JPH07105995B2 - Ultrasonic probe and method of manufacturing the same - Google Patents

Ultrasonic probe and method of manufacturing the same

Info

Publication number
JPH07105995B2
JPH07105995B2 JP60121039A JP12103985A JPH07105995B2 JP H07105995 B2 JPH07105995 B2 JP H07105995B2 JP 60121039 A JP60121039 A JP 60121039A JP 12103985 A JP12103985 A JP 12103985A JP H07105995 B2 JPH07105995 B2 JP H07105995B2
Authority
JP
Japan
Prior art keywords
matching layer
acoustic matching
layer
thickness
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60121039A
Other languages
Japanese (ja)
Other versions
JPS61278299A (en
Inventor
武志 井上
和明 内海
貞行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60121039A priority Critical patent/JPH07105995B2/en
Priority to US06/869,633 priority patent/US4756808A/en
Publication of JPS61278299A publication Critical patent/JPS61278299A/en
Publication of JPH07105995B2 publication Critical patent/JPH07105995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は医用診断装置等で使用され、超音波の送受波を
司どる超音波探触子に関し、とくに10MHz以上の高周波
帯に中心周波数を有し表面から浅い部分を鮮明に描きだ
すことのできる超音波探触子及びその製造方法に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an ultrasonic probe which is used in a medical diagnostic apparatus or the like and controls transmission and reception of ultrasonic waves, and particularly, a center frequency in a high frequency band of 10 MHz or more. The present invention relates to an ultrasonic probe capable of clearly drawing a shallow portion from the surface and a manufacturing method thereof.

(従来技術) 医用超音波探触子は皮膚表面に当てて腹部,胸部などの
軟部組織を画像として動態観測を行う非襲侵診断に広く
用いられているが、最近正確な診断情報を得るために中
心周波数の高い(通常7.5MHz以上)超音波探触子を口か
ら飲み込んで胃壁の粘膜の様子を鮮明に画像として描き
出すような要求が高まってきている。
(Prior Art) A medical ultrasonic probe is widely used for non-invasive diagnosis in which dynamic tissue is observed by applying soft tissue such as abdomen and chest to the skin surface to obtain dynamic diagnostic information. There is an increasing demand for an ultrasound probe with a high center frequency (usually 7.5 MHz or more) to be swallowed from the mouth and a clear image of the mucous membrane of the stomach wall drawn.

超音波は電磁波と同様に高周波になるほど波長が短くな
り、伝搬減衰もそれに伴って大きくなるという性質があ
る。従って高周波の超音波探触子は、人体の深部の診断
には不適当である。しかし胃壁の検査のように浅い部分
を鮮明な画像として捉えるという目的に対し、高周波の
探触子は超音波の波長が短くなった分だけ分解能が向上
する利点があり、次第に探触子の高周波化がはかられつ
つある。
Similar to electromagnetic waves, ultrasonic waves have the property that the higher the frequency, the shorter the wavelength and the greater the propagation attenuation. Therefore, the high frequency ultrasonic probe is not suitable for diagnosing the deep part of the human body. However, for the purpose of capturing a shallow image as a clear image as in the examination of the stomach wall, a high-frequency probe has the advantage that the resolution improves as the wavelength of ultrasonic waves becomes shorter, and the high-frequency of the probe gradually increases. It is becoming more difficult.

従来より医用超音波診断装置に用いられる超音波探触子
の構造の一例を第3図に示す。第3図において10は縦波
圧電磁器変換子であり、厚み方向に分極され電気機械エ
ネルギー変換により超音波の発生,検出を司どるもので
ある。14,15は電極,矢印は分極方向を示す。また、11,
12は被検体と変換子10の音響インピーダンス整合を司ど
る音響整合層であり、探触子の広帯域化・低損失化に寄
与するものである。13はバッキングで圧電変換子の支持
及び該変換子10の後方に伝搬する超音波を吸収する機能
を有する。二重の音響整合層を有する第2図に示した探
触子において、広帯域低損失から低リップル特性で良好
な超音波パルス伝送特性を得るためには、音響整合層11
の音響インピーダンス密度(密度と音速の積で定義され
る)は8.0×106〜10.0×106kg/m2sec,音響整合層12の音
響インピーダンス密度は2.0×106〜3.0×106kg/m2sec,
また音響整合層11,12の厚さとして圧電変換子の共振周
波数に対して4分の1波長が要求される。このような音
響インピーダンス密度を満足させるため、従来整合層11
として硅酸ガラス,カルコゲイトガラスあるいはエポキ
シ樹脂にガラス粉末を配合させた複合材料、整合層12と
してエポキシ樹脂,アクリル樹脂等が用いられている。
整合層を変換子10に取りつける場合、ガラス板であれば
高精度に平行平面研磨を行って薄板に加工し、それを変
換子10に接着する方法が用いられる。また、樹脂あるい
は樹脂に適量のガラス微粉末を配合した複合材料の場合
は、あらかじめ所望の厚さを有するシート状にして接着
剤で接着するか、あるいは変換子10または整合層11の上
に直接キャスティングするような方法が用いられてい
る。
FIG. 3 shows an example of the structure of an ultrasonic probe conventionally used in a medical ultrasonic diagnostic apparatus. In FIG. 3, reference numeral 10 is a longitudinal wave piezoelectric ceramic converter, which controls the generation and detection of ultrasonic waves by polarization in the thickness direction and electromechanical energy conversion. 14, 15 are electrodes, and arrows indicate the polarization direction. Also, 11,
Reference numeral 12 is an acoustic matching layer that controls acoustic impedance matching between the subject and the transducer 10, and contributes to widening the bandwidth and reducing the loss of the probe. The backing 13 has a function of supporting the piezoelectric transducer and absorbing ultrasonic waves propagating to the rear of the transducer 10. In the probe shown in FIG. 2 having a double acoustic matching layer, in order to obtain a good ultrasonic pulse transmission characteristic from a wide band low loss to a low ripple characteristic, the acoustic matching layer 11
Acoustic impedance density (defined by the product of density and sound velocity) of 8.0 × 10 6 〜 10.0 × 10 6 kg / m 2 sec, acoustic matching layer 12 acoustic impedance density of 2.0 × 10 6 〜 3.0 × 10 6 kg / m 2 sec,
The thickness of the acoustic matching layers 11 and 12 is required to be a quarter wavelength with respect to the resonance frequency of the piezoelectric transducer. In order to satisfy such an acoustic impedance density, the conventional matching layer 11
As the silicate glass, chalcogenide glass, or a composite material in which glass powder is mixed with epoxy resin, epoxy resin, acrylic resin or the like is used as the matching layer 12.
When the matching layer is attached to the converter 10, a method of using a glass plate to perform parallel plane polishing with high accuracy to form a thin plate and bonding the thin plate to the converter 10 is used. Further, in the case of a resin or a composite material in which an appropriate amount of glass fine powder is mixed with a resin, a sheet having a desired thickness is preliminarily adhered with an adhesive, or directly on the converter 10 or the matching layer 11. A method such as casting is used.

しかしながら、このような従来の方法で高周波帯の超音
波探触子を実現しようとする場合、必然的に周波数に反
比例して整合層を薄くしなければならないわけである
が、変換子と整合層及び整合層間の接着層の存在が問題
となり、接着層が介在することによって探触子の性能が
大幅に損われるといった欠点があった。また、有機樹脂
にガラス粉末を配合した複合材料あるいは有機樹脂それ
自身で整合層を形成する場合には、整合層が薄くなるほ
ど均一な厚みの整合層を実現することが困難となり、こ
のため探触子の性能が損われる欠点があった。さらに、
有機樹脂及び有機樹脂にガラス粉末を配合した複合材料
で整合層を形成した場合に整合層が薄くなるほどポンホ
ールが開きやすく探触子の製造歩留まりが低下する原因
となっていた。従って従来の製造技術では、厚みが100
μm以下の整合層を有する探触子を安定して得ることは
極めて困難であるため、高周波帯において実用に供され
ている探触子では一層の整合層を有するものが主流であ
り、せいぜい二層の音響整合層を有するもののみであっ
た。この二重整合層より以上広帯域化の図れる三重整合
層を有する超音波探触子は実現不可能であった。
However, in order to realize a high-frequency ultrasonic probe by such a conventional method, it is inevitable that the matching layer must be thinned in inverse proportion to the frequency. Further, there is a problem that the existence of the adhesive layer between the matching layers causes a problem, and the performance of the probe is significantly impaired by the interposition of the adhesive layer. In addition, when the matching layer is formed of a composite material in which glass powder is mixed with an organic resin or the organic resin itself, it becomes difficult to realize a matching layer having a uniform thickness as the matching layer becomes thinner, and therefore There was a drawback that the performance of the child was impaired. further,
When the matching layer is formed of the organic resin and the composite material in which the glass powder is mixed with the organic resin, the thinner the matching layer is, the more easily the ponholes are opened, which causes a decrease in the manufacturing yield of the probe. Therefore, with conventional manufacturing technology, the thickness is 100
Since it is extremely difficult to stably obtain a probe having a matching layer having a thickness of μm or less, a probe having one matching layer is the mainstream in practically used probes in the high frequency band. Only those with acoustic matching layers of layers. An ultrasonic probe having a triple matching layer capable of achieving a wider band than this double matching layer has not been realized.

(発明の目的) 本発明は、従来の超音波探触子及びその製造方法の上記
諸欠点を解消し、高周波領域に適用できる高性能の広帯
域超音波探触子を安定に得ることを目的とするものであ
る。
(Object of the Invention) An object of the present invention is to solve the above-mentioned drawbacks of the conventional ultrasonic probe and the manufacturing method thereof and to stably obtain a high-performance broadband ultrasonic probe applicable to a high frequency region. To do.

(発明の構成) 本発明は表裏面に電極を備えた圧電変換子と、該圧電変
換子の被検体側の電極上に積層して形成され該圧電変換
子の共振周波数の4分の1波長に相当する厚みを有する
複数の音響整合層とを備え、各音響整合層の境界には導
電膜が形成され、前記圧電変換子の電極上に直接形成さ
れる音響整合層を除いて他の音響整合層の内部には導電
層が形成されており、該導電膜及び導電層は音響整合層
の50分の1以下の厚みを有することを特徴とする超音波
探触子である。又、本発明は表裏面に電極を備えた圧電
変換子の被検体側の電極に電位を与え、電気泳動法によ
り圧電変換子の共振周波数の4分の1波長に相当する第
1の音響整合層を形成する工程と、第1の音響整合層上
に第1の導電膜を形成する工程と、第1の導電膜上に前
記圧電変換子の共振周波数の4分の1波長に相当する厚
みより薄い音響整合層を電着塗装法により形成し、該音
響整合層上に導電層を形成したのち、該導電層に電位を
与え音響整合層を電着塗装法により形成することによっ
て前記圧電変換子の4分の1波長に相当する厚みを有す
る第2の音響整合層を形成する工程とを備えたことを特
徴とする超音波探触子の製造方法である。
(Structure of the Invention) The present invention is a piezoelectric transducer provided with electrodes on the front and back surfaces, and a quarter wavelength of the resonance frequency of the piezoelectric transducer, which is formed by laminating on a subject-side electrode of the piezoelectric transducer. And a plurality of acoustic matching layers each having a thickness corresponding to the above, a conductive film is formed at the boundary of each acoustic matching layer, and the acoustic matching layers other than the acoustic matching layer directly formed on the electrodes of the piezoelectric transducer are excluded. A conductive layer is formed inside the matching layer, and the conductive film and the conductive layer have a thickness of 1/50 or less of that of the acoustic matching layer, which is an ultrasonic probe. The present invention also provides a first acoustic matching corresponding to a quarter wavelength of the resonance frequency of the piezoelectric transducer by an electrophoretic method by applying an electric potential to the electrodes on the subject side of the piezoelectric transducer having electrodes on the front and back surfaces. A step of forming a layer, a step of forming a first conductive film on the first acoustic matching layer, and a thickness corresponding to a quarter wavelength of the resonance frequency of the piezoelectric transducer on the first conductive film. The piezoelectric conversion is performed by forming a thinner acoustic matching layer by an electrodeposition coating method, forming a conductive layer on the acoustic matching layer, and then applying a potential to the conductive layer to form the acoustic matching layer by the electrodeposition coating method. And a step of forming a second acoustic matching layer having a thickness corresponding to a quarter wavelength of the child, the method for manufacturing an ultrasonic probe.

(構成の詳細な説明) 本発明に従った超音波探触子は、電着技術を基礎にし
て、音響整合層の調整工程を含めることにより精密に制
御された均一な整合層を形成することで、従来の超音波
探触子及びその製造技術の諸問題を解決している。
(Detailed Description of Configuration) The ultrasonic probe according to the present invention is based on the electrodeposition technique and includes the step of adjusting the acoustic matching layer to form a precisely controlled and uniform matching layer. Solves the problems of the conventional ultrasonic probe and its manufacturing technology.

第1図は本発明に従った超音波探触子の一例を示す斜視
図であり、以下図面に従って構造及び製造方法について
詳述する。第1図において20は圧電磁器変換子、24はバ
ッキング、25,26は圧電磁器板の表裏面に焼付け、スパ
ッタ,蒸着あるいはメッキ等の方法で形成された電極で
ある。21は電極25に電位を与えて電気泳動法により形成
した音響整合層である。音響整合層の形成装置を第2図
に示す。第2図にもとずき音響整合層21(この場合は硼
硅酸ガラス)の形成方法についてのべる。電気泳動法を
行うために泥漿34の入った槽35の中に、圧電変換子20を
入れて、電極25に直流電源36により電圧を印加し、ガラ
ス微粒子の塗布を行う。電気泳動法用の泥漿4は、例え
ばエチルアルコール,ポリビニルブチラール,水からな
る混合液にホウケイ酸ガラス微粉末をホモジナイザーで
充分均一に分散させたものを用いることができる。泥漿
4を入れた槽35は、スターラー37を用いて泥漿4が均一
になるように攪拌し、電極25と対向電極32の間に直流電
圧を印加する。その結果、電極25表面に厚さの均一なガ
ラス微粉末層が形成される。その後圧電磁器変換子とガ
ラス微粉末層からなる物を500℃〜900℃の高温下で熱処
理することにより、ガラスの音響整合層を形成すること
ができる。尚、ガラス特に硼硅酸ガラスは有機樹脂に比
べて音速が2倍程度速く、それだけ電気泳動法における
時間あるいは電圧の制御により最適の整合層の厚みを実
現することは容易である。また、ガラスは研磨による厚
みの制御も可能であるから、平行平面研磨によっても最
適な厚みを実現することも可能である。第1図に示した
ように3層の音響整合層を有する超音波探触子の場合、
音響整合層の材料として固有音響インピーダンス(密度
と音速の積)が10×106〜15×106kg/m2secの材料が好適
であり、硼硅酸ガラス,硅酸ガラスなどがこれに含まれ
る。
FIG. 1 is a perspective view showing an example of an ultrasonic probe according to the present invention, and the structure and manufacturing method will be described in detail below with reference to the drawings. In FIG. 1, 20 is a piezoelectric ceramic converter, 24 is a backing, and 25 and 26 are electrodes formed on the front and back surfaces of a piezoelectric ceramic plate by a method such as baking, sputtering, vapor deposition or plating. Reference numeral 21 is an acoustic matching layer formed by applying an electric potential to the electrode 25 and performing electrophoresis. An apparatus for forming the acoustic matching layer is shown in FIG. A method of forming the acoustic matching layer 21 (in this case, borosilicate glass) will be described with reference to FIG. In order to perform the electrophoresis method, the piezoelectric transducer 20 is placed in a bath 35 containing a slurry 34, and a voltage is applied to the electrode 25 by a DC power supply 36 to apply glass particles. As the slurry 4 for the electrophoresis method, for example, a mixture of ethyl alcohol, polyvinyl butyral, and water in which fine particles of borosilicate glass are sufficiently uniformly dispersed by a homogenizer can be used. The tank 35 containing the slurry 4 is agitated by a stirrer 37 so that the slurry 4 becomes uniform, and a DC voltage is applied between the electrode 25 and the counter electrode 32. As a result, a glass fine powder layer having a uniform thickness is formed on the surface of the electrode 25. Then, the acoustic matching layer of glass can be formed by heat-treating the material composed of the piezoelectric ceramic converter and the glass fine powder layer at a high temperature of 500 ° C to 900 ° C. It should be noted that glass, especially borosilicate glass, has a sound velocity about twice as fast as that of organic resin, and thus it is easy to realize the optimum matching layer thickness by controlling the time or voltage in the electrophoresis method. Further, since the thickness of glass can be controlled by polishing, it is also possible to achieve the optimum thickness by parallel plane polishing. In the case of an ultrasonic probe having three acoustic matching layers as shown in FIG. 1,
A material with a specific acoustic impedance (product of density and sound velocity) of 10 × 10 6 to 15 × 10 6 kg / m 2 sec is suitable as a material for the acoustic matching layer, and borosilicate glass and silicate glass are suitable for this. included.

このように電気泳動法及びその後の熱処理によって音響
整合層21を形成した後、電極25,26に直流高電圧を印加
して圧電磁器板20に圧電性を付与する。そして、音響整
合層21の表面に導電層27aをメッキ,蒸着,スパッタ等
の方法により設け、音響整合層22a,22b,23a,23bを順次
電着塗装法により形成するわけである。
After the acoustic matching layer 21 is formed by the electrophoresis method and the subsequent heat treatment in this way, a high DC voltage is applied to the electrodes 25 and 26 to impart piezoelectricity to the piezoelectric ceramic plate 20. Then, the conductive layer 27a is provided on the surface of the acoustic matching layer 21 by a method such as plating, vapor deposition, and sputtering, and the acoustic matching layers 22a, 22b, 23a, 23b are sequentially formed by the electrodeposition coating method.

即ち、22aは導電層27aに電位を与えて電着塗装法により
形成した音響整合層である。第1図に示したように3層
の音響整合層を有する超音波探触子の場合、整合層22a
の材料として固有音響インピーダンスの値が3.0×106
4.5×106kg/m2・secの材料が好ましく、この電着塗装法
ではフェノール樹脂,エポキシ樹脂などの有機樹脂をマ
トリックスとして、有機樹脂内に均一に無機の微粒子を
分散させたものを用いることができる。尚、無機の微粒
子としてはグラファイト,TiO2,BN,AlN,Al2O3等を用い
ることができる。
That is, 22a is an acoustic matching layer formed by applying an electric potential to the conductive layer 27a and forming the electrodeposition coating method. In the case of an ultrasonic probe having three acoustic matching layers as shown in FIG. 1, the matching layer 22a
The material has a specific acoustic impedance of 3.0 × 10 6 ~
A material of 4.5 × 10 6 kg / m 2 · sec is preferable. In this electrodeposition coating method, an organic resin such as phenol resin or epoxy resin is used as a matrix, and inorganic fine particles are uniformly dispersed in the organic resin. be able to. Note that graphite, TiO 2 , BN, AlN, Al 2 O 3 or the like can be used as the inorganic fine particles.

整合層22bが所望の厚さを得るに必要な時間より若干少
な目に電着された後、粘性流体となっている整合層21を
熱処理を行うことによって完全に固化させる。さらに固
化された整合層22aの表面に蒸着、スパッタもしくはメ
ッキによりAl,Ni,Ag,Au等でできた導電膜28aを整合層22
aより十分薄く形成し、整合層22aの膜厚を計測する。次
いで、この計算値に基ずき最適な厚さになるように、導
電膜28aに電位を与え、整合層22aと全く同じ音響インピ
ーダンスを有する整合層22bを全く同様にして形成す
る。このときはじめて22aと22bからなる音響整合層の厚
さを設計値に高精度に一致させることができる。
After the matching layer 22b is electrodeposited slightly less than the time required to obtain the desired thickness, the matching layer 21, which is a viscous fluid, is heat treated to fully solidify. Further, a conductive film 28a made of Al, Ni, Ag, Au or the like is formed on the surface of the solidified matching layer 22a by vapor deposition, sputtering or plating to form the matching layer 22a.
It is formed sufficiently thinner than a and the film thickness of the matching layer 22a is measured. Then, a potential is applied to the conductive film 28a so as to have an optimum thickness based on this calculated value, and a matching layer 22b having exactly the same acoustic impedance as the matching layer 22a is formed in exactly the same manner. At this time, for the first time, the thickness of the acoustic matching layer composed of 22a and 22b can be matched with the design value with high accuracy.

即ち、1回の電着塗装法で整合層の最適な厚みを実現す
ることは、マトリックスとなる有機樹脂の音速がガラ
ス,磁器などの無機物と比べて極めて遅いために、必要
的に整合層の厚さが薄くなることにより、相当な熟練を
要し、本発明では通常の作業者でも最適な厚みを実現で
きるように整合層の厚みの調整機能を設けているわけで
ある。
That is, it is necessary to realize the optimum thickness of the matching layer by one-time electrodeposition coating method because the organic resin forming the matrix has an extremely slow sound velocity as compared with inorganic materials such as glass and porcelain. Since the thickness becomes thin, considerable skill is required, and the present invention is provided with a function of adjusting the thickness of the matching layer so that an ordinary worker can realize the optimum thickness.

次に固化した音響整合層22bの表面にスパッタ,蒸着あ
るいはメッキにより導電膜27bを整合層22bより十分薄く
形成し、全く同様の方法で順次整合層23a,導電膜28a及
び整合層23bを形成する。整合層23a,23bの材料として固
有音響インピーダンスが1.7×106〜2.1×106kg/m2・sec
のウレタン樹脂,エポキシ樹脂等が好適である。
Next, the conductive film 27b is formed sufficiently thinner than the matching layer 22b on the surface of the solidified acoustic matching layer 22b by sputtering, vapor deposition or plating, and the matching layer 23a, the conductive film 28a and the matching layer 23b are sequentially formed by the same method. . The material of the matching layers 23a and 23b has an intrinsic acoustic impedance of 1.7 × 10 6 to 2.1 × 10 6 kg / m 2・ sec.
Urethane resin, epoxy resin, etc. are suitable.

尚、導電膜27a,27b,28a,28bはシールド用の電極として
使用した場合、生体(被検体)側から変換子20に入って
くる外部雑音を遮断することができ、これはS/N比向上
に寄与する。また、導電膜27a,27b,28a,28bは整合層21,
22a,22b,23a,23bの動作を妨げないよう整合層21,22a,22
b,23a,23bより十分薄く形成するべきである。つまり、
導電膜を設けることにより周波数−感度特性あるいはパ
ルス応答性に少なくとも良い影響を与えることはない
が、音響整合層内部に設けられた導電層28a,28b、各音
響整合層の境界に設けられた導電膜27a、27bは理論及び
実験の両面から、4分の1波長に相当する音響整合層の
50分の1以下であれば、超音波探触子の周波数−感度特
性あるいはパルス応答特性にほとんど悪影響を与えない
ことが知られている。例えば、圧電変換子20の共振周波
数が20MHzであれば1波長は100μmとなる。電着塗装法
によって形成された音響整合層の縦弾性波伝播速度をプ
ラスチックスの一般的な値2000m/秒とすると、蒸着ある
いはスパッタリングにより形成される導電膜の厚さはせ
いぜい数千オングストロームであり、逆に1波長の50分
の1である2μm以上とすることは困難である。
When the conductive films 27a, 27b, 28a, and 28b are used as electrodes for shielding, they can block external noise coming into the transducer 20 from the living body (subject) side, which has a S / N ratio. Contribute to improvement. In addition, the conductive films 27a, 27b, 28a, 28b are the matching layers 21,
Matching layers 21, 22a, 22 so as not to interfere with the operation of 22a, 22b, 23a, 23b
It should be formed sufficiently thinner than b, 23a, 23b. That is,
The conductive film does not at least have a good effect on the frequency-sensitivity characteristics or the pulse response, but the conductive layers 28a and 28b provided inside the acoustic matching layer and the conductivity provided at the boundary of each acoustic matching layer. From the both theoretical and experimental standpoints, the films 27a and 27b are acoustic matching layers corresponding to a quarter wavelength.
It is known that if it is 1/50 or less, it has almost no adverse effect on the frequency-sensitivity characteristic or pulse response characteristic of the ultrasonic probe. For example, if the resonance frequency of the piezoelectric converter 20 is 20 MHz, one wavelength is 100 μm. If the longitudinal elastic wave propagation velocity of the acoustic matching layer formed by the electrodeposition coating method is 2000 m / sec, which is a general value for plastics, the thickness of the conductive film formed by vapor deposition or sputtering is at most several thousand angstroms. On the contrary, it is difficult to set it to 2 μm or more, which is 1/50 of one wavelength.

ここで電着技術について簡単に説明する。電着塗装法は
水性塗料中に被塗物と対極を浸漬し、この両極間に直流
電流を通じることにより電気的に塗装する方法である。
ここではカチオン電着塗料を例にとって説明する。水性
塗料中には水溶性のマトリックスとなる樹脂が溶解して
おり、さらに塗膜中のフィラーとなる無機微粒子が分散
している。(勿論無機微粒子はなくとも電着塗装可能で
ある。)このような塗料中に被塗物と対極を浸漬し、カ
チオン電着塗料では被塗物をマイナス,対極をプラスに
して直流電圧を印加すると被塗物の表面で化学反応が起
り、塗膜形成のための樹脂とフィラーが析出する。析出
する樹脂及びフィラーの量は印加電圧,電流,時間によ
って制御することが可能であり、塗料膜厚は任意に制御
でき、しかも被塗物表面に均一にピンホールなく付ける
ことが可能である。通常の電着塗料では、電着後水洗
し、加熱によって樹脂を硬化して均一な塗膜を形成する
ことができる。一方、電着塗料としてカチオン電着塗料
の他にアニオン電着塗料もあるが、この場合は被塗物を
プラス,対極をマイナスに接続することにより、同様に
均一な塗膜を形成することができる。
Here, the electrodeposition technique will be briefly described. The electrodeposition coating method is a method in which an object to be coated and a counter electrode are immersed in a water-based paint, and a direct current is passed between the electrodes to electrically coat the electrodes.
Here, a cationic electrodeposition paint will be described as an example. A water-soluble resin as a matrix is dissolved in the water-based paint, and further inorganic fine particles as a filler in the coating film are dispersed. (Of course, electrodeposition coating is possible without inorganic fine particles.) The object to be coated and the counter electrode are immersed in such a coating, and in the case of cationic electrodeposition coating, the object to be coated is minus and the counter electrode is positive, and a DC voltage is applied. Then, a chemical reaction occurs on the surface of the article to be coated, and the resin and the filler for forming the coating film are deposited. The amount of the precipitated resin and filler can be controlled by the applied voltage, current and time, the coating film thickness can be arbitrarily controlled, and moreover, it can be evenly attached to the surface of the object to be coated without pinholes. In a normal electrodeposition coating composition, a uniform coating film can be formed by washing with water after electrodeposition and curing the resin by heating. On the other hand, there are anion electrodeposition coatings as well as cationic electrodeposition coatings as the electrodeposition coating. In this case, a uniform coating can be similarly formed by connecting the object to be positive and the counter electrode to the negative. it can.

即ち、本発明の製造方法によると、まず第1に電着塗装
法では有機樹脂内に均一に無機の微粒子を分散すること
ができ、しかも無機微粒子の配合度を相当広範囲にわた
って調節することができる。無機微粒子の配合度が変わ
ると当然音響インピーダンスが変わるわけであるから、
設計値どおりの理想的な音響インピーダンスを有する整
合層を容易に実現することができる。第2に、音響整合
層の厚みは電着時における電着時間,電圧,電流のファ
クターのうち少なくともいずれか一つを調節することに
より、容易に制御可能である。特に本発明に従う探触子
は構造上,音響整合層の厚みを微調整できる長所を有し
ており、最適な音響整合層の厚みを高精度に実現するこ
とができる。第3に、電気泳動法及び電着塗装法で形成
される整合層は、蒸着やスパッタと同様に雪が降り積も
る如く次第に厚く形成されていくわけであるから、いく
らでも薄く整合層を形成することができ、とくに高周波
帯の超音波探触子の実現に極めて有効な方法であるとい
うことができる。第4に、電着固有の性質として整合層
にピンホールが生じない。(電着時にもしピンホールが
発生した場合、そのピンホールを完全に塞ぐように有機
樹脂及びフィラーが析出されるという性質がある。)第
5に、接着層を介在することなしに整合層が形成できる
という長所がある。
That is, according to the manufacturing method of the present invention, firstly, in the electrodeposition coating method, it is possible to uniformly disperse the inorganic fine particles in the organic resin, and it is possible to adjust the blending degree of the inorganic fine particles over a considerably wide range. . Since the acoustic impedance naturally changes when the blending degree of the inorganic fine particles changes,
A matching layer having an ideal acoustic impedance as designed can be easily realized. Secondly, the thickness of the acoustic matching layer can be easily controlled by adjusting at least one of the factors of electrodeposition time, voltage and current during electrodeposition. In particular, the probe according to the present invention has an advantage in that the thickness of the acoustic matching layer can be finely adjusted due to its structure, and the optimum thickness of the acoustic matching layer can be realized with high accuracy. Thirdly, the matching layer formed by the electrophoretic method and the electrodeposition coating method is gradually thickened like snow deposition and spatter so that the matching layer can be formed as thin as possible. In particular, it can be said that this is an extremely effective method for realizing an ultrasonic probe in a high frequency band. Fourth, there is no pinhole in the matching layer, which is a property peculiar to electrodeposition. (If a pinhole is generated during electrodeposition, the organic resin and the filler are deposited so as to completely close the pinhole.) Fifth, the matching layer is formed without interposing an adhesive layer. It has the advantage that it can be formed.

従って、本発明に従えば通常の2MHz〜7.5MHz帯に中心周
波数を有する超音波探触子のみならず10MHz以上の高周
波帯においても高性能の超音波探触子を得ることができ
る。
Therefore, according to the present invention, a high-performance ultrasonic probe can be obtained not only in the normal ultrasonic probe having a center frequency in the 2 MHz to 7.5 MHz band but also in the high frequency band of 10 MHz or higher.

(実施例) 本発明に基ずく超音波探触子の一実施例として第1図に
示す2層の音響整合層を有する中心周波数15MHzのリニ
アアレイ用超音波探触子について述べる。本実施例では
PbTiO3系圧電磁器でできた圧電変換子20を用い、電極2
5,26はそれぞれ厚みが3000ÅのAu/Cu蒸着電極を用い
た。整合層21は硼硅酸ガラス微粉末を電気泳動法で電極
25表面に均一に付着させ、その後800℃で10分間熱処理
を行うことにより形成した。整合層21の固有音響インピ
ーダンス(密度と音速の積で定義される)の実施値は1
3.8×106kg/m2・secであった。変換子20を分極処理した
後さらに整合層21の表面に蒸着により2000Å厚のAl導電
膜27aを形成し、電着塗装法により固有音響インピーダ
ンス4.1×106kg/m2・secを有する音響整合層22aを形成
した。整合層22aを150℃で2時間熱処理を行い硬化させ
た後、2000Å厚のAlを蒸着し導電膜28aとし整合層22aと
全く同じ材料を用いて整合層22bを形成した。整合層22a
の厚みは計測結果変換子の共振周波数15MHzに対する4
分の1波長の96%であったので残りの4%だけ整合層22
bを形成したわけである。整合層22a,22bはともにエポキ
シ樹脂をマトリックスにして粒径0.5μmのAl2O3を適量
均一に分散させた複合材料を用いた。
(Example) An ultrasonic probe for a linear array having a center frequency of 15 MHz and having two acoustic matching layers shown in FIG. 1 will be described as an example of the ultrasonic probe according to the present invention. In this example
Using a piezoelectric transducer 20 made of PbTiO 3 -based piezoelectric ceramic, the electrode 2
As for 5 and 26, Au / Cu vapor deposition electrodes each having a thickness of 3000 Å were used. The matching layer 21 is made of borosilicate glass fine powder as an electrode by electrophoresis.
It was formed by uniformly adhering to the surface of 25 and then performing heat treatment at 800 ° C. for 10 minutes. The practical value of the intrinsic acoustic impedance (defined by the product of the density and the speed of sound) of the matching layer 21 is 1
It was 3.8 × 10 6 kg / m 2 · sec. After the transducer 20 is polarized, a 2000Å-thick Al conductive film 27a is formed on the surface of the matching layer 21 by vapor deposition, and an acoustic matching with an inherent acoustic impedance of 4.1 × 10 6 kg / m 2・ sec is performed by the electrodeposition coating method. The layer 22a was formed. After the matching layer 22a was heat-treated at 150 ° C. for 2 hours to be hardened, 2000 Å thick Al was vapor-deposited to form a conductive film 28a, and the matching layer 22b was formed using the same material as the matching layer 22a. Matching layer 22a
The thickness of the measurement result is 4 when the resonance frequency of the transducer is 15MHz.
Since it was 96% of one-half wavelength, only the remaining 4% was matched layer 22
b was formed. The matching layers 22a and 22b are both made of a composite material in which an appropriate amount of Al 2 O 3 having a particle diameter of 0.5 μm is uniformly dispersed using an epoxy resin as a matrix.

次に整合層22bの表面に2000Å厚のAl導電膜27bを蒸着
し、全く同様に電着塗装法により音響インピーダンス密
度1.95×106kg/m2・secを有する音響整合層23a,23b及び
Al製導電膜28bを形成した。同様に整合層23a+23bの厚
さは変換子の共振周波数15MHzに対して4分の1波長と
なるように調整された。
Next, a 2000Å thick Al conductive film 27b is vapor-deposited on the surface of the matching layer 22b, and the acoustic matching layers 23a, 23b having an acoustic impedance density of 1.95 × 10 6 kg / m 2・ sec are formed by the electrodeposition coating method in exactly the same manner.
An Al conductive film 28b was formed. Similarly, the thickness of the matching layers 23a + 23b was adjusted to be a quarter wavelength with respect to the resonant frequency of 15 MHz of the transducer.

尚、整合層22a+22bの厚さは48μm,整合層23a+23bの厚
さは33μmであった。
The matching layers 22a + 22b had a thickness of 48 μm, and the matching layers 23a + 23b had a thickness of 33 μm.

試作した超音波探触子の比帯域幅は水負荷時において90
%と極めて広帯域な特性を有しており、通過帯域内のリ
ップルも1.5dB以下となっている。さらに、生体と同一
の音響インピーダンス密度と超音波減衰係数を有するゲ
ル状試料を用いて、本探触子を評価した結果、距離分解
能0.5mm以下が容易に得られ、S/N比も良好なものであっ
た。
The prototype ultrasonic probe has a specific bandwidth of 90 when loaded with water.
%, It has a very wide band characteristic, and the ripple in the pass band is less than 1.5 dB. Furthermore, as a result of evaluating this probe using a gel-like sample having the same acoustic impedance density and ultrasonic attenuation coefficient as the living body, a distance resolution of 0.5 mm or less can be easily obtained, and the S / N ratio is also good. It was a thing.

(発明の効果) 以上述べた如本発明に従えば接着層を介在させることな
しに、高精度の音響整合層を実現できることから、高周
波領域に通用できる高性能の超音波探触子を得ることが
できる。
(Effects of the Invention) According to the present invention as described above, since a highly accurate acoustic matching layer can be realized without interposing an adhesive layer, it is possible to obtain a high-performance ultrasonic probe applicable to a high frequency region. You can

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に基く超音波探触子の一例を示す図、第
2図は電着塗装を行う装置の例を示す図、第3図は従来
の超音波探触子の一例を示す図。 図において、10,20は圧電磁器変換子、11,12,21,22a,22
b,23a,23bは音響整合層、13,24はバッキング、14,15,2
5,26は電極、27a,27b,28a,28bは導電膜、32は対向電
極、34は泥漿、35は槽、36は直流電源、37はスターラ。
FIG. 1 is a diagram showing an example of an ultrasonic probe based on the present invention, FIG. 2 is a diagram showing an example of an apparatus for performing electrodeposition coating, and FIG. 3 is an example of a conventional ultrasonic probe. Fig. In the figure, 10, 20 are piezoelectric ceramic converters, 11, 12, 21, 22a, 22
b, 23a, 23b are acoustic matching layers, 13,24 are backings, 14,15,2
5, 26 are electrodes, 27a, 27b, 28a, 28b are conductive films, 32 is a counter electrode, 34 is a slurry, 35 is a tank, 36 is a DC power supply, and 37 is a stirrer.

フロントページの続き (56)参考文献 特開 昭58−17358(JP,A) 特開 昭57−206857(JP,A) 実開 昭58−48221(JP,U)Continuation of the front page (56) References JP-A-58-17358 (JP, A) JP-A-57-206857 (JP, A) Actually developed Shou-58-48221 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表裏面に電極を備えた圧電変換子と、該圧
電変換子の被検体側の電極上に積層して形成され該圧電
変換子の共振周波数の4分の1波長に相当する厚みを有
する複数の音響整合層とを備え、各音響整合層の境界に
は導電膜が形成され、前記圧電変換子の電極上に直接形
成される音響整合層を除いて他の音響整合層の内部には
導電層が形成されており、該導電膜及び導電層は音響整
合層の50分の1以下の厚みを有することを特徴とする超
音波探触子。
1. A piezoelectric transducer having electrodes on the front and back surfaces, and a piezoelectric transducer which is formed by laminating on an electrode on the object side of the piezoelectric transducer and corresponds to a quarter wavelength of the resonance frequency of the piezoelectric transducer. A plurality of acoustic matching layers each having a thickness, a conductive film is formed at the boundary of each acoustic matching layer, and the acoustic matching layers other than the acoustic matching layer directly formed on the electrodes of the piezoelectric transducer are included. An ultrasonic probe, wherein a conductive layer is formed inside, and the conductive film and the conductive layer have a thickness of 1/50 or less of that of the acoustic matching layer.
【請求項2】表裏面に電極を備えた圧電変換子の被検体
側の電極に電位を与え、電気泳動法により圧電変換子の
共振周波数の4分の1波長に相当する第1の音響整合層
を形成する工程と、第1の音響整合層上に第1の導電膜
を形成する工程と、第1の導電膜上に前記圧電変換子の
共振周波数の4分の1波長に相当する厚みより薄い音響
整合層を電着塗装法により形成し、該音響整合層上に導
電層を形成したのち、該導電層に電位を与え音響整合層
を電着塗装法により形成することによって前記圧電変換
子の4分の1波長に相当する厚みを有する第2の音響整
合層を形成する工程とを備えたことを特徴とする超音波
探触子の製造方法。
2. A first acoustic matching corresponding to a quarter wavelength of the resonance frequency of the piezoelectric transducer by an electrophoretic method by applying a potential to electrodes on the subject side of the piezoelectric transducer having electrodes on the front and back surfaces. A step of forming a layer, a step of forming a first conductive film on the first acoustic matching layer, and a thickness corresponding to a quarter wavelength of the resonance frequency of the piezoelectric transducer on the first conductive film. The piezoelectric conversion is performed by forming a thinner acoustic matching layer by an electrodeposition coating method, forming a conductive layer on the acoustic matching layer, and then applying a potential to the conductive layer to form the acoustic matching layer by the electrodeposition coating method. And a step of forming a second acoustic matching layer having a thickness corresponding to a quarter wavelength of the child, the method for manufacturing an ultrasonic probe.
JP60121039A 1985-05-31 1985-06-04 Ultrasonic probe and method of manufacturing the same Expired - Lifetime JPH07105995B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60121039A JPH07105995B2 (en) 1985-06-04 1985-06-04 Ultrasonic probe and method of manufacturing the same
US06/869,633 US4756808A (en) 1985-05-31 1986-06-02 Piezoelectric transducer and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121039A JPH07105995B2 (en) 1985-06-04 1985-06-04 Ultrasonic probe and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS61278299A JPS61278299A (en) 1986-12-09
JPH07105995B2 true JPH07105995B2 (en) 1995-11-13

Family

ID=14801303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121039A Expired - Lifetime JPH07105995B2 (en) 1985-05-31 1985-06-04 Ultrasonic probe and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH07105995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354605B1 (en) * 2012-02-03 2014-01-23 삼성메디슨 주식회사 Ultrasound Probe and Manufacturing Method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206857A (en) * 1981-06-16 1982-12-18 Toshiba Corp Ultrasonic probe
JPS5817358A (en) * 1981-07-23 1983-02-01 Toshiba Corp Ultrasonic probe
JPS5848221U (en) * 1981-09-30 1983-04-01 株式会社島津製作所 Ultrasonic diagnostic device probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354605B1 (en) * 2012-02-03 2014-01-23 삼성메디슨 주식회사 Ultrasound Probe and Manufacturing Method thereof

Also Published As

Publication number Publication date
JPS61278299A (en) 1986-12-09

Similar Documents

Publication Publication Date Title
JP6931014B2 (en) Ultrasonic matching layer and oscillator
JP5634452B2 (en) Ultrasonic matching layer and transducer
Saitoh et al. A dual frequency ultrasonic probe for medical applications
Zhou et al. Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite
Sun et al. Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers
US4756808A (en) Piezoelectric transducer and process for preparation thereof
JPS61292500A (en) Pad material for ultrasonic transducer
Zhou et al. Micro-machined high-frequency (80 MHz) PZT thick film linear arrays
EP0045989A2 (en) Acoustic impedance matching device
US9166141B2 (en) Process of manufacturing a piezopolymer transducer with matching layer
Ma et al. Lead-free ultrasonic phased array transducer for human heart imaging
JPH07105995B2 (en) Ultrasonic probe and method of manufacturing the same
JP2692878B2 (en) Ultrasound diagnostic equipment
Wong et al. 20-MHz phased array ultrasound transducer for in vivo ultrasound imaging of small animals
JPH07105994B2 (en) Ultrasonic probe and method of manufacturing the same
US6315933B1 (en) Method of application of a transducer backing material
JPH0640677B2 (en) Ultrasonic probe manufacturing method
Zou et al. Development of cardiac phased array with large-size PZN-5.5% PT single crystals
JP2021012942A (en) Ultrasonic transducer and manufacturing method thereof
JP4161197B2 (en) Piezoelectric plate, manufacturing method thereof, and ultrasonic transducer using the same
CN117415000A (en) Ultrasonic transducer and preparation method and application thereof
Ono et al. 2F-4 High Frequency (> 30 MHz) Flexible Broadband Transducers
Abellard et al. PZT thick films obtained by electrophoretic deposition (EPD) process for high frequency focused transducers
JPS5811000A (en) Piezoelectric element
Singh et al. P2O-8 Single-Element PLZT Transducer for Wide-Bandwidth Imaging of Solid Materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term