了温度の
影響を第2図に示す。値はRDTに強く依存し、RDT≦95
0℃とすることにより著しく向上した。
FIG. 2 shows the effect of the rough rolling end temperature on the values of the hot-rolled sheet and the cold-rolled sheet. Values strongly depend on RDT, RDT ≤ 95
It was remarkably improved by setting the temperature to 0 ° C.

また、C:0.002%,Si:0.01%,Mn:0.14%,P:0.012%,S:0.
009%,N:0.002%,Ti:0.067%,Nb:0.007%になる組成の
鋼を1150℃で加熱−均熱後、上記と同様の粗圧延を行
い、引き続き全圧下率:90%の仕上圧延を行った。この
時、粗圧延開始温度を調整することにより、熱延仕上温
度を680℃〜750℃と変化させた。また、引き続き、650
℃〜750℃の温度域で1hrの巻取自己焼鈍処理を施した。
なお、仕上圧延は潤滑圧延とした。さらに、得られた熱
延板を酸洗後、圧下率75%の冷間圧延を施した後、830
℃−40sの再結晶焼鈍を行った。
Also, C: 0.002%, Si: 0.01%, Mn: 0.14%, P: 0.012%, S: 0.
Steel with the composition of 009%, N: 0.002%, Ti: 0.067%, Nb: 0.007% is heated at 1150 ° C-After soaking, rough rolling is performed in the same manner as above, and then the total reduction rate is 90%. It was rolled. At this time, the hot rolling finish temperature was changed from 680 ° C to 750 ° C by adjusting the rough rolling start temperature. Also, continue to 650
The coil was annealed for 1 hr in the temperature range of ℃ to 750 ℃.
The finish rolling was lubrication rolling. Furthermore, after the obtained hot-rolled sheet was pickled, it was cold-rolled at a rolling reduction of 75%, and then 830
Recrystallization annealing was performed at -40 ° C for 40 seconds.

熱延板および冷延板の値におよぼす巻取り温度の影響
を第3図に示す。値は(FDT)−(CT)に強く依存
し、(FDT)−(CT)≦100℃とすることにより著しく向
上した。
Fig. 3 shows the effect of the winding temperature on the values of the hot-rolled sheet and the cold-rolled sheet. The value strongly depends on (FDT)-(CT) and was significantly improved by setting (FDT)-(CT) ≤ 100 ° C.

発明者らは以上の実験結果もとに、その後研究を重ねた
結果、以下のように鋼の成分組成および製造条件を規制
することにより、深絞り性に優れた冷延鋼板が製造可能
となることを見出した。その要旨とするところは、 1.C:0.008%以下,Si:0.5%以下,Mn:1.0%以下,P:0.15%
以下,S:0.02%以下, Al:0.010〜0.10%,N:0.008%以下,Ti:0.035〜0.20%お
よびNb:0.001〜0.015%を含有しかつC,N,Sの量とTiおよ
びNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係になる鋼を、950℃以下Ar3変態点以上の温度域で
熱間粗圧延した後、Ar3変態点以下600℃以上の温度域で
潤滑を施しつつ、80%以上の圧下率にて仕上圧延を行
い、次いで熱延仕上温度(FDT)と巻取り温度(CT)と
が、 (FDT)−(CT)≦100℃かつ(CT)≧600℃ の関係を満たす条件下で巻取り、その後50〜95%の圧下
率で冷間圧延を施し、引き続き再結晶焼鈍を行うことを
特徴とする、超深絞り用冷延鋼板の製造方法、 2.C:0.008%以下,Si:0.5%以下,Mn:1.0%以下,P:0.15%
以下,S:0.02%以下, Al:0.010〜0.10%,N:0.008%以下,Ti:0.035〜0.20%,N
b:0.001〜0.015%およびB:0.0001〜0.0010%を含有しか
つC,N,Sの量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係になる鋼を、950℃以下Ar3変態点以上の温度域で
熱間粗圧延した後、Ar3変態点以下600℃以上の温度域で
循環を施しつつ、80%以上の圧下率にて仕上圧延を行
い、次いで熱延仕上温度(FDT)と巻取り温度(CT)と
が、 (FDT)−(CT)≦100℃かつ(CT)≧600℃ の関係を満たす条件下で巻取り、その後50〜95%の圧下
率で冷間圧延を施し、引き続き再結晶焼鈍を行うことを
特徴とする、超深絞り用冷延鋼板の製造方法、 3.C:0.008%以下,Si:0.5%以下,Mn:1.0%以下,P:0.15%
以下,S:0.02%以下, Al:0.010〜0.10%,N:0.008%以下,Ti:0.035〜0.20%,
およびNb:0.001〜0.015%を含有しかつC,N,Sの量とTiお
よびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係になる鋼を、950℃以下Ar3変態点以上の温度域で
熱間粗圧延した後、Ar3変態点以下500℃以上の温度域で
潤滑を施しつつ、80%以上の圧下率にて仕上圧延を行
い、次いで、再結晶焼鈍後50〜95%の圧下率で冷間圧延
を施し、引き続き再結晶焼鈍を行うことを特徴とする、
超深絞り用冷延鋼板の製造方法、 4.C:0.008%以下,Si:0.5%以下,Mn:1.0%以下,P:0.15%
以下,S:0.02%以下, Al:0.010〜0.10%,N:0.008%以下,Ti:0.035〜0.20%,N
b:0.001〜0.015%およびB:0.0001〜0.0010%を含有しか
つC,N,Sの量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係になる鋼を、950℃以下Ar3変態点以上の温度域で
熱間粗圧延した後、Ar3変態点以下500℃以上の温度域で
潤滑を施しつつ、80%以上の圧下率にて仕上圧延を行
い、次いで、再結晶焼鈍後50〜95%の圧下率で冷間圧延
を施し、引き続き再結晶焼鈍を行うことを特徴とする、
超深絞り用冷延鋼板の製造方法である。
As a result of repeated studies based on the above experimental results, the inventors can manufacture a cold-rolled steel sheet excellent in deep drawability by regulating the composition and manufacturing conditions of steel as follows. I found that. The main points are: 1.C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15%
Below, S: 0.02% or less, Al: 0.010 to 0.10%, N: 0.008% or less, Ti: 0.035 to 0.20% and Nb: 0.001 to 0.015% and the amount of C, N, S and Ti and Nb Steel that has a relationship of 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) with the additive amount is hot-rolled in a temperature range of 950 ° C or lower and Ar 3 transformation point or higher, and then Ar Finishing rolling is performed at a reduction ratio of 80% or more while lubricating in the temperature range of 600 ° C or more below 3 transformation points, and then the hot rolling finishing temperature (FDT) and coiling temperature (CT) are (FDT) It is characterized in that it is wound under the condition satisfying the relations of − (CT) ≦ 100 ° C. and (CT) ≧ 600 ° C., then cold rolled at a reduction rate of 50 to 95%, and then recrystallized annealing is performed. , Method for manufacturing cold rolled steel sheet for ultra deep drawing, 2.C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15%
Or less, S: 0.02% or less, Al: 0.010 to 0.10%, N: 0.008% or less, Ti: 0.035 to 0.20%, N
b: 0.001 to 0.015% and B: 0.0001 to 0.0010%, and the amount of C, N, S and the amount of Ti and Nb added are 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) After steel is hot-roughly rolled in a temperature range of 950 ° C or below and above Ar 3 transformation point, it is rolled at a temperature range of 600 ° C or above below Ar 3 transformation point and reduced by 80% or more. Under the condition that the hot rolling finish temperature (FDT) and the coiling temperature (CT) satisfy the relations of (FDT)-(CT) ≤ 100 ° C and (CT) ≥ 600 ° C. Winding, then cold rolling at a reduction rate of 50 to 95%, followed by recrystallization annealing, a method for producing a cold rolled steel sheet for ultra deep drawing, 3.C: 0.008% or less, Si : 0.5% or less, Mn: 1.0% or less, P: 0.15%
Below, S: 0.02% or below, Al: 0.010 to 0.10%, N: 0.008% or below, Ti: 0.035 to 0.20%,
And Nb: 0.001 to 0.015% and the amount of C, N, S and the amount of Ti and Nb added are 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) Steel is hot-roughly rolled in a temperature range of 950 ° C or lower and Ar 3 transformation point or higher, and then finish rolled at a rolling reduction of 80% or more while lubricating it in a temperature range of Ar 3 transformation point or higher and 500 ° C or higher. Performed, then subjected to cold rolling at a reduction rate of 50 to 95% after recrystallization annealing, followed by performing recrystallization annealing,
Manufacturing method of cold rolled steel sheet for ultra deep drawing, 4.C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15%
Or less, S: 0.02% or less, Al: 0.010 to 0.10%, N: 0.008% or less, Ti: 0.035 to 0.20%, N
b: 0.001 to 0.015% and B: 0.0001 to 0.0010%, and the amount of C, N, S and the amount of Ti and Nb added are 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93), the steel is hot-roughly rolled in the temperature range of 950 ° C or lower and the Ar 3 transformation point or higher, and then rolled by 80% or more while being lubricated in the Ar 3 transformation point or the 500 ° C or higher temperature range. Characterized by performing finish rolling at a rate, then, after performing recrystallization annealing, cold rolling at a reduction rate of 50 to 95%, and subsequently performing recrystallization annealing.
It is a method for manufacturing a cold rolled steel sheet for ultra deep drawing.

(作用) 以下、この発明について詳細に説明する。(Operation) Hereinafter, the present invention will be described in detail.

(1)鋼成分について、 この発明において鋼成分は重要であり、 C:0.008%以下,Si:0.5%以下,Mn:1.0%以下,P:0.15%以
下,S:0.02%以下, Al:0.010〜0.10%,N:0.008%以下,Ti:0.035〜0.20%,N
b:0.001〜0.015%でかつC,N,Sの量とTiおよびNbの添加
量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係を満足するものでなければならない。また耐2次
加工脆性および値の異方性の改善のためにはB:0.0001
〜0.0010%添加する必要がある。
(1) Steel composition In this invention, steel composition is important, C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, Al: 0.010 ~ 0.10%, N: 0.008% or less, Ti: 0.035 ~ 0.20%, N
b: 0.001 to 0.015%, and the amount of C, N, S and the amounts of Ti and Nb added satisfy the relationship of 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93). There must be. In addition, B: 0.0001 for improving the secondary work embrittlement resistance and value anisotropy.
~ 0.0010% must be added.

鋼成分が上記の条件を満たさなければ、優れた深絞り性
を得ることができない。以下、各々の成分の限定理由に
ついて説明する。
If the steel composition does not satisfy the above conditions, excellent deep drawability cannot be obtained. The reasons for limiting each component will be described below.

(a)C:0.008%以下、 Cは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.008%以下ではさほど悪影響を
およぼさないので0.008%以下に限定した。
(A) C: 0.008% or less, and the smaller the content of C, the better the deep drawability is, but it is preferable. However, if the content of C is 0.008% or less, there is no significant adverse effect, so the content is limited to 0.008% or less.

(b)Si:0.5%以下、 Siは鋼を強化する作用があり、所望の強度に応じて必要
量添加されるが、その添加量が0.5%を越えると深絞り
性に悪影響をおよぼすので0.5%以下に限定した。
(B) Si: 0.5% or less, Si has the effect of strengthening the steel, and is added in the required amount according to the desired strength. However, if the added amount exceeds 0.5%, the deep drawability is adversely affected. % Or less.

(c)Mn:1.0%以下、 Mnは鋼を強化する作用があり、所望の強度に応じて必要
量添加されるが、その添加量が1.0%を越えると深絞り
性に悪影響をおよぼすので1.0%以下に限定した。
(C) Mn: 1.0% or less, Mn has an action of strengthening steel and is added in a required amount according to desired strength. However, if the added amount exceeds 1.0%, deep drawability is adversely affected. % Or less.

(d)P:0.15%以下、 Pは鋼を強化する作用があり、所望の強度に応じて必要
量添加されるが、その添加量が0.15%を越えると深絞り
性に悪影響をおよぼすので0.15%以下に限定した。
(D) P: 0.15% or less, P has the action of strengthening steel and is added in the required amount according to the desired strength. However, if the added amount exceeds 0.15%, deep drawability is adversely affected. % Or less.

(e)S:0.02%以下、 Sは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.02%以下ではさほど悪影響をお
よぼさないので0.02%以下に限定した。
(E) S: 0.02% or less, and the smaller the content of S is, the better the deep drawability is, but it is preferable. However, if the content of S is 0.02% or less, there is no significant adverse effect, so the content is limited to 0.02% or less.

(f)Al:0.010〜0.10%、 Alは脱酸を行い、炭窒化物形成元素の保留向上のために
必要に応じて添加されるが、0.010%以下では添加効果
がなく、一方0.10%を越えて添加してもより一層の脱酸
効果は得られないため、0.010〜0.10%に限定した。
(F) Al: 0.010 to 0.10%, Al is deoxidized and added as necessary to improve the retention of carbonitride forming elements, but if 0.010% or less, there is no addition effect, while 0.10% is added. Even if added in excess, no further deoxidizing effect can be obtained, so the content was limited to 0.010 to 0.10%.

(g)N:0.008%以下、 Nは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.008%以下ではさほど悪影響を
およぼさないので0.008%以下に限定した。
(G) N: 0.008% or less, and the smaller the content of N, the better the deep drawability, which is preferable. However, if the content of N is 0.008% or less, there is no significant adverse effect, so the content is limited to 0.008% or less.

(h)Ti:0.035〜0.20%、 Tiは炭窒化物形成元素であり、鋼中の固溶(C,N)を低
減させ、深絞り性に有利な{111}包囲を優先的に形成
させるために添加されるが、その添加量が0.035%以下
では効果がなく、一方、0.20%を超えて添加してもそれ
以上の効果が望めず、逆に表面品質の低下につながるの
で0.035〜0.20%に限定した。
(H) Ti: 0.035 to 0.20%, Ti is a carbonitride forming element, reduces solid solution (C, N) in steel, and preferentially forms {111} surroundings advantageous for deep drawability. However, if the addition amount is 0.035% or less, there is no effect, and if it is added over 0.20%, no further effect can be expected, and conversely it leads to deterioration of the surface quality. Limited to%.

(i)Nb:0.001〜0.015%、 Nbは炭化物形成元素であり、鋼中の固溶Cを低減させる
効果があるとともに、仕上熱間圧延前組織の微細化に有
効である。すなわち、たとえ鋼中の固溶(C,N)がなく
ても、仕上圧延前組織が粗大であると、熱延板に{11
1}方位が形成されにくくなる。一方、仕上圧延前組織
が微細であると、ひずみが蓄積されやすくなり、熱延板
に{111}方位が形成される。さらに、固溶Nbは圧延時
のひずみを蓄積する効果があることも明らかになった。
その含有量が0.001%未満では効果がなく、一方、0.015
%超えて添加してもそれ以上の効果は望めず、再結晶温
度が高くなるため0.001〜0.015%に限定した。
(I) Nb: 0.001 to 0.015%, Nb is a carbide-forming element, which has the effect of reducing the solid solution C in steel and is also effective in refining the microstructure before finishing hot rolling. That is, even if there is no solid solution (C, N) in the steel, if the structure before finish rolling is coarse, the
1} orientation is less likely to be formed. On the other hand, if the microstructure before finish rolling is fine, strain is likely to be accumulated and {111} orientation is formed on the hot-rolled sheet. Furthermore, it was also clarified that solute Nb has the effect of accumulating strain during rolling.
If the content is less than 0.001%, there is no effect, while 0.015%
%, No further effect can be expected and the recrystallization temperature increases, so the content was limited to 0.001 to 0.015%.

(j)B:0.0001〜0.0010%、 Bは耐2次加工脆性の改善に有効であるとともに、値
の異方性の改善にも有効である。すなわち、NbとBが共
存した場合には、Nb添加材に比べて結晶粒が微細にな
り、その結果、熱延板の値の異方性(Δr)が小さく
なる。そして、そのようなΔr値の小さい熱延板を冷延
母材とした時には、冷延板のΔr値もやはり小さくな
る。その添加量が0.0001%未満では効果がなく、一方、
0.0010%を超えると深絞り性が劣化するので0.0001〜0.
0010%に限定した。
(J) B: 0.0001 to 0.0010%, B is effective for improving the secondary work embrittlement resistance and also for improving the anisotropy of the value. That is, when Nb and B coexist, the crystal grains become finer than the Nb-added material, and as a result, the anisotropy (Δr) of the value of the hot-rolled sheet decreases. When such a hot rolled sheet having a small Δr value is used as a cold rolled base material, the Δr value of the cold rolled sheet also becomes small. If the addition amount is less than 0.0001%, there is no effect, while
If it exceeds 0.0010%, the deep drawability will deteriorate, so 0.0001 to 0.
Limited to 0010%.

(k)1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) 仕上圧延前に固溶(C,N)が存在しない場合、熱間圧延
−焼鈍後に{111}方位が優先的に形成され、熱延板の
深絞り性が向上する。この発明では、1.2(C/12+N/14
+S/32)<(Ti/48+Nb/93)とCおよびNに対して当量
以上のTiおよびNbを添加することにより、仕上圧延前に
固溶(C,N)が存在しなくなることを見出した。さらに
その時、熱延板の値が向上することを明らかにした。
そして、そのような熱延板の値が高いときには、冷延
−焼鈍後の値が格段に向上することを見出した。
(K) 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) When solid solution (C, N) does not exist before finish rolling, {111} orientation is preferential after hot rolling-annealing And the deep drawability of the hot rolled sheet is improved. In this invention, 1.2 (C / 12 + N / 14
+ S / 32) <(Ti / 48 + Nb / 93) and it was found that solid solution (C, N) does not exist before finish rolling by adding Ti and Nb in an equivalent amount or more with respect to C and N. . At that time, it was clarified that the value of the hot rolled sheet was improved.
And when the value of such a hot rolled sheet is high, it found out that the value after cold rolling-annealing improves markedly.

(2)熱間圧延工程について、 熱間圧延工程はこの発明において重要であり、950℃以
下Ar3変態点以上の温度域で熱間粗圧延を終了した後、A
r3変態点以下600℃以上の温度域で潤滑を施しつつ、圧
下率が80%以上の仕上圧延を施した後、熱延仕上温度
(FDT)と巻取り温度(CT)とが(FDT)−(CT)≦100
℃かつ(CT)≧600℃となる関係を満たす条件下で巻取
るか、あるいは950℃以下Ar3変態点以上の温度域で熱間
粗圧延を終了した後、Ar3変態点以下500℃以上の温度域
で潤滑を施しつつ、圧下率が80%以上の圧延を施した
後、再結晶焼鈍を行うことが必要である。
(2) Regarding the hot rolling process, the hot rolling process is important in the present invention. After the hot rough rolling is completed in the temperature range of 950 ° C. or lower and the Ar 3 transformation point or higher, A
while lubricating alms at r 3 transformation point 600 ° C. or higher temperature region, after the rolling reduction is subjected to finish rolling of 80% or more, hot rolling finishing temperature (FDT) and the coiling temperature (CT) is (FDT) − (CT) ≦ 100
℃ and (CT) ≧ 600 ℃ or more, after winding under the conditions that satisfy the relation of 950 ℃ or less, or after hot rough rolling in the temperature range of 950 ℃ or less Ar 3 transformation point or more, 500 ℃ or less Ar 3 transformation point It is necessary to perform recrystallization annealing after rolling at a rolling reduction of 80% or more while applying lubrication in the temperature range of.

粗圧延を950℃以上の温度域にて終了した場合には、粗
圧延後すなわち仕上圧延前の組織が粗大となるため、仕
上圧延時に導入されるひずみが蓄積されにくくなり、そ
の結果{111}方位が形成されにくくなる。また、Ar3
態点未満の温度域にて終了した場合には、粗圧延時に
{100}方位が形成されるため、深絞り性が劣化する。
一方、950℃以下Ar3変態点以上の温度域にて粗圧延を終
了した場合には、仕上圧延前組織が微細になるため、仕
上圧延時に導入されるひずみが蓄積されやすくなり、そ
の結果{111}方位が優先的に形成され、深絞り性が向
上する。なお、粗圧延時の圧下率は、組織微細化のため
50%以上が望ましい。
When the rough rolling is completed in the temperature range of 950 ° C or higher, the structure after rough rolling, that is, before finish rolling becomes coarse, so that the strain introduced during finish rolling is less likely to be accumulated, resulting in {111}. Azimuth is less likely to be formed. In addition, when finished in a temperature range below the Ar 3 transformation point, the {100} orientation is formed during rough rolling, and the deep drawability deteriorates.
On the other hand, when rough rolling is completed in a temperature range of 950 ° C. or lower and Ar 3 transformation point or higher, the structure before finish rolling becomes finer, so that strain introduced during finish rolling tends to be accumulated, resulting in { The 111} orientation is preferentially formed, and the deep drawability is improved. Note that the rolling reduction during rough rolling is due to the refinement of the structure.
50% or more is desirable.

また、仕上圧延をAr3変態点以上の温度域にて終了する
と、γ→α変態により集合組織がランダム化し、優れた
深絞り性が得られない。一方、仕上温度を500℃以下に
下げても、より一層の深絞り性の向上は望めず、圧延荷
重が増大するのみであり、圧延温度をAr3変態点以下500
℃以上とした。
Further, when the finish rolling is finished in the temperature range of the Ar 3 transformation point or higher, the texture becomes random due to the γ → α transformation, and excellent deep drawability cannot be obtained. On the other hand, even by lowering the finishing temperature to 500 ° C. or less, can not be expected even more deep drawability improving, only the rolling load increases, following the rolling temperature Ar 3 transformation point 500
It was set to ℃ or higher.

また、仕上圧延時の合計圧下率は80%以上にしないと、
圧延時{111}方位が形成されないため、深絞り性が劣
る。
Also, if the total reduction ratio during finish rolling is not more than 80%,
Since the {111} orientation is not formed during rolling, the deep drawability is poor.

さらに、仕上圧延時に潤滑圧延を行わないと、ロールと
鋼板との間の摩擦力により、鋼板表層部に付加的剪断力
が働き、その結果、鋼板表層部に深絞り性に好ましくな
い{110}方位が優先的に形成されるために、深絞り性
が劣化する。そのため、潤滑圧延は必要である。
Furthermore, if lubrication rolling is not performed during finish rolling, additional shearing force acts on the steel sheet surface layer due to the frictional force between the roll and the steel sheet, resulting in unfavorable deep drawability on the steel sheet surface layer portion. Since the orientation is preferentially formed, the deep drawability deteriorates. Therefore, lubrication rolling is necessary.

なお、圧延後再結晶焼鈍を施さない巻取り自己焼鈍材で
は、巻取り温度が600℃以上でないと再結晶が完了しな
いため、CT≧600℃とした。また、付加絞り性の向上に
は圧延温度は低い方が、また巻取り温度は高い方が有利
である。そのため、熱延仕上温度(FDT)と巻取り温度
(CT)とが(FDT)−(CT)≦100℃を満たす条件下で圧
延を施す必要がある。なお、熱間圧延後、再結晶焼鈍を
施すものについては、巻取り自己焼鈍は必要ないため、
熱延終了温度を500℃以上とし、さらに、巻取り温度も
低温でよい。
In the case of the self-annealing material for winding that is not subjected to recrystallization annealing after rolling, CT ≧ 600 ° C. because recrystallization is not completed unless the winding temperature is 600 ° C. or higher. Further, in order to improve the additional drawability, it is advantageous that the rolling temperature is low and the winding temperature is high. Therefore, it is necessary to perform the rolling under the condition that the hot rolling finish temperature (FDT) and the coiling temperature (CT) satisfy (FDT) − (CT) ≦ 100 ° C. Incidentally, for those subjected to recrystallization annealing after hot rolling, winding self-annealing is not necessary,
The hot rolling end temperature may be 500 ° C. or higher, and the winding temperature may be low.

熱延後の再結晶焼鈍は、連続焼鈍あるいは箱型焼鈍のど
ちらでもよい。焼鈍温度は、550〜950℃の範囲が適す
る。また加熱速度も10℃/hr〜50℃/sの範囲でよい。
Recrystallization annealing after hot rolling may be either continuous annealing or box annealing. The annealing temperature is preferably in the range of 550 to 950 ° C. The heating rate may be in the range of 10 ° C / hr to 50 ° C / s.

(3)冷間圧延工程について、 この工程は、高い値を得るために必須であり、冷間圧
下率は50〜95%とすることが不可欠である。かかる冷延
圧下率が50%未満または95%を超えると、優れた深絞り
性を得ることができない。
(3) Regarding the cold rolling step, this step is indispensable for obtaining a high value, and it is indispensable to set the cold reduction rate to 50 to 95%. When the cold rolling reduction is less than 50% or more than 95%, excellent deep drawability cannot be obtained.

(4)焼鈍工程について、 冷間圧延工程を経た冷延鋼帯は、再結晶焼鈍を施す必要
がある。焼鈍方法は、箱型焼鈍法および連続型焼鈍法の
いずれでもよいが加熱温度は再結晶温度(約600℃)か
ら950℃の範囲とする。
(4) Regarding the annealing step The cold rolled steel strip that has undergone the cold rolling step needs to be subjected to recrystallization annealing. The annealing method may be either a box annealing method or a continuous annealing method, but the heating temperature is in the range of recrystallization temperature (about 600 ° C) to 950 ° C.

焼鈍後の鋼帯には形状矯正、表面粗度等の調整のために
10%以下の調質圧延を加えてもよい。
The steel strip after annealing is used for shape correction and surface roughness adjustment.
You may add temper rolling of 10% or less.

なお、この発明で得られた冷延鋼板は、加工用表面処理
鋼板の原板にも適用できる。表面処理としては、亜鉛め
っき(合金系含む)、すずめっき、ほうろうなどがあ
る。
The cold-rolled steel sheet obtained by the present invention can also be applied to an original plate of a surface-treated steel sheet for working. Surface treatments include zinc plating (including alloys), tin plating, enamel and the like.

(実施例) 表1に示す組成になる鋼スラブを1150℃で加熱−均熱
後、表2に示す条件の下に、粗圧延次いで仕上圧延を行
い引き続き酸洗を経て、冷間圧延を施し、さらに830℃
−40sの焼鈍処理をほどこした。
(Example) After heating and soaking the steel slab having the composition shown in Table 1 at 1150 ° C., under the conditions shown in Table 2, rough rolling, finish rolling, pickling, cold rolling, and further 830 ° C.
It was annealed for -40s.

冷延−焼鈍後の材料特性を表2に併せて示す。なお引張
特性はJIS5号引張試験片を使用して、測定し、また値
は15%引張予ひずみを与えた後、3点法にて測定し、L
方向(圧延方向)、D方向(圧延方向に45゜方向)およ
びC方向(圧延方向90゜方向)の平均値および異方性 =(rL+2rD+rC)/4, Δr=(rL−2rD+rC)/2 として求めた。また、耐2次加工脆性の評価としては、
限界絞り比3.8にて加工した円筒型サンプルを−50℃に
冷却した後、圧漬試験を行い、脆性割れの発生の有無に
て評価した。
The material properties after cold rolling-annealing are also shown in Table 2. The tensile properties were measured using JIS No. 5 tensile test pieces, and the values were measured by the 3-point method after applying a 15% tensile prestrain.
Direction (rolling direction), D direction (45 ° rolling direction) and C direction (90 ° rolling direction) average value and anisotropy = (r L + 2r D + r C ) / 4, Δr = (r L It was calculated as −2r D + r C ) / 2. Further, as the evaluation of the secondary processing brittleness resistance,
A cylindrical sample processed with a limiting drawing ratio of 3.8 was cooled to −50 ° C., and then a pressure test was conducted to evaluate whether or not brittle cracking occurred.

この発明に従って製造した冷延鋼板は、比較例に比べて
優れた深絞り性と耐2次加工脆性を有することが分か
る。
It can be seen that the cold rolled steel sheet produced according to the present invention has excellent deep drawability and secondary work embrittlement resistance as compared with the comparative example.

また、表1に示す組成になる鋼スラブを1150℃で加熱−
均熱後、表3に示す条件の下に粗圧延、次いで仕上圧延
を行い、引き続き酸洗を経てからNo.11〜15については8
30℃−60sの急速加熱焼鈍を、またNo.16〜20については
750℃−5hrの箱型焼鈍を施し、引き続き酸洗さらに、冷
間圧延を施した後、830℃−40sの焼鈍を施した。
In addition, a steel slab having the composition shown in Table 1 was heated at 1150 ° C.
After soaking, rough rolling was performed under the conditions shown in Table 3, then finish rolling, followed by pickling, and then No. 11 to No. 8
Rapid heating annealing at 30 ℃ -60s, and for Nos. 16-20,
Box-shaped annealing was performed at 750 ° C for 5 hours, followed by pickling, cold rolling, and then annealing at 830 ° C for 40 seconds.

冷延−焼鈍後の冷延板の材料特性を表3に併せて示す。Table 3 also shows the material properties of the cold rolled sheet after cold rolling and annealing.

この発明に従って製造した冷延鋼板は深絞り性、耐2次
加工脆性共に良好であることが確かめられた。
It was confirmed that the cold-rolled steel sheet manufactured according to the present invention has good deep drawability and secondary work embrittlement resistance.

(発明の効果) この発明によれば製造コストの上昇等を招くことなしに
従来よりも格段に優れた深絞り性を有する冷延板の製造
が可能となる。
(Effects of the Invention) According to the present invention, it is possible to manufacture a cold-rolled sheet having a deep drawability that is far superior to conventional ones without causing an increase in manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は熱延板および冷延板の値におよぼす鋼成分の
影響を示すグラフ、 第2図は熱延板および冷延板の値におよぼす粗圧延終
了温度の影響を示すグラフ、 第3図は熱延板および冷延板の値におよぼす巻取り温
度の影響を示すグラフである。
FIG. 1 is a graph showing the effect of steel components on the values of hot-rolled sheet and cold-rolled sheet, and FIG. 2 is a graph showing the effect of rough rolling end temperature on the values of hot-rolled sheet and cold-rolled sheet. The figure is a graph showing the influence of the winding temperature on the values of the hot-rolled sheet and the cold-rolled sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角山 浩三 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (56)参考文献 特開 昭63−145720(JP,A) 特開 昭63−121623(JP,A) 特開 昭63−86819(JP,A) 特開 昭63−76848(JP,A) 実開 昭61−119621(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kozo Kadoyama 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Headquarters (56) References JP 63-145720 (JP, A) JP 63 -121623 (JP, A) JP-A-63-86819 (JP, A) JP-A-63-76848 (JP, A) Actually opened 61-119621 (JP, U)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.008wt%以下,Si:0.5wt%以下, Mn:1.0wt%以下,P:0.15wt%以下, S:0.02wt%以下,Al:0.010〜0.10wt%, N:0.008wt%以下,Ti:0.035〜0.20wt%およびNb:0.001〜
0.015wt%を含有しかつC,N,Sの量とTiおよびNbの添加量
とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係になる鋼を、950℃以下Ar3変態点以上の温度域で
熱間粗圧延した後、Ar3変態点以下600℃以上の温度域で
潤滑を施しつつ、80%以上の圧下率にて仕上圧延を行
い、次いで熱延仕上温度(FDT)と巻取り温度(CT)と
が、 (FDT)−(CT)≦100℃かつ(CT)≧600℃ の関係を満たす条件下で巻取り、その後50〜95%の圧下
率で冷間圧延を施し、引き続き再結晶焼鈍を行うことを
特徴とする、超深絞り用冷延鋼板の製造方法。
1. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, Al: 0.010 to 0.10 wt%, N: 0.008 wt% or less, Ti: 0.035 to 0.20 wt% and Nb: 0.001 to
A steel containing 0.015 wt% and in which the amounts of C, N, S and the amounts of Ti and Nb added were 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) ° C. after rough hot rolling at Ar 3 transformation point or higher temperature region below with performing lubricated with Ar 3 transformation point 600 ° C. or higher temperature range, performs finish rolling at 80% or higher reduction rate, then heat Winding under the condition that the final finishing temperature (FDT) and the winding temperature (CT) satisfy the relations of (FDT)-(CT) ≤ 100 ° C and (CT) ≥ 600 ° C, and then reduce by 50 to 95%. Method for producing a cold-rolled steel sheet for ultra deep drawing, which comprises performing cold rolling at a constant rate and then performing recrystallization annealing.
【請求項2】C:0.008wt%以下,Si:0.5wt%以下, Mn:1.0wt%以下,P:0.15wt%以下, S:0.02wt%以下,Al:0.010〜0.10wt%, N:0.008wt%以下,Ti:0.035〜0.20wt%, Nb:0.001〜0.015wt%およびB:0.0001〜0.0010wt%を含
有しかつC,N,Sの量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係になる鋼を、950℃以下Ar3変態点以上の温度域で
熱間粗圧延した後、Ar3変態点以下600℃以上の温度域で
潤滑を施しつつ、80%以上の圧下率にて仕上圧延を行
い、次いで熱延仕上温度(FDT)と巻取り温度(CT)と
が、 (FDT)−(CT)≦100℃かつ(CT)≧600℃ の関係を満たす条件下で巻取り、その後50〜95%の圧下
率で冷間圧延を施し、引き続き再結晶焼鈍を行うことを
特徴とする、超深絞り用冷延鋼板の製造方法。
2. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, Al: 0.010 to 0.10 wt%, N: 0.008 wt% or less, Ti: 0.035 to 0.20 wt%, Nb: 0.001 to 0.015 wt% and B: 0.0001 to 0.0010 wt%, and the amount of C, N, S and the addition amount of Ti and Nb are 1.2. Steel that has a relationship of (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) is hot-roughly rolled in a temperature range of 950 ° C or lower and Ar 3 transformation point or higher, and then Ar 3 transformation point or lower 600 ° C. While rolling in the above temperature range, finish rolling is performed at a reduction ratio of 80% or more, and then the hot rolling finish temperature (FDT) and the coiling temperature (CT) are (FDT)-(CT) ≤ 100 ℃ and (CT) ≧ 600 ℃ under the conditions that satisfy the relationship, then cold rolling at a reduction rate of 50 ~ 95%, followed by recrystallization annealing, characterized by ultra deep drawing cold. Manufacturing method of rolled steel sheet.
【請求項3】C:0.008wt%以下,Si:0.5wt%以下, Mn:1.0wt%以下,P:0.15wt%以下, S:0.02wt%以下,Al:0.010〜0.10wt%, N:0.008wt%以下,Ti:0.035〜0.20wt%, およびNb:0.001〜0.015wt%を含有しかつC,N,Sの量とTi
およびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係になる鋼を、950℃以下Ar3変態点以上の温度域で
熱間粗圧延した後、Ar3変態点以下500℃以上の温度域で
潤滑を施しつつ、80%以上の圧下率にて仕上圧延を行
い、次いで、再結晶焼鈍後50〜95%の圧下率で冷間圧延
を施し、引き続き再結晶焼鈍を行うことを特徴とする、
超深絞り用冷延鋼板の製造方法。
3. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, Al: 0.010 to 0.10 wt%, N: 0.008 wt% or less, Ti: 0.035 to 0.20 wt%, and Nb: 0.001 to 0.015 wt%, and the amount of C, N, S and Ti
Steel with a relationship of 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) with Nb addition amount was subjected to hot rough rolling in the temperature range below 950 ° C and above the Ar 3 transformation point. After that, finish rolling at a reduction rate of 80% or more while performing lubrication in a temperature range of 500 ° C or less below the Ar 3 transformation point, and then cold rolling at a reduction rate of 50 to 95% after recrystallization annealing. Characterized by performing recrystallization annealing subsequently,
Manufacturing method of cold rolled steel sheet for ultra deep drawing.
【請求項4】C:0.008wt%以下,Si:0.5wt%以下, Mn:1.0wt%以下,P:0.15wt%以下, S:0.02wt%以下,Al:0.010〜0.10wt%, N:0.008wt%以下,Ti:0.035〜0.20wt%, Nb:0.001〜0.015wt%およびB:0.0001〜0.0010wt%を含
有しかつC,N,Sの量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係になる鋼を、950℃以下Ar3変態点以上の温度域で
熱間粗圧延した後、Ar3変態点以下500℃以上の温度域で
潤滑を施しつつ、80%以上の圧下率にて仕上圧延を行
い、次いで、再結晶焼鈍後50〜95%の圧下率で冷間圧延
を施し、引き続き再結晶焼鈍を行うことを特徴とする、
超深絞り用冷延鋼板の製造方法。
4. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, Al: 0.010 to 0.10 wt%, N: 0.008 wt% or less, Ti: 0.035 to 0.20 wt%, Nb: 0.001 to 0.015 wt% and B: 0.0001 to 0.0010 wt%, and the amount of C, N, S and the addition amount of Ti and Nb are 1.2. Steel that has a relationship of (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) is hot-roughly rolled in a temperature range of 950 ° C or less and Ar 3 transformation point or higher, and then 500 ° C or less of Ar 3 transformation point. While performing lubrication in the above temperature range, finish rolling at a reduction rate of 80% or more, then cold rolling at a reduction rate of 50 to 95% after recrystallization annealing, and then perform recrystallization annealing. Characterized by,
Manufacturing method of cold rolled steel sheet for ultra deep drawing.
JP63194566A 1988-08-05 1988-08-05 Manufacturing method of cold rolled steel sheet for ultra deep drawing Expired - Fee Related JPH07107179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63194566A JPH07107179B2 (en) 1988-08-05 1988-08-05 Manufacturing method of cold rolled steel sheet for ultra deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63194566A JPH07107179B2 (en) 1988-08-05 1988-08-05 Manufacturing method of cold rolled steel sheet for ultra deep drawing

Publications (2)

Publication Number Publication Date
JPH0247222A JPH0247222A (en) 1990-02-16
JPH07107179B2 true JPH07107179B2 (en) 1995-11-15

Family

ID=16326662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63194566A Expired - Fee Related JPH07107179B2 (en) 1988-08-05 1988-08-05 Manufacturing method of cold rolled steel sheet for ultra deep drawing

Country Status (1)

Country Link
JP (1) JPH07107179B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150211A (en) * 1997-08-05 1999-02-23 Kawasaki Steel Corp Thick cold rolled steel plate excellent in deep drawing workability and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07812B2 (en) * 1984-11-16 1995-01-11 新日本製鐵株式会社 Manufacturing method of cold-rolled steel sheet for deep drawing
JPH0823049B2 (en) * 1986-07-29 1996-03-06 新日本製鐵株式会社 Manufacturing method of steel sheet with excellent deep drawability
JPS6376848A (en) * 1986-09-19 1988-04-07 Kawasaki Steel Corp Cold rolled steel sheet for extra deep drawing and its manufacture
JPS6386819A (en) * 1986-09-30 1988-04-18 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing
JPS63121623A (en) * 1986-11-11 1988-05-25 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing having excellent ridging resistance and chemical convertibility

Also Published As

Publication number Publication date
JPH0247222A (en) 1990-02-16

Similar Documents

Publication Publication Date Title
KR970000406B1 (en) High strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
JP3484805B2 (en) Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JP3493722B2 (en) Method for producing ferritic stainless steel strip with excellent stretch formability
JP2781297B2 (en) Method for producing cold rolled thin steel sheet with excellent secondary work brittleness and low in-plane anisotropy
JPH07107179B2 (en) Manufacturing method of cold rolled steel sheet for ultra deep drawing
JPH0144771B2 (en)
JP2948416B2 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet with excellent deep drawability
JP4599768B2 (en) Highly ductile cold-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP3370443B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JPH0776381B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP3369619B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in deep drawability and ductility and method for producing hot-dip galvanized steel sheet
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JPH0670255B2 (en) Method for producing hot-rolled steel sheet for deep drawing with excellent surface properties
JPH0668129B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
JP3401290B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JP3420313B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JPH07103424B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JPH0892656A (en) Production of cold rolled steel sheet excellent in deep drawability
JP3806983B2 (en) Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing
JPH07166292A (en) Hot rolled high strength steel plate excellent in drawability and production thereof
JP3043902B2 (en) Method for producing high-strength cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent deep drawability
JPH10130737A (en) Production of cold rolled steel sheet and hot dip galvanized steel sheet having high ductility

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees