JPH07106549A - One-electron transistor - Google Patents

One-electron transistor

Info

Publication number
JPH07106549A
JPH07106549A JP6125421A JP12542194A JPH07106549A JP H07106549 A JPH07106549 A JP H07106549A JP 6125421 A JP6125421 A JP 6125421A JP 12542194 A JP12542194 A JP 12542194A JP H07106549 A JPH07106549 A JP H07106549A
Authority
JP
Japan
Prior art keywords
liquid crystal
transistor
electron
electron tunneling
tunneling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6125421A
Other languages
Japanese (ja)
Other versions
JP2812656B2 (en
Inventor
Hitoshi Neshiro
均 根城
Masakazu Aono
正和 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP6125421A priority Critical patent/JP2812656B2/en
Publication of JPH07106549A publication Critical patent/JPH07106549A/en
Application granted granted Critical
Publication of JP2812656B2 publication Critical patent/JP2812656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices

Abstract

PURPOSE:To form a transistor utilizing an one-electron tunneling phenomenon generated in an ordinary temperature region, by controlling its tunneling current through the voltage change applied to its electrode part at an ordinary or nearly ordinary temperature while opposing fine probes to at least its one electrode part. CONSTITUTION:In an one-electron transistor, one of liquid crystal compounds is used as its configuration molecule. The alkyl chains of the liquid crystal compounds are represented by the chemical formula of 4'-n-alkyl-4- cyanobiphenyl, and the lengths of the alkyl chains are different from each other. Each one of these molecular compounds forms a smectic liquid crystal layer at a nearly ordinary temperature. As this liquid crystal molecule, 7CB (the number m of carbons of alkyl chain is seven) is disposed on the surface of graphite. The liquid crystal molecule is very useful with respect to the control of one-electron tunneling, by virtue of the formation of its orientation structure. When external electrodes are arranged at spaces of 5mm in the one-electron transistor and an effective bias current is applied to it, the transistor utilizing one-electron tunneling at a nearly ordinary temperature can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、一電子トランジスタ
ーに関するものである。さらに詳しくは、この発明は、
室温においても形成可能な新しい一電子トンネリングト
ランジスターに関するものである。
FIELD OF THE INVENTION The present invention relates to a one-electron transistor. More specifically, the present invention is
The present invention relates to a new one-electron tunneling transistor that can be formed even at room temperature.

【0002】[0002]

【従来の技術とその課題】走査トンネル顕微鏡(ST
M)技術の発展は、物質表面の微細構造を観察するため
の手段として新しい技術地平を切拓いてきている。そし
て、この技術の発展にともなって、一電子トンネリング
の現象と、その応用の検討が進められてきており、特に
トランジスター等への応用は、注目を集めている。
2. Description of the Related Art Scanning tunneling microscope (ST
M) Technological development has opened up new technological horizons as a means for observing the fine structure of material surfaces. Along with the development of this technology, the phenomenon of one-electron tunneling and its application have been studied, and its application to transistors and the like has been attracting attention.

【0003】この一電子トランジスター(Single Electr
on Tunneling:SET)は、従来、たとえば図1に例示
したように、走査トンネル顕微鏡(STM)微細探針
(1)と、微小空隙を介して配置した金属粒子(2)、
金属酸化膜(3)および金属基板(4)という系におい
て実現されていた。この一電子トンネリング(SET)
は、金属粒子(2)としての中央電極の化学ポテンシャ
ルの離散化によって生起させるものであって、この系に
より、特有のi−vカーブが形成されることになる。こ
のカーブを模式的に示すと図2のようになり、中央電極
の余剰電荷が増減する毎に電流の変化が起きることを示
している。
This one-electron transistor (Single Electr
On tunneling (SET) is conventionally performed by, for example, as illustrated in FIG. 1, a scanning tunneling microscope (STM) fine probe (1), and metal particles (2) arranged through microscopic voids.
It has been realized in a system of a metal oxide film (3) and a metal substrate (4). This one-electron tunneling (SET)
Is generated by discretizing the chemical potential of the central electrode as the metal particles (2), and this system forms a unique iv curve. This curve is schematically shown in FIG. 2, which shows that the current changes each time the surplus charge of the central electrode increases or decreases.

【0004】このi−vカーブは、中央電極に加える電
圧の変化により、それぞれ異なるカーブが得られるの
で、一電子トンネリング現象は、新しいトランジスター
等として応用できることが期待されていた。しかしなが
ら、これまでの知見と技術によっては、たとえば図1に
例示した一電子トンネリング構造は、4K以下という極
低温下でなければ実現できないという欠点があった。こ
のため、新しいトランジスター等への応用を図るには、
実用上の大きな障害があった。
Since different iv curves can be obtained by changing the voltage applied to the central electrode, it has been expected that the one-electron tunneling phenomenon can be applied as a new transistor or the like. However, there is a drawback in that the one-electron tunneling structure illustrated in FIG. 1, for example, can be realized only at an extremely low temperature of 4 K or less, depending on the knowledge and technology obtained so far. Therefore, in order to apply it to new transistors, etc.,
There was a big obstacle in practical use.

【0005】そこで、この発明は、以上の通りの従来技
術の欠点を解消し、4K以下という極低温条件に制約さ
れることなく、室温もしくはその近傍の、より高温域に
おいて起こる一電子トンネリング現象を利用した全く新
しいトランジスターを提供することを目的としている。
Therefore, the present invention solves the above-mentioned drawbacks of the prior art, and eliminates the one-electron tunneling phenomenon that occurs in a higher temperature region at or near room temperature without being restricted by a cryogenic condition of 4K or less. The purpose is to provide a completely new transistor that was used.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、基板上に配置された複数の電極
部の間に分子が介在配置されるとともに、少なくとも一
つの電極部には微細探針が対向され、室温もしくはその
近傍においても電極部に加える電圧の変化でトンネル電
流が制御されることを特徴とする一電子トランジスター
を提供する。すなわち、この発明は、さらにまた、この
発明は、分子として、室温近傍において転移配向する液
晶等の分子を配設することをその好ましい態様としても
いる。
In order to solve the above-mentioned problems, the present invention has a structure in which molecules are arranged between a plurality of electrode portions arranged on a substrate and at least one electrode portion is Provided is a one-electron transistor in which microprobes are opposed to each other and a tunnel current is controlled by a change in a voltage applied to an electrode portion even at or near room temperature. That is, the present invention also has a preferable aspect that the present invention provides, as molecules, molecules such as liquid crystal molecules that undergo transition alignment near room temperature.

【0007】[0007]

【作用】この発明のトランジスターとしての構造は、た
とえば図3で示すことができ、その回路図はたとえば図
4で例示することができる。これは一般的な電界効果的
トランジスター(FET)(図5)と同じように考える
ことができる。この構造によって、4K以下という従来
の極低温の条件に拘束されることなく、より高温度で
の、たとえば室温近傍での一電子トンネリングを利用し
たトランジスターを実現することが可能となる。
The structure of the present invention as a transistor can be shown, for example, in FIG. 3, and its circuit diagram can be exemplified, for example, in FIG. This can be considered in the same way as a general field effect transistor (FET) (FIG. 5). With this structure, it is possible to realize a transistor utilizing one-electron tunneling at a higher temperature, for example, near room temperature, without being restricted by the conventional cryogenic condition of 4K or less.

【0008】さらに詳しく説明すると、一電子トンネリ
ング(SET)が実現するかどうかは、静電エネルギー
(e2 /2C)と、熱エネルギー(kT)との大小関係
で決まるが、ここでeは物理基礎定数であって、静電エ
ネルギーは中央電極の静電容量(C)で決定され、しか
もこの静電容量(C)は、中央電極の面積で決まること
から、中央電極構成物質をより静電容量の小さな物質に
することができれば、室温の熱エネルギーより大きな静
電エネルギーが形成されて一電子トンネリングが室温で
も生起することになる。
More specifically, whether one-electron tunneling (SET) is realized depends on the magnitude relationship between electrostatic energy (e 2 / 2C) and thermal energy (kT), where e is a physical value. This is a basic constant, and electrostatic energy is determined by the capacitance (C) of the center electrode, and this capacitance (C) is determined by the area of the center electrode. If a substance having a small capacity can be obtained, electrostatic energy larger than thermal energy at room temperature is formed, and one-electron tunneling occurs even at room temperature.

【0009】このため、この発明では、従来の金属粒子
に代えて、室温で一電子トンネリングを実現するための
物質分子を配置する。この分子は、一電子の投入によっ
て極めて大きな静電エネルギーを生じるものとして選択
することができる。その代表例としては、液晶分子を例
示することができる。もちろん、液晶分子に限定される
ことはなく、前記の通りの特性を備えた分子を選択使用
すればよい。
Therefore, in the present invention, instead of the conventional metal particles, substance molecules for realizing one-electron tunneling at room temperature are arranged. This molecule can be selected as one that produces a very large electrostatic energy upon the injection of one electron. As a typical example thereof, liquid crystal molecules can be exemplified. Of course, it is not limited to liquid crystal molecules, and molecules having the above-mentioned characteristics may be selected and used.

【0010】液晶分子の場合には、その配向構造の形成
によって、一電子トンネリングの制御に極めて有用な物
質となる。たとえば図3においては、外部電極が少くと
も5mm間隔で配置され、図4において有効なバイアス
電流が与えられることにより、室温近傍での一電子トン
ネリングを利用したトランジスターが実現される。
In the case of liquid crystal molecules, the formation of their alignment structure makes them extremely useful substances for controlling one-electron tunneling. For example, in FIG. 3, the external electrodes are arranged at intervals of at least 5 mm, and by applying an effective bias current in FIG. 4, a transistor utilizing one-electron tunneling near room temperature is realized.

【0011】以下、実施例を示し、さらに詳しくこの発
明のトランジスターについて説明する。
Examples will be shown below to describe the transistor of the present invention in more detail.

【0012】[0012]

【実施例】4′−n−アルキル−4−シアノビフェニル
(mCB)のアルキル鎖の長さの異なるそれぞれの液晶
化合物を配置分子として使用した。この分子化合物は、
室温近傍においてスメクチック液晶(LC)層を形成す
る。この液晶分子としての7CB(アルキル鎖の炭素数
m=7)をグラファイト表面に配設した。この場合、グ
ラファイトの最外表面は使用前に剥離処理し、新しい表
面を露出させた。
EXAMPLE 4'-n-Alkyl-4-cyanobiphenyl (mCB) liquid crystal compounds having different alkyl chain lengths were used as arranging molecules. This molecular compound is
A smectic liquid crystal (LC) layer is formed near room temperature. 7CB (the number of carbon atoms in the alkyl chain m = 7) as the liquid crystal molecules was arranged on the graphite surface. In this case, the outermost surface of graphite was stripped before use to expose a new surface.

【0013】STM短針としては、そのネマチック相転
移温度よりもわずかに低い温度にあるように、常温、常
圧の条件に維持し、STM像を観察し、かつ、i−vカ
ーブを測定した。i−v特性は、−200mV〜200
mVのバイアス電圧の範囲において測定した。mCBと
して、前記のものよりも炭素数の多い8CB、10C
B、12CBを用いる場合には、2層構造が観察される
が、7CBについては、異った構造がSTM像として観
察された。
As the STM short needle, the STM image was observed and the iv curve was measured while maintaining the conditions of room temperature and normal pressure so that the temperature was slightly lower than the nematic phase transition temperature. The iv characteristics are -200 mV to 200
It was measured in the range of bias voltage of mV. As mCB, 8CB and 10C having more carbon atoms than the above
When B and 12CB were used, a two-layer structure was observed, but for 7CB, a different structure was observed as an STM image.

【0014】図6は、7CBの場合のi−vカーブを示
したものであり、多段ステップ状カーブが観測される。
また、基板を白金に代え、この白金結晶表面に液晶分子
を配設した。この場合には、より明瞭な階段ステップ状
のi−vカーブ特性が得られた。さらに、基板をAu等
の金属に変更して同様のSTM観察及びi−vカーブの
測定を行なった。探針素材との各種組合せによって、そ
れらの結果には差異が見られたが、液晶分子を用いるこ
とによる有効性については上記と同様にして確認され
た。
FIG. 6 shows an iv curve in the case of 7CB, and a multi-step curve is observed.
Further, the substrate was replaced with platinum, and liquid crystal molecules were arranged on the platinum crystal surface. In this case, a clearer step-step iv curve characteristic was obtained. Further, the substrate was changed to a metal such as Au and the same STM observation and iv curve measurement were performed. Although the results were different depending on various combinations with the probe material, the effectiveness of using liquid crystal molecules was confirmed in the same manner as above.

【0015】次に、液晶分子(4′−n−heptyl−4−
cyanobiphenyl ,7CB)と白金結晶を用いて、実際に
一電子トンネリングを利用したトランジスターを作成
し、その特性を調べた。図7は電流特性例を示したもの
である。まず、図3において白金結晶を石英基盤上にお
き、その結晶間の距離は、液晶分子と同様の大きさとし
た。図8は、この白金結晶の電子顕微鏡像図である。
Next, liquid crystal molecules (4'-n-heptyl-4-
Cyanobiphenyl (7CB) and platinum crystal were used to make a transistor that actually used single-electron tunneling, and its characteristics were investigated. FIG. 7 shows an example of current characteristics. First, in FIG. 3, platinum crystals were placed on a quartz substrate, and the distance between the crystals was set to the same size as the liquid crystal molecules. FIG. 8 is an electron microscope image of this platinum crystal.

【0016】次に液晶分子(7CB)を配置した。これ
らの液晶分子と白金結晶は、液晶分子の大きさと白金結
晶間の距離が同じなので、トンネルジャンクションアレ
イを形成することになる。この構成において、STM探
針の先端を液晶分子の上に固定し、外部電極を一つの白
金結晶に接続した。図4の回路図においてゲート電圧V
G の変化にともなうトンネル電流の変化をみると、図7
のi−vカーブに示したように、ゲート電圧VG :0.
5V−0.5V(1V変化)でi−vカーブ上にステッ
プが2つ、VG :0.5V−2V(2V変化)でステッ
プが5つそれぞれみられる。このステップの数は生起し
た一電子トンネリングの数に対応しているので、VG
変化に伴う一電子トンネリング電流の変化が確認でき
る。つまり、VG によるトンネル電流の制御ができてい
ると考えられる。
Next, liquid crystal molecules (7CB) were arranged. Since the liquid crystal molecules and the platinum crystal have the same size of the liquid crystal molecule and the distance between the platinum crystals, they form a tunnel junction array. In this configuration, the tip of the STM probe was fixed on the liquid crystal molecule, and the external electrode was connected to one platinum crystal. In the circuit diagram of FIG. 4, the gate voltage V
Looking at the change in tunnel current with changes in G , Fig. 7
, The gate voltage V G : 0.
There are two steps on the iv curve at 5V-0.5V (change of 1V) and five steps at V G : 0.5V-2V (change of 2V). Since the number of this step corresponds to the number of generated one-electron tunneling, the change of one-electron tunneling current with the change of V G can be confirmed. That is, it is considered that the tunnel current can be controlled by V G.

【0017】[0017]

【発明の効果】以上詳しく説明した通り、この発明によ
って、室温またはその近傍の高温状態態における一電子
トンネリングを利用することによる全く新しいトランジ
スターが提供される。
As described in detail above, the present invention provides a completely new transistor by utilizing the one-electron tunneling in a high temperature state at or near room temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のトンネリング構造を示した模式図であ
る。
FIG. 1 is a schematic diagram showing a conventional tunneling structure.

【図2】一電子トンネリング現象におけるi−vカーブ
を示した概念図である。
FIG. 2 is a conceptual diagram showing an iv curve in a one-electron tunneling phenomenon.

【図3】一電子トンネリングトランジスターの構造を示
した模式図である。
FIG. 3 is a schematic diagram showing the structure of a one-electron tunneling transistor.

【図4】一電子トンネリングトランジスターの電流特性
を得るための回路図である。
FIG. 4 is a circuit diagram for obtaining a current characteristic of a one-electron tunneling transistor.

【図5】一般的な従来のトランジスターの模式図であ
る。
FIG. 5 is a schematic view of a general conventional transistor.

【図6】液晶分子7CBの場合のi−v特性図である。FIG. 6 is an iv characteristic diagram in the case of liquid crystal molecules 7CB.

【図7】一電子トンネリングトランジスターの電流特性
を示した図である。
FIG. 7 is a diagram showing current characteristics of a one-electron tunneling transistor.

【図8】白金結晶の電子顕微鏡像を示した図面代用の写
真である。
FIG. 8 is a drawing-substituting photograph showing an electron microscope image of platinum crystals.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/80 49/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 29/80 49/00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に配置された複数の電極部の間に
分子が介在配置されるとともに、少なくも一つの電極部
には微細探針が対向され、室温もしくはその近傍におい
ても電極部に加える電圧の変化でトンネル電流が制御さ
れることを特徴とする一電子トランジスター。
1. A molecule is interposed between a plurality of electrode portions arranged on a substrate, and a fine probe is opposed to at least one electrode portion, so that the electrode portion is kept at room temperature or in the vicinity thereof. A one-electron transistor characterized in that the tunnel current is controlled by changing the applied voltage.
JP6125421A 1993-08-13 1994-06-07 One-electron transistor Expired - Fee Related JP2812656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6125421A JP2812656B2 (en) 1993-08-13 1994-06-07 One-electron transistor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20161193 1993-08-13
JP5-201611 1993-08-13
JP6125421A JP2812656B2 (en) 1993-08-13 1994-06-07 One-electron transistor

Publications (2)

Publication Number Publication Date
JPH07106549A true JPH07106549A (en) 1995-04-21
JP2812656B2 JP2812656B2 (en) 1998-10-22

Family

ID=26461864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6125421A Expired - Fee Related JP2812656B2 (en) 1993-08-13 1994-06-07 One-electron transistor

Country Status (1)

Country Link
JP (1) JP2812656B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235196A (en) * 1994-02-22 1995-09-05 Nec Corp Sampling circuit using single electron charging effect
EP0750353A2 (en) * 1995-06-23 1996-12-27 Matsushita Electric Industrial Co., Ltd. Single electron tunnel device and method for fabricating the same
US6339227B1 (en) 1999-02-01 2002-01-15 The Mitre Corporation Monomolecular electronic device
US8278654B2 (en) 2005-03-08 2012-10-02 National Research Council Of Canada Electrostatically regulated atomic scale electroconductivity device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235196A (en) * 1994-02-22 1995-09-05 Nec Corp Sampling circuit using single electron charging effect
EP0750353A2 (en) * 1995-06-23 1996-12-27 Matsushita Electric Industrial Co., Ltd. Single electron tunnel device and method for fabricating the same
EP0750353A3 (en) * 1995-06-23 1997-07-02 Matsushita Electric Ind Co Ltd Single electron tunnel device and method for fabricating the same
US5731598A (en) * 1995-06-23 1998-03-24 Matsushita Electric Industrial Co. Ltd. Single electron tunnel device and method for fabricating the same
US6339227B1 (en) 1999-02-01 2002-01-15 The Mitre Corporation Monomolecular electronic device
US8278654B2 (en) 2005-03-08 2012-10-02 National Research Council Of Canada Electrostatically regulated atomic scale electroconductivity device

Also Published As

Publication number Publication date
JP2812656B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US6486489B2 (en) Transistor
Volk et al. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films
Higuma et al. “MFS FET”-A New Type of Nonvolatile Memory Switch Using PLZT Film
US6548843B2 (en) Ferroelectric storage read-write memory
US5162819A (en) Information processing apparatus, information processing method, and recording medium employed therefor
JP2812656B2 (en) One-electron transistor
JP2816549B2 (en) Electro-optical device
US5152805A (en) M-I-M' device and fabrication method
Zhang et al. Fast operations of nonvolatile ferroelectric domain wall memory with inhibited space charge injection
Yuki et al. A full-color LCD addressed by poly-Si TFTs fabricated below 450 degrees C
JP2817082B2 (en) High temperature single electron tunneling structure
JP4673135B2 (en) Method for forming organic semiconductor layer
Choi et al. Nonvolatile memory device based on the switching by the all-organic charge transfer complex
US5057878A (en) M-I-M' device and fabrication method
WO2020235591A1 (en) Variable resistance device and method for producing same
US4535349A (en) Non-volatile memory cell using a crystalline storage element with capacitively coupled sensing
Bera et al. Resistive-switching and memory in halide perovskite nanoparticles through a corona-poling approach: Necessity of type-I core–shell structures
JPH0845122A (en) Recording medium and recording method
JP2003218360A (en) Molecular film dielectric device
JP2759154B2 (en) Thin film memory device
JPH06291312A (en) Field-effect transistor and liquid crystal display device using same
TW548490B (en) Improvements in liquid crystal displays
Iida et al. Thin Ag film formation onto Si/SiO2 substrate
JPH05210092A (en) Liquid crystal display device
Webb et al. Polarizability of a Bias–Temperature Drifted Species in Thin Film Transistor Structures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees