JPH07106698A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH07106698A
JPH07106698A JP24295293A JP24295293A JPH07106698A JP H07106698 A JPH07106698 A JP H07106698A JP 24295293 A JP24295293 A JP 24295293A JP 24295293 A JP24295293 A JP 24295293A JP H07106698 A JPH07106698 A JP H07106698A
Authority
JP
Japan
Prior art keywords
layer
active layer
strained
impurities
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24295293A
Other languages
Japanese (ja)
Inventor
Koichi Miyazaki
公一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP24295293A priority Critical patent/JPH07106698A/en
Publication of JPH07106698A publication Critical patent/JPH07106698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a highly reliable light emitting element by inhibiting unnecessary diffusion of impurities, especially to an active layer, during growth thereby controlling the position of impurities being present locally in the vicinity of the active layer. CONSTITUTION:At least a clad layer 2 of first conductivity type, an active layer 5, and a clad layer 8 of second conductivity type are formed on a semiconductor substrate 1 and strain layers 3, 7 are formed at least in one clad layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光素子、例えば
III-V族化合物半導体等より成る半導体発光素子、特に
半導体レーザに係わる。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor light emitting device, for example,
The present invention relates to a semiconductor light emitting device made of a III-V group compound semiconductor or the like, particularly a semiconductor laser.

【0002】[0002]

【従来の技術】例えばAlGaAs系半導体レーザ等の
発光素子において、その製造にあたってMOCVD(有
機金属気相化学成長法)やMBE(分子線エピタキシー
法)等によりp型又はn型の不純物をドーピングしなが
らエピタキシャル成長する場合、成長温度が600〜7
00℃程度と比較的高いと、Zn、Se等の不純物が拡
散してしまい、成長層中の所望の領域からずれた位置に
移動してしまう場合がある。
2. Description of the Related Art For example, in a light emitting device such as an AlGaAs semiconductor laser, p-type or n-type impurities are doped by MOCVD (metal organic chemical vapor deposition) or MBE (molecular beam epitaxy) during its manufacture. When epitaxially growing, the growth temperature is 600 to 7
If the temperature is relatively high at about 00 ° C., impurities such as Zn and Se may diffuse and move to a position deviated from a desired region in the growth layer.

【0003】例えばp型不純物のZn等が活性層に入り
込むと、不必要なエネルギーレベルが生じてしまい、発
光素子の応答性が劣化して、例えばパルス発振時にパル
ス波形と光波形とがずれてしまう等の不都合が生じる。
For example, when p-type impurities such as Zn enter the active layer, an unnecessary energy level is generated, and the response of the light emitting element is deteriorated. For example, the pulse waveform and the optical waveform are deviated during pulse oscillation. It causes inconvenience such as being lost.

【0004】このような不純物の拡散を防止するため
に、例えばその一例の略線的拡大断面図を図4に示すよ
うに、活性層5に近接してノンドープ層4、6を設定す
る構成が提案されている。図4において1は半導体基
体、2は第1導電型例えばn型のクラッド層、4は第1
導電型のノンドープクラッド層、5は活性層、6は第2
導電型例えばp型のノンドープクラッド層、8は第2導
電型のクラッド層、9はキャップ層、10及び11は電
極を示す。
In order to prevent such diffusion of impurities, for example, as shown in an enlarged schematic cross-sectional view of an example thereof, a configuration in which non-doped layers 4 and 6 are set close to the active layer 5 is provided. Proposed. In FIG. 4, 1 is a semiconductor substrate, 2 is a first conductivity type, for example, n-type cladding layer, and 4 is a first
Conductive non-doped cladding layer, 5 is an active layer, 6 is a second layer
A conductive type, for example, p-type non-doped clad layer, 8 is a second conductive type clad layer, 9 is a cap layer, and 10 and 11 are electrodes.

【0005】しかしながらこの場合、ノンドーピング層
の厚さを大とすると特性温度の低下、直列抵抗の増大を
招く恐れがある。更にまた、実際に成長回数が増加する
に伴い炉心管ベーキングを実施しても成長装置内の系全
体に不純物が残留して成長した素子毎のノンドープのレ
ベルが変動してしまい、特性のばらつきが生じる恐れが
あるという問題がある。
However, in this case, if the thickness of the non-doping layer is increased, the characteristic temperature may be lowered and the series resistance may be increased. Furthermore, as the number of times of growth actually increases, even if core tube baking is performed, impurities remain in the entire system in the growth apparatus and the non-doping level of each grown element fluctuates, resulting in variations in characteristics. There is a problem that it may occur.

【0006】また更に、成長温度を低下させて不純物の
拡散を抑制しようとすると、成長した半導体層の表面状
態、即ち滑らかさが悪くなるという問題が生じる。更に
また成長速度を増加させる方法も提案されているが、膜
厚の制御が困難となり不純物のドーピングレベルを制御
できなくなって成長毎のばらつきが大きくなるという不
都合がある。
Further, if the growth temperature is lowered to suppress the diffusion of impurities, there arises a problem that the surface state of the grown semiconductor layer, that is, the smoothness is deteriorated. Further, a method of increasing the growth rate has also been proposed, but there is a disadvantage in that it is difficult to control the film thickness, and it becomes impossible to control the doping level of impurities, resulting in large variation in each growth.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述したよ
うな成長時の不純物の不必要な拡散、特に活性層に及ぶ
拡散をより確実に抑制して、活性層近傍に局在する不純
物の位置を制御することにより高い信頼性の半導体発光
素子を提供する。
DISCLOSURE OF THE INVENTION The present invention more reliably suppresses the unnecessary diffusion of impurities during growth as described above, especially the diffusion reaching the active layer, and prevents the impurities localized in the vicinity of the active layer. A highly reliable semiconductor light emitting device is provided by controlling the position.

【0008】[0008]

【課題を解決するための手段】本発明は、その一例の略
線的拡大断面図を図1に示すように、半導体基体1上に
少なくとも第1導電型のクラッド層2、活性層5及び第
2導電型のクラッド層8を有して成り、少なくとも一方
のクラッド層中に歪層3、7を設ける。また本発明は、
上述の構成において活性層5と歪層3、7との間を50
nm以上500nm未満とする。更に本発明は、上述の
構成において歪層3、7をクラッド層の組成変調により
構成する。また更に本発明は、上述の各構成において半
導体発光素子を半導体レーザとする。
According to the present invention, as shown in FIG. 1 which is an enlarged schematic sectional view of an example thereof, at least a first conductivity type cladding layer 2, an active layer 5 and a first conductivity type are provided on a semiconductor substrate 1. It has a clad layer 8 of two conductivity type, and strain layers 3 and 7 are provided in at least one clad layer. Further, the present invention is
In the above-mentioned structure, 50 is provided between the active layer 5 and the strained layers 3 and 7.
nm to less than 500 nm. Further, in the present invention, the strained layers 3 and 7 in the above-described structure are formed by compositional modulation of the clad layer. Furthermore, in the present invention, the semiconductor light emitting element is a semiconductor laser in each of the above configurations.

【0009】[0009]

【作用】上述したように本発明においては、少なくとも
一方のクラッド層中に歪層3、7を設けるもので、この
ように歪層を設けるとZn等の不純物がこの歪層に集中
し易い傾向があることから、活性層5中に不純物が入り
込むことを抑制することができる。
As described above, in the present invention, the strained layers 3 and 7 are provided in at least one of the cladding layers. When the strained layer is provided in this way, impurities such as Zn tend to be concentrated in this strained layer. Therefore, it is possible to prevent impurities from entering the active layer 5.

【0010】特に活性層5と歪層3、7との間隔を50
nm以上500nm未満とすることによって、確実に活
性層5への不純物の拡散を防ぐことができる。
Particularly, the distance between the active layer 5 and the strained layers 3 and 7 is set to 50.
The thickness of not less than 500 nm and less than 500 nm can reliably prevent the diffusion of impurities into the active layer 5.

【0011】またこのような歪層をクラッド層の組成変
調により構成することによって、その製造にあたって成
長装置内での原料ガスの切り換え等によって簡単且つ精
度良くその厚さ等を制御することができる。
Further, by constructing such a strained layer by compositional modulation of the cladding layer, it is possible to easily and accurately control the thickness and the like of the strained layer by switching the source gas in the growth apparatus or the like.

【0012】更にこのような構成を半導体レーザに適用
することによって、より信頼性が高く、且つ応答性の良
好な素子を得ることができる。
Further, by applying such a structure to a semiconductor laser, it is possible to obtain an element having higher reliability and good response.

【0013】[0013]

【実施例】以下本発明実施例を図面を参照して詳細に説
明する。この例においては、AlGaAs系化合物半導
体レーザに本発明を適用し、特に歪層としてAl濃度を
変調させて構成した場合を示す。
Embodiments of the present invention will now be described in detail with reference to the drawings. In this example, the present invention is applied to an AlGaAs-based compound semiconductor laser, and in particular, the strained layer is formed by modulating the Al concentration.

【0014】図1に示すように、例えばn型のGaAs
等より成る半導体基体1を用意し、この上に例えばn型
Al0.45Ga0.55As等より成りSeがドープされた第
1導電型のクラッド層2、Al濃度が上記クラッド層2
に比し例えば低い濃度とされた例えばAl0.30Ga0.70
Asより成るノンドープの歪層3、同様にノンドープの
例えばn型のAl0.45Ga0.55As等より成る第1導電
型のノンドープクラッド層4、Al0.10Ga0.90As等
より成る活性層4、例えばp型のAl0.45Ga 0.55As
より成る第2導電型のノンドープのクラッド層6、例え
ばAl0.30Ga 0.70Asより成る歪層7、Znドープの
例えばp型のAl0.45Ga0.55As等より成る第2導電
型のクラッド層8、更にp型のGaAs等より成るキャ
ップ層9が順次例えばMOCVD等によりエピタキシャ
ル成長されて成る。
As shown in FIG. 1, for example, n-type GaAs
A semiconductor substrate 1 made of, for example, n-type
Al0.45Ga0.55The first layer made of As and doped with Se
1 conductivity type clad layer 2, Al concentration is the above clad layer 2
Al, which has a lower concentration than that of0.30Ga0.70
A non-doped strained layer 3 made of As, also a non-doped strained layer 3.
For example, n-type Al0.45Ga0.55First conductivity made of As, etc.
Type non-doped cladding layer 4, Al0.10Ga0.90As, etc.
Active layer 4 made of, for example, p-type Al0.45Ga 0.55As
A second conductivity type non-doped cladding layer 6 of, for example,
If Al0.30Ga 0.70Strained layer 7 made of As, Zn-doped
For example, p-type Al0.45Ga0.55Second conductivity made of As, etc.
Type clad layer 8 and a cap made of p type GaAs or the like.
The top layer 9 is sequentially formed, for example, by MOCVD or the like.
It will be grown up.

【0015】これらの構成において各層の厚さとして
は、例えば第1導電型及び第2導電型のクラッド層2、
8は1.5μm、歪層3、7としては30nm前後の例
えば50nm、第1導電型及び第2導電型のノンドープ
クラッド層4、6としては例えば50〜500nmの例
えば100nm、活性層5としては例えば50nmとす
ることができる。
In these structures, the thickness of each layer is, for example, the first conductivity type and second conductivity type cladding layers 2,
8 is 1.5 μm, the strained layers 3 and 7 are around 30 nm, for example 50 nm, the first conductivity type and second conductivity type non-doped cladding layers 4 and 6 are, for example, 50 to 500 nm, for example 100 nm, and the active layer 5 is For example, it can be 50 nm.

【0016】このように歪層を設ける場合と設けない場
合との不純物の拡散態様を特にp型不純物のZnを用い
て調べた結果、図2に示すように本発明構成においては
活性層中の不純物の絶対量の低減化や、偏析量及び位置
を制御することができるのに対し、歪層を設けない比較
例においては、図3に示すように不純物濃度のピークが
活性層近傍となってしまい、上述したような活性層中の
不純物濃度の制御及び偏析位置を制御しにくいことがわ
かる。
As a result of investigating the manner of diffusion of the impurities with and without the strained layer using Zn, which is a p-type impurity, as shown in FIG. While the absolute amount of impurities can be reduced and the segregation amount and position can be controlled, in the comparative example in which the strained layer is not provided, the peak of the impurity concentration is near the active layer as shown in FIG. Therefore, it is difficult to control the impurity concentration and the segregation position in the active layer as described above.

【0017】従って、歪層を設ける本発明によれば不純
物の偏析位置を制御することによって活性層への不純物
の拡散をより確実に抑制することができ、不純物の入り
込みによる活性層内の不必要なエネルギーレベルの発
生、応答性の劣化等を回避して信頼性の向上をはかるこ
とができる。
Therefore, according to the present invention in which the strained layer is provided, the diffusion of the impurity into the active layer can be more surely suppressed by controlling the segregation position of the impurity, which is unnecessary in the active layer due to the entry of the impurity. It is possible to improve reliability by avoiding generation of various energy levels and deterioration of responsiveness.

【0018】また特に、上述したように歪層3、7と活
性層5との間をノンドープ層とすることによって確実に
不純物の活性層5への拡散を防ぐことができる。この場
合ノンドープ層4、6の厚さ即ち歪層と活性層との間隔
を50nm以上500nm未満、望ましくは100nm
以上200nm以下とすることによって、上述したよう
に活性層5への不純物の拡散を確実に防ぐことができる
と共に、ノンドープ層の膜厚増大による直列抵抗の増化
を防止することができる。
In particular, as described above, by forming a non-doped layer between the strained layers 3 and 7 and the active layer 5, it is possible to reliably prevent diffusion of impurities into the active layer 5. In this case, the thickness of the non-doped layers 4 and 6, that is, the distance between the strained layer and the active layer is 50 nm or more and less than 500 nm, preferably 100 nm.
By setting the thickness to 200 nm or less, it is possible to reliably prevent the diffusion of impurities into the active layer 5 as described above, and it is possible to prevent the series resistance from increasing due to the increase in the film thickness of the non-doped layer.

【0019】また、上述したように活性層5への不純物
拡散を防止できることから、活性層として例えば量子井
戸構造を適用するいわゆる人工格子を作製する場合にそ
の格子の破壊を防ぐことができ、従って低閾値で高出
力、且つ信頼性の高い半導体レーザを得ることができ
る。
Further, since it is possible to prevent the diffusion of impurities into the active layer 5 as described above, it is possible to prevent the lattice from being broken when a so-called artificial lattice in which, for example, a quantum well structure is applied as the active layer is produced. It is possible to obtain a highly reliable semiconductor laser with a low threshold and a high output.

【0020】更にまた、Al濃度がクラッド層に比し低
く従ってクラッド層に比し屈折率が高くなる歪層を設け
る上述の例においては、この歪層が光をひっぱる作用が
あることから、例えば数10mW以上の高出力動作を行
うレーザの場合は、上述したように活性層との間隔を1
00nmとするときはこの歪層の厚さを30nm前後と
することが望ましく、更に間隔を大とする場合は膜厚を
大とすることができ、また活性層により近づける場合は
その膜厚をより小とする必要がある。
Furthermore, in the above-described example in which the strained layer whose Al concentration is lower than that of the clad layer and therefore has a higher refractive index than that of the clad layer is provided, this strained layer has a function of pulling light. In the case of a laser performing a high power operation of several tens of mW or more, the distance from the active layer is set to 1 as described above.
When the thickness is 00 nm, it is desirable that the thickness of the strained layer be around 30 nm. When the distance is further increased, the film thickness can be increased, and when the distance is closer to the active layer, the film thickness can be further increased. Need to be small.

【0021】またこの歪層のAl濃度はいわゆる光吸収
層即ち活性層と同程度以下とはならない程度とする。つ
まり活性層をAlx Ga1-x As、歪層をAlz Ga
1-z Asとするとxが例えば0.3のとき、zとして上
述したように0.1〜0.2とすることが望ましい。
The Al concentration of the strained layer is set to a level not lower than the so-called light absorption layer, that is, the active layer. That is, the active layer is Al x Ga 1-x As and the strained layer is Al z Ga.
Assuming 1-z As, when x is 0.3, for example, z is preferably 0.1 to 0.2 as described above.

【0022】更にまた、Al濃度を高濃度側に組成変調
して歪層を形成することもできる。例えば上述の組成に
おいて、歪層のAl濃度zを0.4〜0.5程度とする
場合においても同様の効果が得られる。
Furthermore, the strained layer can be formed by compositionally modulating the Al concentration to the high concentration side. For example, in the above composition, the same effect can be obtained when the Al concentration z of the strained layer is set to about 0.4 to 0.5.

【0023】このような組成変調による歪層は上述した
ようにMOCVD、MBE等によるエピタキシャル成長
の際の原料ガスの流量比の変調等により簡単に形成する
ことができ、上述のAlGaAs系の他、GaInP/
AlGaInP系半導体レーザ等、各種化合物半導体発
光装置、半導体レーザ装置に適用することができること
はいうまでもない。
The strained layer due to such compositional modulation can be easily formed by modulation of the flow rate ratio of the source gas at the time of epitaxial growth by MOCVD, MBE, etc. as described above. In addition to the above AlGaAs system, GaInP /
It goes without saying that it can be applied to various compound semiconductor light emitting devices and semiconductor laser devices such as AlGaInP based semiconductor lasers.

【0024】また更に上述の例においては歪層を単層導
入した場合を示すが、本発明はその材料構成等において
種々の変形変更が可能であり、例えば歪層をp型クラッ
ド層内にのみ設けるとか、または歪層をクラッド層と同
様の組成の半導体層を挟んで複数層積層するとか、歪層
内に濃度分布を有する層として構成する場合においても
同様の効果が得られることはいうまでもない。
Further, in the above-mentioned example, the case where a single strained layer is introduced is shown. However, the present invention can be modified in various ways in its material constitution and the like. For example, the strained layer is only in the p-type cladding layer. It is needless to say that the same effect can be obtained in the case where the strained layer is provided, or the strained layer is formed by laminating a plurality of layers with a semiconductor layer having the same composition as that of the clad layer interposed therebetween, or when the strained layer has a concentration distribution in the strained layer. Nor.

【0025】[0025]

【発明の効果】上述したように本発明によれば、クラッ
ド層内に歪層を設けることによって不純物をこの歪層に
集中させ、これにより不純物の偏析位置を制御すること
ができることから、活性層への不純物の入り込みを抑制
し、より高い信頼性を確保することができる。
As described above, according to the present invention, by providing the strained layer in the cladding layer, the impurities can be concentrated in this strained layer, and thereby the segregation position of the impurity can be controlled. It is possible to suppress the entry of impurities into the layer and ensure higher reliability.

【0026】また、活性層への不純物拡散を抑制するこ
とができることから、人工格子即ち例えば活性層に量子
井戸構造を適用する場合にその格子の破壊を防ぐことが
でき、より高出力、低閾値で且つ信頼性の高い半導体レ
ーザの実現が可能となる。
Since the diffusion of impurities into the active layer can be suppressed, the lattice can be prevented from being broken when an artificial lattice, that is, for example, a quantum well structure is applied to the active layer, and a higher output and a lower threshold value can be obtained. It is possible to realize a highly reliable semiconductor laser.

【0027】更に不純物の偏析位置制御によって、その
分布を急峻に変調制御することができることから、周波
数特性の改善をはかることができる。
Further, by controlling the segregation position of impurities, the distribution of the impurities can be sharply modulated and controlled, so that the frequency characteristic can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の略線的拡大断面図である。FIG. 1 is an enlarged schematic cross-sectional view of an embodiment of the present invention.

【図2】本発明の作用効果の説明図である。FIG. 2 is an explanatory diagram of a function and effect of the present invention.

【図3】比較例の説明図である。FIG. 3 is an explanatory diagram of a comparative example.

【図4】従来の半導体発光素子の一例の略線的拡大断面
図である。
FIG. 4 is a schematic enlarged cross-sectional view of an example of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 半導体基体 2 第1導電型のクラッド層 3 歪層 4 第1導電型のノンドープクラッド層 5 活性層 6 第2導電型のノンドープクラッド層 7 歪層 8 第2導電型のクラッド層 9 キャップ層 10、11 電極 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 1st conductivity type clad layer 3 Strain layer 4 1st conductivity type non-doped clad layer 5 Active layer 6 2nd conductivity type non-doped clad layer 7 Strain layer 8 2nd conductivity type clad layer 9 Cap layer 10 , 11 electrodes

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基体上に少なくとも第1導電型の
クラッド層、活性層及び第2導電型のクラッド層が設け
られ、少なくとも一方のクラッド層中に歪層が設けられ
て成ることを特徴とする半導体発光素子。
1. A semiconductor substrate having at least a first conductivity type cladding layer, an active layer, and a second conductivity type cladding layer, and a strain layer provided in at least one of the cladding layers. Semiconductor light emitting device.
【請求項2】 活性層と上記歪層との間が50nm以上
500nm未満とされて成ることを特徴とする上記請求
項1に記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein the distance between the active layer and the strained layer is 50 nm or more and less than 500 nm.
【請求項3】 上記歪層が、上記クラッド層の組成変調
により構成されることを特徴とする上記請求項1又は2
に記載の半導体発光素子。
3. The strained layer is formed by compositional modulation of the cladding layer.
The semiconductor light-emitting device according to.
【請求項4】 上記請求項1又は2又は3に記載の半導
体発光素子が半導体レーザとされたことを特徴とする半
導体発光素子。
4. A semiconductor light emitting device, wherein the semiconductor light emitting device according to claim 1, 2 or 3 is a semiconductor laser.
JP24295293A 1993-09-29 1993-09-29 Semiconductor light emitting element Pending JPH07106698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24295293A JPH07106698A (en) 1993-09-29 1993-09-29 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24295293A JPH07106698A (en) 1993-09-29 1993-09-29 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH07106698A true JPH07106698A (en) 1995-04-21

Family

ID=17096672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24295293A Pending JPH07106698A (en) 1993-09-29 1993-09-29 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH07106698A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134787A (en) * 1996-04-26 2002-05-10 Sanyo Electric Co Ltd Light-emitting element and manufacturing method therefor
WO2004070851A1 (en) * 2003-02-10 2004-08-19 Showa Denko K.K. Light-emitting diode device and production method thereof
JP2004356600A (en) * 2003-03-31 2004-12-16 Hitachi Cable Ltd Semiconductor light emitting device
US7528417B2 (en) 2003-02-10 2009-05-05 Showa Denko K.K. Light-emitting diode device and production method thereof
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134787A (en) * 1996-04-26 2002-05-10 Sanyo Electric Co Ltd Light-emitting element and manufacturing method therefor
USRE42074E1 (en) 1996-04-26 2011-01-25 Sanyo Electric Co., Ltd. Manufacturing method of light emitting device
EP2383846A3 (en) * 1996-04-26 2014-10-29 Future Light Limited Liability Company Light emitting device and manufacturing method thereof
WO2004070851A1 (en) * 2003-02-10 2004-08-19 Showa Denko K.K. Light-emitting diode device and production method thereof
US7528417B2 (en) 2003-02-10 2009-05-05 Showa Denko K.K. Light-emitting diode device and production method thereof
JP2004356600A (en) * 2003-03-31 2004-12-16 Hitachi Cable Ltd Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US6597716B1 (en) Compound semiconductor laser
US5276698A (en) Semiconductor laser having an optical waveguide layer including an AlGaInP active layer
US5166945A (en) Visible light surface emitting laser device
US5270246A (en) Manufacturing method of semiconductor multi-layer film and semiconductor laser
US6639926B1 (en) Semiconductor light-emitting device
JPH07106698A (en) Semiconductor light emitting element
JP3459003B2 (en) Semiconductor device and manufacturing method thereof
JP2000164986A (en) Semiconductor light emitting device and manufacture thereof
CN115548877A (en) Laser radar-oriented 1550nm waveband high-power semiconductor laser epitaxial structure and method
US5887011A (en) Semiconductor laser
JP2001185809A (en) Semiconductor optical device and manufacturing method therefor
JP2003008147A (en) Semiconductor laser device and its manufacturing method
JP2512223B2 (en) Semiconductor laser and manufacturing method thereof
JP2000277856A (en) Self oscillation semiconductor laser system
EP0867949B1 (en) Semiconductor light-emitting device
JP4163321B2 (en) Semiconductor light emitting device
JP2909144B2 (en) Semiconductor laser device and method of manufacturing the same
US6023483A (en) Semiconductor light-emitting device
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP4192293B2 (en) AlGaAs semiconductor laser manufacturing method, AlGaAs semiconductor device manufacturing method, and compound semiconductor growth method
JP3066601B2 (en) Method for manufacturing compound semiconductor device
JP3238971B2 (en) Semiconductor laser device and method of manufacturing the same
JPH07235725A (en) Semiconductor laser element and its manufacture
JP2812000B2 (en) Compound semiconductor laser device
JP2000124553A (en) Semiconductor laser device and manufacture thereof