JPH07105992A - Regenerating method for electrolyte for zinc-bromine battery - Google Patents

Regenerating method for electrolyte for zinc-bromine battery

Info

Publication number
JPH07105992A
JPH07105992A JP5247254A JP24725493A JPH07105992A JP H07105992 A JPH07105992 A JP H07105992A JP 5247254 A JP5247254 A JP 5247254A JP 24725493 A JP24725493 A JP 24725493A JP H07105992 A JPH07105992 A JP H07105992A
Authority
JP
Japan
Prior art keywords
electrolytic solution
bromine
electrolyte
zinc
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5247254A
Other languages
Japanese (ja)
Inventor
Shinichi Fujie
眞一 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5247254A priority Critical patent/JPH07105992A/en
Publication of JPH07105992A publication Critical patent/JPH07105992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To establish a method for regeneration and reuse of an electrolytic solution of a zinc-bromine battery by effectively removing iron (Fe) from impurities in the electrolytic solution, and thereby eliminating ill influence of iron particularly upon an agent to turn bromine into a complex body. CONSTITUTION:A hydrogen peroxide water is added (Step 102) to an electrolyte for a zinc-bromine battery, and iron contained in the electrolyte is oxidated from two valent into three, and thereupon an appropriate amount of aqueous ammonia is added (Step 103), and the iron contained is produced as a deposit consisting of hydroxides. By filtration of this deposit (Step 105), the iron contained in the electrolyte is removed. Adding of hydrogen peroxide water to the electrolyte will vary the pH of the deposit of hydroxides from 7.4 to 2, and adding of the aqueous ammonia makes pH of the liquid into 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は亜鉛−臭素電池用として
用いられる電解液の再生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating an electrolytic solution used for a zinc-bromine battery.

【0002】[0002]

【従来の技術】亜鉛−臭素電池は、正極活物質に臭素、
負極活物質に亜鉛を用いた2次電池であり、電力需要の
昼と夜のアンバランスを解消させるために夜間の余剰電
力を電池に貯蔵し、需要の多い昼間に放出するピークカ
ット用の電池である。現在は電力貯蔵用として大容量の
電池が開発されている。
2. Description of the Related Art A zinc-bromine battery is a positive electrode active material containing bromine,
It is a secondary battery that uses zinc as the negative electrode active material. It is a battery for peak cut that stores surplus power at night in the battery to eliminate unbalanced power demand between day and night, and discharges it during daytime when demand is high. Is. Currently, a large capacity battery is being developed for power storage.

【0003】この亜鉛−臭素電池の化学反応は、The chemical reaction of this zinc-bromine battery is

【0004】[0004]

【化1】充電時……正極:2Br-→Br2+2e-,負
極:Zn+++2e-→Zn 放電時……正極:2Br-←Br2+2e-,負極:Zn
+++2e-←Zn で表される。
[Chemical Formula 1] During charging: Positive electrode: 2Br → Br 2 + 2e , Negative electrode: Zn ++ + 2e → Zn During discharging: Positive electrode: 2Br ← Br 2 + 2e , Negative electrode: Zn
It is represented by ++ + 2e ← Zn.

【0005】電解液は電池本体と別置きにした正極側の
タンクから充放電時にポンプで循環される。そして正極
で発生した臭素は電解液に添加した臭素錯化剤(四級ア
ミン)と反応して、オイル状の沈澱物となってタンクへ
戻され、放電時はポンプでセル内へ送り込まれて還元さ
れる。
The electrolyte solution is circulated by a pump at the time of charging / discharging from a positive electrode side tank separately provided from the battery body. Then, the bromine generated at the positive electrode reacts with the bromine complexing agent (quaternary amine) added to the electrolytic solution to form an oil-like precipitate that is returned to the tank and pumped into the cell during discharge. Be reduced.

【0006】電解液の成分は、2〜3mol/lの臭化
亜鉛(ZnBr2)と、液の抵抗を下げるために添加さ
れる1〜2mol/lの塩化アンモニウム(NH4
l)と、0.75〜1mol/lの臭素錯化剤(QB
r)とを主体としており、更に副成分として負極亜鉛の
デンドライトを防止して均一な電着を促進させるための
10ppm濃度の臭化鉛PbBr2及び0.1mol/
l濃度の臭素Br2で構成されている。正極と負極の間
にはセパレータを用い、正極で発生した臭素が負極へ拡
散して亜鉛が自己放電することを抑制している。
The components of the electrolytic solution are 2-3 mol / l of zinc bromide (ZnBr 2 ) and 1-2 mol / l of ammonium chloride (NH 4 C) added to reduce the resistance of the solution.
l) and 0.75 to 1 mol / l bromine complexing agent (QB
r) as a main component, and as a secondary component, lead bromide PbBr 2 at a concentration of 10 ppm and 0.1 mol / mol in order to prevent dendrite of negative electrode zinc and promote uniform electrodeposition.
It is composed of 1 concentration of bromine Br 2 . A separator is used between the positive electrode and the negative electrode to prevent bromine generated in the positive electrode from diffusing into the negative electrode and causing self-discharge of zinc.

【0007】図4は上記亜鉛−臭素電池の作動原理を説
明する概要図であり、図中の1は正極側タンクであって
該正極側タンク1内に正極電解液2と臭素錯化合物3と
が貯蔵されている。4は負極側タンクであって該負極側
タンク4内に負極電解液5が貯蔵されている。そして正
極電解液2は正極側ポンプ6の駆動に伴って、四方切換
弁7及び配管8を経由して図中の矢印に示した如く電池
本体の正極マニホールド9から単セル内を流通し、配管
10を経由して正極側タンク1に還流する一方、負極電
解液5は負極側ポンプ11の駆動に伴って、配管12及
び電池本体の負極マニホールド13からセパレータ14
に隔てられた単セル内を流通して配管15から負極側タ
ンク4に還流する。16は電池本体を構成する中間電
極、17は同集電電極、18はプラス側電極端子、19
はマイナス側電極端子である。
FIG. 4 is a schematic diagram for explaining the operating principle of the above zinc-bromine battery. In FIG. 4, reference numeral 1 denotes a positive electrode side tank in which a positive electrode electrolyte solution 2 and a bromine complex compound 3 are contained. Are stored. Reference numeral 4 denotes a negative electrode side tank, in which the negative electrode electrolyte solution 5 is stored. The positive electrode electrolyte 2 flows through the four-way switching valve 7 and the pipe 8 from the positive electrode manifold 9 of the battery main body along with the driving of the positive electrode side pump 6 in the unit cell, as shown by the arrow in the figure, and the pipe While flowing back to the positive electrode side tank 1 via 10, the negative electrode electrolyte solution 5 is driven by the negative electrode side pump 11 from the pipe 12 and the negative electrode manifold 13 of the battery body to the separator 14
It flows through the unit cell separated by and flows back from the pipe 15 to the negative electrode side tank 4. Reference numeral 16 is an intermediate electrode constituting the battery main body, 17 is the current collecting electrode, 18 is a positive side electrode terminal, 19
Is a negative electrode terminal.

【0008】このような亜鉛−臭素電池に用いられる電
解液は、該電解液中に一定量以上の金属不純物が含有さ
れていると運転効率に悪影響を及ぼしてしまうため、品
質管理を充分に実施することが要求される。例えば電解
液の受け入れ時には十分な品質検査を行う必要がある。
しかし電池運転を長時間継続している間に、電池本体の
構成材料等から金属不純物が電解液中に溶解することに
より、電解液として不適切になってしまう場合がある。
The electrolytic solution used in such a zinc-bromine battery has a sufficient quality control because it adversely affects the operation efficiency if the electrolytic solution contains a certain amount or more of metal impurities. Required to do so. For example, it is necessary to perform a sufficient quality inspection when receiving the electrolyte.
However, while the battery operation is continued for a long time, metal impurities may be dissolved in the electrolytic solution from the constituent materials of the battery main body and the like, which may be inappropriate as the electrolytic solution.

【0009】このような場合は当然新規な電解液と交換
することが必要であるが、使用済みの電解液、特に重金
属が混入している電解液は処理方法が面倒であるため、
通常は専門の廃液処理業者に廃液処理を依頼しており、
従って電解液を再生して使用することは実施されていな
いのが実状である。
In such a case, it is of course necessary to replace the electrolytic solution with a new electrolytic solution, but since the used electrolytic solution, especially the electrolytic solution containing a heavy metal, is troublesome to treat,
Normally, we request a waste liquid treatment from a specialized waste liquid treatment company,
Therefore, the fact is that the electrolyte is not regenerated and used.

【0010】[0010]

【発明が解決しようとする課題】しかしながらこのよう
な亜鉛−臭素電池用電解液の処理方法では、電解液にか
かるコストの比率が極めて大きくなり、しかも省資源の
観点からも好ましくないという課題がある。
However, in such a method for treating an electrolytic solution for a zinc-bromine battery, the cost ratio of the electrolytic solution becomes extremely large, and further, it is not preferable from the viewpoint of resource saving. .

【0011】即ち、本来電解液の占めるコストは電池全
体からみても比率が大きく、且つ重金属が含まれている
使用済みの電解液は無害化処理して廃棄する方法しかな
い上、廃液処理を実施するための余分な費用がかかって
しまうため、電解液の交換を行うたびに大きな出費が必
要となる。
That is, the cost originally occupied by the electrolytic solution is large from the viewpoint of the entire battery, and the used electrolytic solution containing heavy metals is disposed only by detoxifying and discarding it. Therefore, a large expense is required each time the electrolyte solution is replaced.

【0012】上記の問題に対処するには、電解液の再生
処理技術が確立されることが必要であるが、ppm単位
で含有されている金属不純物を他の成分に影響を与えず
に除去する技術手段は確立されていない。例えば電解液
中から金属不純物だけを除去するためにEDTA(エチ
レンジアミン四酢酸基)のようなキレート剤を加える方
法が考えられるが、EDTA自体が電解液中に浸入する
ことにより、該電解液が変質してしまい、機能面での障
害が生じてしまうことになる。そこでやむを得ず前記し
た廃液処理後に廃棄する手段を取らざるを得ないのが現
状である。
In order to deal with the above problem, it is necessary to establish a regenerating treatment technique for the electrolytic solution, but the metal impurities contained in the ppm unit are removed without affecting other components. No technical means have been established. For example, a method of adding a chelating agent such as EDTA (ethylenediaminetetraacetic acid group) in order to remove only metal impurities from the electrolytic solution can be considered. However, when the EDTA itself enters the electrolytic solution, the electrolytic solution is altered. As a result, functional failures will occur. Therefore, at present, it is unavoidable to take a means for discarding the waste liquid after the above-mentioned waste liquid treatment.

【0013】そこで本発明は上記の点に鑑みてなされた
ものであり、亜鉛−臭素電池用電解液の不純物、特に臭
素錯化剤に悪影響を及ぼす鉄(Fe)を効率的に除去し
て、電解液を再生して使用することができる方法を提供
することを目的とするものである。
Therefore, the present invention has been made in view of the above points, and efficiently removes impurities of an electrolytic solution for a zinc-bromine battery, particularly iron (Fe) which adversely affects a bromine complexing agent, It is an object of the present invention to provide a method by which an electrolytic solution can be regenerated and used.

【0014】[0014]

【課題を解決するための手段】本発明は上記目的を達成
するために、亜鉛−臭素電池用の電解液に過酸化水素水
を加えて、電解液に含まれている鉄を2価から3価に酸
化した後、適量のアンモニア水を添加して上記鉄分を水
酸化物で成る沈澱として生成し、この沈澱を濾過するこ
とによって電解液中の鉄分を除去するようにした電解液
の再生方法を提供する。上記電解液に過酸化水素水を加
えることによって水酸化物の沈澱のpHを7.4から2
に変化させ、且つアンモニア水を添加して液pHを2と
する。
In order to achieve the above object, the present invention adds hydrogen peroxide solution to an electrolytic solution for a zinc-bromine battery so that iron contained in the electrolytic solution is divalent to trivalent. Method of regenerating an electrolytic solution in which an iron content in the electrolytic solution is removed by filtering the precipitate by adding an appropriate amount of aqueous ammonia to produce the iron content as hydroxide I will provide a. The pH of the hydroxide precipitate was adjusted to 7.4 to 2 by adding hydrogen peroxide solution to the electrolyte solution.
The pH of the liquid is adjusted to 2 by adding ammonia water.

【0015】[0015]

【作用】かかる電解液の再生方法によれば、電解液に過
酸化水素水を加えることにより、電解液中に2価及び3
価のイオンとして共存している可能性がある鉄が3価に
酸化され、次に適量のアンモニア水を添加することによ
って鉄分が赤褐色の水酸化物で成る細かい沈澱として生
成するので、この沈澱を濾過することによって電解液中
から鉄分が除去される。
According to such a method of regenerating an electrolytic solution, by adding hydrogen peroxide solution to the electrolytic solution, divalent and trivalent compounds are added to the electrolytic solution.
Iron, which may coexist as a valent ion, is oxidized to trivalent, and when an appropriate amount of aqueous ammonia is added, iron is produced as a fine precipitate consisting of reddish brown hydroxide. Iron is removed from the electrolytic solution by filtration.

【0016】又、上記操作によって電解液の成分が変化
することがなく、電解液の変質に起因する機能的な障害
が発生する惧れはない。
Further, the components of the electrolytic solution are not changed by the above-mentioned operation, and there is no possibility of causing a functional disorder due to the alteration of the electrolytic solution.

【0017】[0017]

【実施例】以下に本発明にかかる亜鉛−臭素電池用電解
液の再生方法の具体的な実施例を説明する。本実施例で
は電解液自体の組成に変化がなく、且つ電解液中に含ま
れている金属不純物としての鉄分を除去する技術手段を
確立することを主眼点としている。
EXAMPLES Specific examples of a method for regenerating an electrolytic solution for a zinc-bromine battery according to the present invention will be described below. In this embodiment, the main point is to establish a technical means for removing the iron content as a metal impurity contained in the electrolytic solution without changing the composition of the electrolytic solution itself.

【0018】図1は本実施例にかかる電解液の再生フロ
ー図であり、先ずステップ101で鉄(Fe)を含有する
電解液を用意し、ステップ102で該電解液に過酸化水素
水を加える。次にステップ103で適量のアンモニア水を
加えてpHを2とし、ステップ104で鉄の水酸化物を沈
澱させる。次段のステップ105で生成した沈澱を濾過す
ることにより、ステップ106で電解液の再生が終了す
る。
FIG. 1 is a flow chart of regenerating the electrolytic solution according to this embodiment. First, in step 101, an electrolytic solution containing iron (Fe) is prepared, and in step 102 hydrogen peroxide solution is added to the electrolytic solution. . Next, in step 103, an appropriate amount of aqueous ammonia is added to adjust the pH to 2, and in step 104, iron hydroxide is precipitated. The regeneration of the electrolytic solution is completed in step 106 by filtering the precipitate formed in step 105 of the next stage.

【0019】以下に具体的な操作方法を説明する。先ず
標準的な電解液の組成は以下の通りである。
A specific operation method will be described below. First, the composition of a standard electrolytic solution is as follows.

【0020】主成分 臭化亜鉛 ZnBr2 2〜3mol/l 塩化アンモニウム NH4Cl 1〜3mol/l 臭素錯化剤 QBr 0.75〜1mo
l/l 副成分 臭素 Br2 0.1mol/l 臭化鉛 PbBr2 10ppm 上記の主成分と副成分の組成を有する電解液中に鉄が混
入している場合を想定して、以下の実施例に基づいて鉄
分を除去した。
Main component Zinc bromide ZnBr 2 2-3 mol / l Ammonium chloride NH 4 Cl 1-3 mol / l Bromine complexing agent QBr 0.75-1mo
1 / l Secondary component Bromine Br 2 0.1 mol / l Lead bromide PbBr 2 10 ppm Assuming that iron is mixed in the electrolytic solution having the above main component and secondary component composition, the following examples The iron content was removed based on.

【0021】〔実施例〕先ず模擬電解液として、上記臭
化亜鉛を3mol/l,塩化アンモニウムを2mol/
l,臭素錯化剤を1mol/l含有する電解液を作成
し、この模擬電解液に鉄(Fe)成分が10ppm濃度
になるように鉄の原子吸光用標準液を添加した。
Example First, as a simulated electrolyte, the above zinc bromide was 3 mol / l and ammonium chloride was 2 mol / l.
1, an electrolyte containing 1 mol / l of a bromine complexing agent was prepared, and a standard solution for atomic absorption of iron was added to the simulated electrolyte so that the iron (Fe) component had a concentration of 10 ppm.

【0022】具体的には、上記模擬電解液の200ml
を用意して300mlの三角フラスコに入れ、電解液に
鉄が2価及び3価のイオンとして共存している可能性が
あるため、過酸化水素水(H22)を加えて2価から3
価に酸化した。これによって水酸化物の沈澱のpHが
7.4から2に変化した。
Specifically, 200 ml of the above simulated electrolyte solution
Prepared and placed in a 300 ml Erlenmeyer flask. Since iron may coexist as divalent and trivalent ions in the electrolytic solution, hydrogen peroxide solution (H 2 O 2 ) is added to dilute the solution from divalent. Three
Oxidized to valency. This changed the pH of the hydroxide precipitate from 7.4 to 2.

【0023】次にアンモニア水(NH4OH)を5〜7
ml添加してpHを2とした。すると赤褐色の細かい沈
澱が生成したので、少時間放置後、No.5Cの濾紙を
用いて濾過を行い、沈澱を蛍光X線分析装置で分析を行
い、濾液については原子吸光光度計で分析を行った。
Next, 5 to 7 ammonia water (NH 4 OH) is added.
The pH was adjusted to 2 by adding ml. Then, a fine reddish brown precipitate was formed. Filtration was performed using a 5C filter paper, the precipitate was analyzed by a fluorescent X-ray analyzer, and the filtrate was analyzed by an atomic absorption spectrophotometer.

【0024】(1)沈澱の分析結果 図2の沈澱物の蛍光X線スペクトルに見られるように、
沈澱中に鉄(Fe)が検出された。尚、蛍光X線スペク
トル中のZnとBrは電解液に含まれている臭化亜鉛
(ZnBr2)によるものである。
(1) Precipitation analysis result As shown in the fluorescent X-ray spectrum of the precipitate in FIG.
Iron (Fe) was detected during the precipitation. Zn and Br in the fluorescent X-ray spectrum are due to zinc bromide (ZnBr 2 ) contained in the electrolytic solution.

【0025】(2)濾液の分析結果 図3に示す濾液の原子吸光スペクトルに見られるよう
に、処理前に検出された鉄(Fe)が処理後の濾液中に
はほとんど検出されなかった。
(2) Analysis result of filtrate As shown in the atomic absorption spectrum of the filtrate shown in FIG. 3, almost no iron (Fe) detected before the treatment was detected in the filtrate after the treatment.

【0026】以上の分析結果から、電解液に過酸化水素
水(H22)を加えて酸化した後、アンモニア水(NH
4OH)を添加してpHを2とすることにより、鉄分を
沈澱物として除去可能であることが判明した。本実施例
での処理に使用した試薬は、過酸化水素水とアンモニア
水であるため、電解液に対して不要な成分の混入がな
く、且つ試薬を再利用する場合には、該試薬の濃度の調
整を行うだけで良いことが分かった。
From the above analysis results, hydrogen peroxide (H 2 O 2 ) was added to the electrolytic solution to oxidize it, and then ammonia water (NH 2
It was found that iron can be removed as a precipitate by adding ( 4 OH) to adjust the pH to 2. Since the reagents used for the treatment in this example are hydrogen peroxide water and ammonia water, there is no mixing of unnecessary components in the electrolytic solution, and when the reagents are reused, the concentration of the reagents It turns out that all I have to do is adjust.

【0027】従って本実施例によれば、電解液中の金属
不純物濃度を10ppm以下に抑えたいという目標を達
成することが可能であり、しかも上記分析結果にみられ
るように鉄分はほとんど除去することが出来る。
Therefore, according to the present embodiment, it is possible to achieve the goal of suppressing the concentration of metal impurities in the electrolytic solution to 10 ppm or less, and as shown in the above analysis results, most of the iron content should be removed. Can be done.

【0028】尚、電解液に過酸化水素水(H22)を加
えてFeを2価から3価に酸化するのは、電解液のpH
が本来1〜1.5であり、2価のFeを水酸化物として
沈澱させるにはpH7.4とすることが必要であって、
そのためにはきわめて多量のアンモニア水を使用しなけ
ればならない上、pH4以上では鉛(Pb)が水酸化物
として沈澱してしまうため、2価のFeのままでは不適
切であるという理由に基づいている。
The hydrogen peroxide solution (H 2 O 2 ) is added to the electrolytic solution to oxidize Fe from divalent to trivalent because it is the pH of the electrolytic solution.
Is essentially 1 to 1.5, and it is necessary to adjust the pH to 7.4 in order to precipitate divalent Fe as a hydroxide.
For that purpose, it is necessary to use an extremely large amount of ammonia water, and lead (Pb) precipitates as a hydroxide at a pH of 4 or more. There is.

【0029】[0029]

【発明の効果】以上説明したように、本発明にかかる電
解液の再生方法は、電解液に過酸化水素水を加えて鉄分
を酸化してから適量のアンモニア水を添加することによ
って鉄分を水酸化物で成る沈澱として生成し、この沈澱
を濾過することによって電解液中から鉄分を容易に除去
することができる。試薬は過酸化水素水とアンモニア水
であるため、電解液中に余分な成分が浸入しないので該
電解液の変質とか機能面での障害が生じる惧れがない。
As described above, in the method for regenerating an electrolytic solution according to the present invention, the iron content is added to the electrolytic solution by adding hydrogen peroxide water to the electrolytic solution to oxidize the iron content and then adding an appropriate amount of ammonia water. The precipitate is formed as an oxide, and the precipitate can be filtered to easily remove iron from the electrolytic solution. Since the reagents are hydrogen peroxide water and ammonia water, extra components do not penetrate into the electrolytic solution, so there is no possibility of deterioration of the electrolytic solution or functional failure.

【0030】従って従来から単に無害化処理して廃棄す
る以外に方法がない使用済みの電解液中の、特に臭素錯
化剤に悪影響を及ぼす鉄を効率的に除去して再度使用す
ることが可能となり、電解液の寿命が延びるとともに環
境面からも好ましく、都市部での電池使用に有効であ
る。又、資源の有効利用がはかれるとともに廃液処理を
実施するための余分な出費をなくして、実質的なコスト
低減効果が得られる再生方法を提供することが出来る。
Therefore, there is no other method than the conventional method of simply detoxifying and discarding, and it is possible to efficiently remove iron which has a bad influence on the bromine complexing agent, and reuse it. Therefore, the life of the electrolytic solution is extended and the environment is preferable, and it is effective for use of the battery in the urban area. Further, it is possible to provide a regenerating method in which effective use of resources is achieved and unnecessary cost for carrying out waste liquid treatment is eliminated, and a substantial cost reduction effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例にかかる電解液の再生フロー図。FIG. 1 is a flow chart of regeneration of an electrolytic solution according to this embodiment.

【図2】沈澱物の蛍光X線スペクトルを示すグラフ。FIG. 2 is a graph showing a fluorescent X-ray spectrum of the precipitate.

【図3】濾液の原子吸光スペクトルを示すグラフ。FIG. 3 is a graph showing an atomic absorption spectrum of a filtrate.

【図4】亜鉛−臭素電池の作動原理を説明する概要図。FIG. 4 is a schematic diagram illustrating the operating principle of a zinc-bromine battery.

【符号の説明】[Explanation of symbols]

1…正極側タンク 2…正極電解液 3…臭素錯化物 4…負極側タンク 5…負極電解液 6…正極側ポンプ 9…正極マニホールド 11…負極側ポンプ 14…セパレータ 16…中間電極 17…集電電極 DESCRIPTION OF SYMBOLS 1 ... Positive electrode side tank 2 ... Positive electrode electrolyte solution 3 ... Bromine complex compound 4 ... Negative electrode side tank 5 ... Negative electrode electrolyte solution 6 ... Positive electrode side pump 9 ... Positive electrode manifold 11 ... Negative electrode side pump 14 ... Separator 16 ... Intermediate electrode 17 ... Current collection electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 充放電時に電池本体と別置きにした正極
側タンク及び負極側タンクから電解液がポンプで循環さ
れ、充電時に正極で発生した臭素が電解液に添加した臭
素錯化剤と反応して正極側タンクへ戻されるとともに、
放電時は該電解液がポンプで電池本体内へ送り込まれて
還元されるようにした亜鉛−臭素電池において、 上記電解液に過酸化水素水を加えて、電解液に含まれて
いる鉄を2価から3価に酸化した後、適量のアンモニア
水を添加して上記鉄分を水酸化物で成る沈澱として生成
し、この沈澱を濾過することによって電解液中の鉄分を
除去することを特徴とする亜鉛−臭素電池用電解液の再
生方法。
1. An electrolyte solution is circulated by a pump from a positive electrode side tank and a negative electrode side tank separately placed from a battery main body during charging / discharging, and bromine generated in the positive electrode during charging reacts with a bromine complexing agent added to the electrolytic solution. And then returned to the positive side tank,
In a zinc-bromine battery in which the electrolytic solution is pumped into the battery body for reduction during discharge, hydrogen peroxide solution is added to the electrolytic solution to remove iron contained in the electrolytic solution. After oxidizing from trivalent to trivalent, an appropriate amount of aqueous ammonia is added to produce the iron as a precipitate consisting of hydroxide, and the precipitate is filtered to remove the iron from the electrolytic solution. A method for regenerating an electrolyte for a zinc-bromine battery.
【請求項2】 電解液に過酸化水素水を加えることによ
って水酸化物の沈澱のpHを7.4から2に変化させ、
且つアンモニア水を添加して液pHを2とした請求項1
記載の亜鉛−臭素電池用電解液の再生方法。
2. The pH of the hydroxide precipitate is changed from 7.4 to 2 by adding hydrogen peroxide solution to the electrolytic solution,
A liquid pH is set to 2 by adding aqueous ammonia.
A method for regenerating the zinc-bromine battery electrolyte described.
JP5247254A 1993-10-04 1993-10-04 Regenerating method for electrolyte for zinc-bromine battery Pending JPH07105992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5247254A JPH07105992A (en) 1993-10-04 1993-10-04 Regenerating method for electrolyte for zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5247254A JPH07105992A (en) 1993-10-04 1993-10-04 Regenerating method for electrolyte for zinc-bromine battery

Publications (1)

Publication Number Publication Date
JPH07105992A true JPH07105992A (en) 1995-04-21

Family

ID=17160755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5247254A Pending JPH07105992A (en) 1993-10-04 1993-10-04 Regenerating method for electrolyte for zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH07105992A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110253553A1 (en) * 2010-03-22 2011-10-20 Bromine Compounds Ltd. Method of Operating Metal-Bromine Cells
CN103236570A (en) * 2013-04-12 2013-08-07 北京百能汇通科技股份有限公司 Recovery processing method of electrolyte for zinc bromine battery
CN103947012A (en) * 2011-09-21 2014-07-23 溴化合物有限公司 A method of operating metal-bromine cells
JP2015138684A (en) * 2014-01-23 2015-07-30 和之 豊郷 Magnesium power generation cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110253553A1 (en) * 2010-03-22 2011-10-20 Bromine Compounds Ltd. Method of Operating Metal-Bromine Cells
US8911612B2 (en) * 2010-03-22 2014-12-16 Bromine Compounds Ltd. Method of operating metal-bromine cells
CN103947012A (en) * 2011-09-21 2014-07-23 溴化合物有限公司 A method of operating metal-bromine cells
CN103236570A (en) * 2013-04-12 2013-08-07 北京百能汇通科技股份有限公司 Recovery processing method of electrolyte for zinc bromine battery
JP2015138684A (en) * 2014-01-23 2015-07-30 和之 豊郷 Magnesium power generation cell system

Similar Documents

Publication Publication Date Title
KR100240470B1 (en) Retrieving and recycling method for sn plating solution
WO2007101284A1 (en) Redox flow battery and electrolyte solution for a eine redox flow battery
CN102092870A (en) Sewage treatment equipment and process for concentration/chemical oxidation regeneration of absorbent
JPH06188005A (en) Redox battery
EP0766650B1 (en) Anaerobic removal of sulphur compounds from waste water
JPH07105992A (en) Regenerating method for electrolyte for zinc-bromine battery
JP2620839B2 (en) Method of treating a chelating agent solution containing radioactive contaminants
US4139431A (en) Process and apparatus for the removal of silver from fixer solutions
JPH05220467A (en) Method for separating radioactive nuclide in radioactive waste liquid and method for separating useful or toxic elements in industrial waste liquid
CN213803052U (en) Cleaning system for iron-manganese scaling of electrodialysis system
JP2004111182A (en) Re-activation method of electrode for redox flow battery
JPH0660008B2 (en) Widespread use of strip acids used in regenerating battery acids from exhausted lead-acid batteries and in regenerating battery acids from such batteries
JP3987597B2 (en) Recycling method of positive electrode active material for used lead-acid battery
JP2023554306A (en) Redox flow battery with improved efficiency
EP1713730A1 (en) Electrochemical method for the removal of arsenate from drinking water
CN211367336U (en) Electroplating effluent high-efficiency processing system
CN110526455B (en) Method for recycling uranium from uranium-containing wastewater
CN219991340U (en) Ferric phosphate wastewater treatment system
CN110104829A (en) A kind of processing method of cyanide containing wastewater
CN220780302U (en) Lithium iron phosphate material integration preparation facilities
JPH06346299A (en) Method for recovering and reproducing tin plating solution
CN220371903U (en) Leaching-regenerating cyclic utilization device for soil heavy metals
JPH07248582A (en) Treatment of waste photographic processing liquid and desilvering device and photographic processing device
CN219363433U (en) Electroplating wastewater treatment system
JP2854673B2 (en) Treatment method of decontamination waste liquid