JPH07105958A - Primary battery - Google Patents

Primary battery

Info

Publication number
JPH07105958A
JPH07105958A JP24714393A JP24714393A JPH07105958A JP H07105958 A JPH07105958 A JP H07105958A JP 24714393 A JP24714393 A JP 24714393A JP 24714393 A JP24714393 A JP 24714393A JP H07105958 A JPH07105958 A JP H07105958A
Authority
JP
Japan
Prior art keywords
battery
lithium
potential
positive electrode
redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24714393A
Other languages
Japanese (ja)
Inventor
Ryuichi Shimizu
竜一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP24714393A priority Critical patent/JPH07105958A/en
Publication of JPH07105958A publication Critical patent/JPH07105958A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Abstract

PURPOSE:To provide a primary, battery in which the max. operating voltage is set to any maximum operating voltage level which complies with the requirement of the apparatus in use. CONSTITUTION:A negative electrode is made of a metal material containing lithium as major component or a carbon material which contains lithium, while a positive electrode is made from composite oxides of a transfer metal or composite sulfides of transfer metal, With them a non-aqueous electrolyte battery is built, wherein an oxidation-reduction reagent of metal complex is included which exhibits an oxidation-reduction potential of 1.0V-5.0V relative to the lithium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、特に小型電子
機器の電源に適用して好適な一次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a primary battery suitable for use as a power source for small electronic devices.

【0002】[0002]

【従来の技術】近年、エレクトロニクスの急速な進歩に
伴い、特に小型電子機器の電源として、小型、軽量で、
長寿命、高エネルギー密度の電池が求められている。リ
チウム電池は、このような要求に適した電池であり、多
くの種類のものが活発に研究され、一部が実用化し市場
に供給されている。これらは用途に応じて様々な形状と
電池特性を有している。
2. Description of the Related Art In recent years, with the rapid progress of electronics, especially as a power source for small electronic devices, small and lightweight,
Batteries with long life and high energy density are required. Lithium batteries are batteries that meet such requirements, and many types of batteries have been actively researched, and some have been commercialized and supplied to the market. These have various shapes and battery characteristics depending on the application.

【0003】リチウム電池は主として3V級が用いられ
ている。しかし、在来電池であるマンガン乾電池、アル
カリマンガン乾電池、銀電池、水銀電池などの作動電圧
は1.35V〜1.55Vであり、小型電子機器及び機
器に用いられる電子部品の多くがこれらに合わせた仕様
となっている。従って、これらと互換性のあるリチウム
電地の開発が望まれている。
Lithium batteries are mainly of the 3V class. However, the operating voltage of conventional batteries such as manganese dry batteries, alkaline manganese dry batteries, silver batteries, and mercury batteries is 1.35 V to 1.55 V, and many small electronic devices and electronic components used in the devices are adapted to these. It has become a specification. Therefore, development of a lithium electric field compatible with these is desired.

【0004】正極活物質として、酸化銅、三酸化ビスマ
ス、二硫化鉄、硫化鉄、四三酸化鉛、ビスマス酸鉛など
があり、これらの正極材料により約2Vから約1.5V
までの作動電圧を示す。
Examples of the positive electrode active material include copper oxide, bismuth trioxide, iron disulfide, iron sulfide, lead trioxide, lead bismuthate, etc., and depending on these positive electrode materials, about 2V to about 1.5V.
Indicates the operating voltage up to.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うに、1.5V級のリチウム電池が開発されているが、
電池の初期の電圧は正極材料により1.5Vより高いこ
とがある。そのため使用する機器によっては作動電圧か
わずかに高すぎるため機器の電子回路を壊す問題があっ
た。
However, although a 1.5V class lithium battery has been developed in this way,
The initial voltage of the battery may be higher than 1.5V depending on the positive electrode material. Therefore, depending on the equipment used, the operating voltage is slightly too high, which causes a problem of breaking the electronic circuit of the equipment.

【0006】この問題をさけるため、機器の電子回路な
いし電池パックにツェナーダイオードなどの電子素子を
組み込み、不要な高い電圧の容量を放電させる必要があ
る。
In order to avoid this problem, it is necessary to incorporate an electronic element such as a Zener diode into an electronic circuit of the equipment or a battery pack to discharge an unnecessary high voltage capacity.

【0007】しかし、在来電池では必要のない電子素子
を機器の回路に組み込むと、在来電池との互換性が完全
でない似て非なる電池となることから、この電池が使え
る機器と使えない機器を区別することは使用者にとって
全く煩雑であり、著しく使いやすさを損なうことにな
る。
However, if an electronic element which is not necessary for a conventional battery is incorporated into a circuit of a device, the battery is not completely compatible with the conventional battery and becomes a different battery. Distinguishing devices is quite cumbersome for the user and significantly impairs ease of use.

【0008】一方、電池パックに電子素子を組み込む
と、特に単三電池や単四電地のような小型の電池におい
ては無視できない余分なスペースをとるため、機器を設
計する上で形状と容積に対する制約が大きくなり、小型
電子機器の電源として用いるには好ましくない。また、
万一の液漏れなどで素子が短絡した場合、大電流が流れ
て非常に危険であるから、電子素子の信頼性を長期に渡
って確保することが必要となるが、構造の複雑化とコス
トを抑えてこれを達成することは実際には困難である。
On the other hand, when an electronic element is incorporated in a battery pack, an extra space which cannot be ignored is taken especially in a small battery such as an AA battery or an AAA battery. The restrictions are large, and it is not preferable to use it as a power source for small electronic devices. Also,
If the element is short-circuited due to a liquid leak or the like, a large current will flow, which is extremely dangerous, so it is necessary to ensure the reliability of the electronic element for a long period of time, but the structure is complicated and the cost is low. It is practically difficult to suppress this and achieve this.

【0009】本発明はこのような課題に鑑みてなされた
ものであり、最大使用電圧を使用機器の要求に応じた任
意の最大作動電圧に設定した一次電池を提供することを
目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a primary battery in which the maximum operating voltage is set to an arbitrary maximum operating voltage according to the requirements of the equipment used.

【0010】[0010]

【課題を解決するための手段】本発明の一次電池は、電
解液が、正極の電位より低い酸化還元電位を示す酸化還
元試薬、または負極の電位より高い酸化還元電位を示す
酸化還元試薬を少なくとも1つ含有するものである。
In the primary battery of the present invention, the electrolytic solution contains at least a redox reagent exhibiting a redox potential lower than the positive electrode potential or a redox reagent exhibiting a redox potential higher than the negative electrode potential. It contains one.

【0011】また、本発明の一次電池は、負極にリチウ
ムを主体とする金属材料またはリチウムを含有する炭素
材料を用い、正極に遷移金属の複合酸化物または遷移金
属の複合硫化物を用いてなる非水電解液電池において、
酸化還元試薬が、リチウムに対して1.0V〜5.0V
の酸化還元電位を示す上述構成の一次電池である。
In the primary battery of the present invention, a metal material mainly containing lithium or a carbon material containing lithium is used for the negative electrode, and a composite oxide of transition metal or a composite sulfide of transition metal is used for the positive electrode. In non-aqueous electrolyte batteries,
Redox reagent is 1.0V to 5.0V against lithium
2 is a primary battery having the above-described configuration showing the oxidation-reduction potential.

【0012】また、本発明の一次電池は、酸化還元試薬
が金属錯体である上述構成の一次電池である。
Further, the primary battery of the present invention is the primary battery having the above-mentioned structure in which the redox reagent is a metal complex.

【0013】また、本発明の一次電池は、金属錯体が構
造式
In the primary battery of the present invention, the metal complex has the structural formula

【0014】[0014]

【化2】 で表される鉄錯体であり、正極が酸化銅(CuO)また
は二硫化鉄(FeS2 )である上述構成の一次電池であ
る。
[Chemical 2] The primary battery is an iron complex represented by, and the positive electrode is copper oxide (CuO) or iron disulfide (FeS 2 ).

【0015】上述の構成を採った場合、電池電解液中に
含まれる酸化還元試薬は、正極または負極から電荷を受
け取り、この電荷を電解液中の拡散を経て対極に運ぶ作
用を有する。この作用は、酸化還元試薬の有する電位と
正極または負極の電位とが一致し、平衡に達するまで続
く。例えば、当初の電圧が1.8Vの電池の電解液に、
正極の電位より0.3V低い酸化還元試薬を添加するこ
とによって、電池電圧を1.5Vに設定することができ
る。
In the case of adopting the above-mentioned constitution, the redox reagent contained in the battery electrolyte has a function of receiving charges from the positive electrode or the negative electrode and carrying the charges to the counter electrode through diffusion in the electrolyte. This action continues until the potential of the redox reagent matches the potential of the positive electrode or the negative electrode and equilibrium is reached. For example, in the electrolyte of the battery whose initial voltage is 1.8V,
The battery voltage can be set to 1.5 V by adding a redox reagent that is 0.3 V lower than the positive electrode potential.

【0016】酸化還元試薬の濃度としては、1時間から
数日程度で電池電圧が平衡に達するだけの濃度が必要で
あり、0.001モル/リットル〜1.0モル/リット
ルの範囲の濃度で酸化還元試薬を電解液に溶解させれば
よい。
The concentration of the redox reagent must be such that the battery voltage reaches equilibrium in about 1 hour to several days, and the concentration is in the range of 0.001 mol / liter to 1.0 mol / liter. The redox reagent may be dissolved in the electrolytic solution.

【0017】電池構成としては、負極にリチウムを主体
とする金属材料またはリチウムを含有する炭素材料を用
い、正極に遷移金属の複合酸化物または遷移金属の複合
硫化物を用いてなる非水電解液電池が適当であるが、こ
の場合には、電解液がリチウムに対して1.0V〜5.
0Vの酸化還元電位を示す少なくとも1つの酸化還元試
薬を含有することを特徴とする。酸化還元電位は、用い
る電極材料の電位によって、上述したような範囲で電極
電位との差のあるものになる。
As a battery constitution, a non-aqueous electrolytic solution is used in which a metal material mainly containing lithium or a carbon material containing lithium is used for the negative electrode, and a composite oxide of transition metal or a composite sulfide of transition metal is used for the positive electrode. Batteries are suitable, but in this case the electrolyte is between 1.0 V and 5.
It is characterized in that it contains at least one redox reagent exhibiting a redox potential of 0V. The redox potential has a difference from the electrode potential within the above range depending on the potential of the electrode material used.

【0018】酸化還元試薬としては、金属錯体が好適で
あり、電池構成と機器の要求特性に応じて、必要とする
酸化還元電位を有するものが使用される。金属錯体の一
例としては、下記構造式
As the redox reagent, a metal complex is suitable, and one having a required redox potential is used according to the battery configuration and the required characteristics of the equipment. As an example of a metal complex, the following structural formula

【0019】[0019]

【化3】 で表される鉄錯体Fe(heptamethylcyc
lopentadiene)(hexamethylb
enzene)が挙げられ、負極にリチウムを主体とす
る金属材料またはリチウムを含有する炭素材料を用い、
正極に酸化銅(CuO)または二硫化鉄(FeS2 )を
用いた構成の電池においては好適なものである。
[Chemical 3] The iron complex represented by Fe (heptamethylcyc)
lopentadiene) (hexamethylb)
enzene), and a metal material mainly containing lithium or a carbon material containing lithium is used for the negative electrode,
It is suitable for a battery having a structure using copper oxide (CuO) or iron disulfide (FeS 2 ) for the positive electrode.

【0020】負極にリチウムを主体とする金属材料また
はリチウムを含有する炭素材料を用い、正極に酸化銅
(CuO)または二硫化鉄(FeS2 )を用いた構成の
電池は、材料コストが低いため1.5V級のリチウム電
地の中で特に有用性の高いものであるが、電圧が1.5
Vよりも若干高いことから前述した欠点が生じることが
あった。
Since the negative electrode uses a metallic material mainly containing lithium or a carbon material containing lithium and the positive electrode uses copper oxide (CuO) or iron disulfide (FeS 2 ), the material cost is low. It is particularly useful in 1.5V class lithium batteries, but the voltage is 1.5
Since it is slightly higher than V, the above-mentioned defects may occur.

【0021】本発明は利点を示すために、標準容量20
00mAhの筒型リチウム−二硫化鉄電池を用いた。実
験には、標準的な放電試験装置及びサイクリックボルタ
ンメトリー試験装置を用いた。
The present invention illustrates the advantages of standard capacity 20
A 00 mAh cylindrical lithium-iron disulfide battery was used. Standard discharge test equipment and cyclic voltammetry test equipment were used for the experiments.

【0022】[0022]

【作用】本発明の一次電池によれば、電解液が、正極の
電位より低い酸化還元電位を示す酸化還元試薬、または
負極の電位より高い酸化還元電位を示す酸化還元試薬を
少なくとも1つ含有するので、最大使用電圧を使用機器
の要求に応じた任意の最大作動電圧に設定した電池を提
供することができる。
According to the primary battery of the present invention, the electrolytic solution contains at least one redox reagent exhibiting a redox potential lower than the positive electrode potential, or at least one redox reagent exhibiting a redox potential higher than the negative electrode potential. Therefore, it is possible to provide a battery in which the maximum operating voltage is set to an arbitrary maximum operating voltage according to the requirements of the device used.

【0023】[0023]

【実施例】以下、本発明一次電池の一実施例について図
1を参照しながら説明しよう。本例においては、標準容
量2000mAhの筒型リチウム−二硫化鉄電池を用い
た。
EXAMPLE An example of the primary battery of the present invention will be described below with reference to FIG. In this example, a cylindrical lithium-iron disulfide battery with a standard capacity of 2000 mAh was used.

【0024】上記筒型リチウム−二硫化鉄電池の製造に
おいて、約2.5gの電解液(1.0モル/リットルL
iF6炭酸プロピレン−炭酸ジメチル1:1溶液)に対
し、鉄錯体Fe(heptamethylcyclop
entadiene)(hexamethylbenz
ene)
In the production of the above-mentioned cylindrical lithium-iron disulfide battery, about 2.5 g of electrolytic solution (1.0 mol / liter L
For iF6 propylene carbonate-dimethyl carbonate 1: 1 solution, an iron complex Fe (heptamethylcyclop) was used.
entadiene) (hexamethylbenz)
ene)

【0025】[0025]

【化4】 を0.01モル/リットルの濃度で溶解させ、電池に注
入し封口した。一昼夜放置した後、電池開路電圧を測定
したところ1.53Vであった。
[Chemical 4] Was dissolved at a concentration of 0.01 mol / liter, poured into a battery and sealed. After leaving it overnight, the open circuit voltage of the battery was measured and found to be 1.53V.

【0026】また、この電解液について、サイクリック
ボルタンメトリーによる酸化還元電位の測定を行ったと
ころ、リチウム参照電極に対して、1.52Vに酸化還
元電位が観測された。
When the redox potential of this electrolytic solution was measured by cyclic voltammetry, the redox potential was observed at 1.52 V with respect to the lithium reference electrode.

【0027】なお、この電池の放電試験を0.75mA
/cm2 の定電流で、1.5〜1.0Vの間で室温にて
行ったところ、正極の理論容量の約85%であった(図
1参照)。
The discharge test of this battery was 0.75 mA.
It was about 85% of the theoretical capacity of the positive electrode when it was performed at room temperature between 1.5 and 1.0 V with a constant current of / cm 2 (see FIG. 1).

【0028】上述の本例に対して、比較のために次のよ
うな電池を作成した。上記筒型電池の製造において、電
解液に鉄錯体を添加する以外は全く同じ操作によって、
電池に注入封口した。一昼夜放置した後、電池開路電圧
を測定したところ1.72Vであった。
For the above-mentioned present example, the following battery was prepared for comparison. In the manufacture of the above cylindrical battery, the procedure is exactly the same except that the iron complex is added to the electrolytic solution.
Filled and sealed the battery. After leaving it overnight, the open circuit voltage of the battery was measured and found to be 1.72V.

【0029】なお、この電池の放電試験を0.75mA
/cm2 の定電流で、1.7〜1.0Vの間で室温にて
行ったところ、正極の理論容量の約88%であった。
The discharge test of this battery was 0.75 mA.
When a constant current of / cm 2 was applied and the temperature was between 1.7 and 1.0 V at room temperature, it was about 88% of the theoretical capacity of the positive electrode.

【0030】以上のことから、本例によれば、エネルギ
ー密度の高いリチウム電池の電圧を、用いる電極材料に
よらず、小型電子機器あるいは電子部品の要求する上限
使用電圧仕様に応じて設定できるため、機器あるいは電
子部品を高すぎる電圧によって壊すことがない。特に汎
用性の高い電圧である1.5Vに設定した高い容量のリ
チウム電池を安価な電極材料を用いて製造し提供できる
ため、広く、従来の乾電池の代わりにポータブル機器に
使用することができ、その効果は非常に大きいものであ
る。
From the above, according to this example, the voltage of a lithium battery having a high energy density can be set according to the upper limit working voltage specification required by a small electronic device or electronic component, regardless of the electrode material used. , Do not damage the equipment or electronic components by too high voltage. In particular, since it is possible to manufacture and provide a high-capacity lithium battery set to 1.5V, which is a highly versatile voltage, using an inexpensive electrode material, it can be widely used as a portable device instead of a conventional dry battery, The effect is very large.

【0031】なお、本発明は上述の実施例に限らず本発
明の要旨を逸脱することなくその他種々の構成を採り得
ることはもちろんである。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
最大使用電圧を使用機器の要求に応じた任意の最大作動
電圧に設定した電池を提供することができる。また、エ
ネルギー密度の高いリチウム電池の電圧を、用いる電極
材料によらず、小型電子機器あるいは電子部品の要求す
る上限使用電圧仕様に応じて設定できるため、機器ある
いは電子部品を高すぎる電圧によって壊すといった事故
をなくすことができる。また、汎用性の高い電圧である
1.5Vに設定した高い容量のリチウム電池を安価な電
極材料を用いて製造し提供できるため、広く、従来の乾
電池の代わりにポータブル機器に使用することができ
る。
As described above, according to the present invention,
It is possible to provide a battery in which the maximum operating voltage is set to any maximum operating voltage according to the requirements of the device used. In addition, since the voltage of a lithium battery with high energy density can be set according to the upper limit operating voltage specifications required by small electronic devices or electronic components, regardless of the electrode material used, the devices or electronic components may be damaged by excessively high voltage. You can eliminate accidents. In addition, since it is possible to manufacture and provide a high-capacity lithium battery set to a highly versatile voltage of 1.5 V by using an inexpensive electrode material, it can be widely used as a portable device instead of a conventional dry battery. .

【図面の簡単な説明】[Brief description of drawings]

【図1】リチウム電池の負荷特性を示す線図である。FIG. 1 is a diagram showing a load characteristic of a lithium battery.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解液が、正極の電位より低い酸化還元
電位を示す酸化還元試薬、または負極の電位より高い酸
化還元電位を示す酸化還元試薬を少なくとも1つ含有す
ることを特徴とする一次電池。
1. A primary battery, wherein the electrolytic solution contains at least one redox reagent exhibiting a redox potential lower than the positive electrode potential or at least one redox reagent exhibiting a redox potential higher than the negative electrode potential. .
【請求項2】 負極にリチウムを主体とする金属材料ま
たはリチウムを含有する炭素材料を用い、正極に遷移金
属の複合酸化物または遷移金属の複合硫化物を用いてな
る非水電解液電池において、 酸化還元試薬は、リチウムに対して1.0V〜5.0V
の酸化還元電位を示すものであることを特徴とする請求
項1記載の一次電池。
2. A non-aqueous electrolyte battery in which a metal material mainly containing lithium or a carbon material containing lithium is used for the negative electrode, and a composite oxide of transition metal or a composite sulfide of transition metal is used for the positive electrode. Redox reagent is 1.0 V to 5.0 V against lithium
The primary battery according to claim 1, which exhibits an oxidation-reduction potential.
【請求項3】 酸化還元試薬が金属錯体であることを特
徴とする請求項2記載の一次電池。
3. The primary battery according to claim 2, wherein the redox reagent is a metal complex.
【請求項4】 金属錯体は構造式 【化1】 で表される鉄錯体であり、 正極は酸化銅(CuO)または二硫化鉄(FeS2 )で
あることを特徴とする請求項3記載の一次電池。
4. The metal complex has a structural formula: The primary battery according to claim 3, wherein the positive electrode is copper oxide (CuO) or iron disulfide (FeS 2 ).
JP24714393A 1993-10-01 1993-10-01 Primary battery Pending JPH07105958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24714393A JPH07105958A (en) 1993-10-01 1993-10-01 Primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24714393A JPH07105958A (en) 1993-10-01 1993-10-01 Primary battery

Publications (1)

Publication Number Publication Date
JPH07105958A true JPH07105958A (en) 1995-04-21

Family

ID=17159076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24714393A Pending JPH07105958A (en) 1993-10-01 1993-10-01 Primary battery

Country Status (1)

Country Link
JP (1) JPH07105958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227221A (en) * 2006-02-24 2007-09-06 Sony Corp Lithium/iron disulphide primary cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227221A (en) * 2006-02-24 2007-09-06 Sony Corp Lithium/iron disulphide primary cell
JP4539584B2 (en) * 2006-02-24 2010-09-08 ソニー株式会社 Lithium / iron disulfide primary battery

Similar Documents

Publication Publication Date Title
JPS6117102B2 (en)
KR100423227B1 (en) Non-aqueous electrolyte secondary battery with shuttle
Takeuchi et al. The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells
JPH01206571A (en) Overcharge protection for nonaqueous secondary cell
KR101875785B1 (en) Cathode material for rechargeable magnesium battery and its preparation method
US3121028A (en) High performance battery
JP4911938B2 (en) Reflow heat-resistant lithium secondary battery
JPH02260375A (en) Nonaqueous electrolyte secondary battery
JPH07105958A (en) Primary battery
JPH07230824A (en) Nonaqueous electrolyte battery
JP3587791B2 (en) Method for producing positive electrode for battery and non-aqueous electrolyte battery
JPH08241732A (en) Organic electrolytic secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPS58216367A (en) Rechargeable electrochemical battery
JP2004047406A (en) Nonaqueous electrolyte secondary battery
JPS60189164A (en) Silver oxide battery
KR20130126778A (en) Coin type hybrid capacitor
JP2018073667A (en) Power storage device
JPH0260073A (en) Charging method for nonaqueous electrolyte secondary battery
JP2521909B2 (en) Lithium / manganese dioxide secondary battery
Huggins et al. Primary, non-rechargeable batteries
JPS6012677A (en) Solid electrolyte secondary battery
JPH0822840A (en) Organic electrolyte secondary battery
Schlaikjer et al. Improvement in the Capacity and Safety of Lithium/Inorganic Electrolyte Sulfur Dioxide Rechargeable Cells. Phase 2.