JPH0710583A - Dehydration sintering furnace - Google Patents

Dehydration sintering furnace

Info

Publication number
JPH0710583A
JPH0710583A JP14617593A JP14617593A JPH0710583A JP H0710583 A JPH0710583 A JP H0710583A JP 14617593 A JP14617593 A JP 14617593A JP 14617593 A JP14617593 A JP 14617593A JP H0710583 A JPH0710583 A JP H0710583A
Authority
JP
Japan
Prior art keywords
furnace
heater
core tube
core
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14617593A
Other languages
Japanese (ja)
Inventor
Nobuhiko Ogata
伸彦 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14617593A priority Critical patent/JPH0710583A/en
Publication of JPH0710583A publication Critical patent/JPH0710583A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Abstract

PURPOSE:To improve the durability of a core pipe and facilitate the exchange working of the core pipe in a dehydration sintering furnace for dehydrating and transparently vitrifying by heating a preform while rotating and moving in the core pipe. CONSTITUTION:A central thick part 12 is formed so that the thickness of the central thick part 12 in the vicinity of a heater 2 is sufficiently durable against heat deformation due to the heater 2. The thickness of an upper thin part 11 and a lower thin part 13 away from the heater 2 is made thinner. The furnace core pipe is constituted preferably by separately producing the upper thin part 11, the central thick part 12 and the lower thin part 13 and joining them with flanges. If the central thick part 12 is deformed due to the heat of the heater 2, only the central thick part 12 is exchanged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガラス微粒子を堆積して
作った光ファイバ用母材(プリフォーム)に含まれる水
分を除去する脱水処理およびプリフォームを透明ガラス
化するガラス化処理を行うプリフォームの脱水焼結炉に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a process for performing a dehydration treatment for removing water contained in an optical fiber preform (preform) made by depositing glass fine particles and a vitrification treatment for making a preform transparent glass. The present invention relates to a dehydration sintering furnace for reform.

【0002】[0002]

【従来の技術】光ファイバは、ガラス微粒子を堆積して
作ったプリフォームを脱水焼結炉に導入して回転させな
がら加熱してプリフォーム内に含まれる水分を除去し、
透明ガラス化し、しかる後、線引炉にてプリフォームの
先端の溶融状態のメニスカス部を線引・紡糸して製造さ
れる。
2. Description of the Related Art An optical fiber has a preform made by depositing glass fine particles introduced into a dehydration sintering furnace and heated while being rotated to remove water contained in the preform.
It is made into transparent glass, and then, the molten meniscus portion at the tip of the preform is drawn and spun in a drawing furnace.

【0003】このようなプリフォームの脱水処理及びガ
ラス化処理を行なう脱水焼結炉としては、たとえば図3
に図解する構造のものが知られている。図3において、
脱水焼結炉の中央部には石英製の炉芯(炉心)管1Bが
備えられ、この炉芯管1Bの周囲に加熱器(ヒータ)2
が配置されている。加熱器2の周囲に断熱材3が配設さ
れており、炉芯管1Bの外壁の一部とともにこれら加熱
器2および断熱材3を収容する不活性ガス封止空間40
を規定する炉本体外壁4が設けられている。炉本体外壁
4には不活性ガス供給口5が設けられており、アルゴン
ガスなどの不活性ガスが不活性ガス供給口5から不活性
ガス封止空間40に供給される。また炉芯管1Bの下部
には処理ガス供給口6が設けられており、炉芯管1Bの
上部には処理ガス排出口61が設けられている。処理ガ
スが処理ガス供給口6から導入され、炉芯管1B内を上
昇し、処理ガス排出口61から排出される。プリフォー
ム9が支持棒91に懸垂されて炉芯管1Bの中に収納さ
れている。支持棒91が回転しながら下方に移動するこ
とにより、プリフォーム9の各部が加熱器2によるヒー
トゾーンを順次通過し、プリフォーム9の脱水及び透明
ガラス化処理が順次行われる。
An example of a dehydration / sintering furnace for dehydrating and vitrifying such a preform is shown in FIG.
The structure shown in Fig. 1 is known. In FIG.
A quartz core (core) tube 1B is provided at the center of the dehydration / sintering furnace, and a heater (heater) 2 is provided around the core tube 1B.
Are arranged. A heat insulating material 3 is arranged around the heater 2, and an inert gas sealed space 40 for accommodating the heater 2 and the heat insulating material 3 together with a part of the outer wall of the furnace core tube 1B.
The outer wall 4 of the furnace body that defines An inert gas supply port 5 is provided in the outer wall 4 of the furnace body, and an inert gas such as argon gas is supplied from the inert gas supply port 5 to the inert gas sealed space 40. A processing gas supply port 6 is provided below the furnace core tube 1B, and a processing gas discharge port 61 is provided above the furnace core tube 1B. The processing gas is introduced from the processing gas supply port 6, rises in the furnace core tube 1B, and is discharged from the processing gas discharge port 61. The preform 9 is suspended from the support rod 91 and is housed in the furnace core tube 1B. As the support rod 91 rotates and moves downward, each part of the preform 9 sequentially passes through the heat zone by the heater 2, and the dehydration and transparent vitrification treatment of the preform 9 are sequentially performed.

【0004】上述した脱水焼結炉では、加熱器2の近傍
の炉芯管の部分は加熱器2の加熱により非常に高温とな
り強度が低下して変形するから、頻繁に炉芯管1Bを交
換しなければならないという問題がある。この問題を解
決するため、かりに炉芯管1Bの耐熱性を高めるために
炉芯管1B全体の厚さを厚くすると炉芯管1Bの価格が
高くなるという問題に遭遇する。近年、光ファイバの低
コスト化の要望に伴ってプリフォームの大型化,特に、
プリフォームの外径を大きくする傾向にあり、炉芯管の
直径も大きくする必要がある。その結果、炉芯管の加熱
による変形はより顕著になり、炉芯管の交換頻度は一層
高くなる。一方、石英製の炉芯管は大口径になるほど材
料費、加工費の両面で製作価格が飛躍的に増大して炉芯
管そのものが高価となる。したがって、変形などの原因
で炉芯管を頻繁に交換・補修する回数が多くなると、炉
芯管の価格の高騰に加えて、作業効率も低下し脱水焼結
炉のランニングコストが上昇し、光ファイバの製造価格
が高くなるという問題が発生する。
In the above-mentioned dehydration sintering furnace, the portion of the furnace core tube near the heater 2 becomes extremely hot due to the heating of the heater 2 and its strength is lowered and deformed. Therefore, the furnace core tube 1B is frequently replaced. There is a problem of having to do it. In order to solve this problem, if the overall thickness of the furnace core tube 1B is increased in order to increase the heat resistance of the furnace core tube 1B, the price of the furnace core tube 1B increases. In recent years, along with the demand for cost reduction of optical fibers, the size of preforms has increased, especially
The outer diameter of the preform tends to be large, and the diameter of the furnace core tube also needs to be large. As a result, the deformation of the furnace core tube due to heating becomes more conspicuous, and the furnace core tube is replaced more frequently. On the other hand, the larger the diameter of a quartz furnace core tube, the more the manufacturing cost increases dramatically in terms of both material cost and processing cost, and the furnace core tube itself becomes expensive. Therefore, if the furnace core tube is frequently replaced or repaired due to deformation, etc., the cost of the furnace core tube will rise, and the work efficiency will decrease, increasing the running cost of the dehydration sintering furnace, and There is a problem that the manufacturing cost of the fiber becomes high.

【0005】上述した問題を解決する方法がいくつか提
案されている。特開平4−342433号公報は、加熱
器の近傍の炉心管が加熱による変形が生ずることを容認
した上で、炉心管を加熱器の近傍の中央炉心部と、この
中央炉心部の上部の上部炉心部と、中央炉心部の下部の
下部炉心部とに3分割して製造し、これらの上部炉心
部、中央炉心部および下部炉心部を一体に組み合わせて
炉心管を構成し、変形による消耗の激しい中央炉心部の
み交換可能にした脱水焼結炉を開示する。
Several methods have been proposed to solve the above problems. JP-A-4-342433 discloses that the core tube near the heater is allowed to deform due to heating, and then the core tube is provided with a central core portion near the heater and an upper part of the upper part of the central core portion. The core part and the lower core part below the central core part are divided into three parts to be manufactured, and the upper core part, the central core part, and the lower core part are integrally combined to form a core tube, and Disclosed is a dehydration sintering furnace in which only a violent central core part can be replaced.

【0006】また特開平3−109228号公報は、炉
心管を、発熱体(加熱器)の近傍の中央炉心部と、この
中央炉心部の上部の上部炉心部と、中央部の下部の下部
炉心部とに分割して構成し、これら上部炉心部、中央炉
心部および下部炉心部を同じ材料、たとえば、炭化珪素
膜を被覆した高純度カーボン、炭化珪素膜を被覆した炭
化珪素焼結体または炭化珪素で製造し、上部炉心部と下
部炉心部との間に中央炉心部をはめ込み、さらに中央炉
心部に接して中央炉心部の内側に耐熱部材で形成した内
筒を中央炉心部とともに上部炉心部と下部炉心部に嵌め
込んだ脱水焼結炉を開示する。この脱水焼結炉において
は、中央炉心部と内筒を嵌め込む上部炉心部と下部炉心
部とに跨がって炉心本体外壁を設け、この炉心本体外壁
と、中央炉心部、上部炉心部および下部炉心部とで不活
性ガス封止空間を規定し、この空間内に加熱器および断
熱材を配置している。つまりこの脱水焼結炉は、特開平
4−342433号公報に開示されたように炉心管を3
分割する他、加熱器の近傍の炉心管として、中央炉心部
と内筒を合わせて二重炉心管として、耐熱性を高めた構
造をしている。
Further, Japanese Patent Laid-Open No. 3-109228 discloses a core tube having a central core portion near a heating element (heater), an upper core portion above the central core portion, and a lower core portion below the central portion. The upper core part, the central core part and the lower core part are made of the same material, for example, high-purity carbon coated with a silicon carbide film, a silicon carbide sintered body coated with a silicon carbide film, or Made of silicon, the central core is fitted between the upper core and the lower core, and the inner cylinder made of heat-resistant material is in contact with the central core and is formed inside the central core with the heat resistant member. And a dehydration sintering furnace fitted in the lower core part is disclosed. In this dehydration sintering furnace, a core main body outer wall is provided across the upper core part and the lower core part into which the central core part and the inner cylinder are fitted, and the core main body outer wall, the central core part, the upper core part and An inert gas sealed space is defined together with the lower core part, and a heater and a heat insulating material are arranged in this space. That is, this dehydration-sintering furnace has three core tubes as disclosed in Japanese Patent Application Laid-Open No. 4-342433.
In addition to splitting, the core tube near the heater is a double core tube in which the central core and the inner tube are combined to have a structure with improved heat resistance.

【0007】[0007]

【発明が解決しようとする課題】特開平4−34243
3号公報および特開平3−109228号公報に開示さ
れた炉心管を3分割する方法は、加熱器の近傍の炉心管
の一部が変形したとき、図3を参照して述べた脱水焼結
炉のように炉心管全体を交換する必要がなく、加熱器の
近傍の中央炉心部のみ交換すればよいから炉心管交換費
用が低減するという利点がある。しかしながら、特開平
4−342433号公報に開示された方法は加熱器の近
傍の炉心管の耐久性は図3に示したものと同じであり、
交換頻度自体は図3に示した脱水焼結炉における炉心管
の交換頻度と実質的に同じである。したがって、中央炉
心部の交換に伴う光ファイバ製造の作業性が低下すると
いう問題を依然として解決できない。
[Patent Document 1] Japanese Patent Application Laid-Open No. 4-34243
The method of dividing the core tube into three parts disclosed in Japanese Patent Publication No. 3 and Japanese Patent Application Laid-Open No. 3-109228 is the dehydration sintering described with reference to FIG. 3 when a part of the core tube in the vicinity of the heater is deformed. It is not necessary to replace the entire core tube as in a furnace, and only the central core portion near the heater needs to be replaced, which has the advantage of reducing core tube replacement costs. However, in the method disclosed in JP-A-4-342433, the durability of the core tube near the heater is the same as that shown in FIG.
The replacement frequency itself is substantially the same as the replacement frequency of the core tube in the dehydration / sintering furnace shown in FIG. Therefore, it is still impossible to solve the problem that the workability of the optical fiber manufacturing is deteriorated due to the replacement of the central core.

【0008】特開平3−109228号公報に開示され
た方法は、加熱器の近傍を実質的に厚くして耐熱性を高
めているから、特開平4−342433号公報に開示し
た方法に比べて炉心管中央部の交換頻度を低下させ、特
開平4−342433号公報について述べた問題を解決
できる可能性がある。しかも、特開平3−109228
号公報に開示された方法は加熱器の近傍の炉心管のみ交
換できる構造になっている。
In the method disclosed in Japanese Patent Laid-Open No. 3-109228, since the vicinity of the heater is substantially thickened to improve the heat resistance, compared with the method disclosed in Japanese Patent Laid-Open No. 4-342433. There is a possibility that the frequency of replacement of the central portion of the core tube may be reduced to solve the problem described in Japanese Patent Laid-Open No. 4-342433. Moreover, JP-A-3-109228
The method disclosed in the publication has a structure in which only the core tube near the heater can be replaced.

【0009】しかしながら、特開平3−109228号
公報に開示された内容を分析するとと、下記に挙げる種
々の実際的な問題が予想される。まず、炉心管が変形す
るほど加熱される加熱器の近傍に中央炉心部とその内側
に中央炉心部に面接させて、内筒を中央炉心管とともに
上部炉心管と下部炉心管とに精度を高めて嵌め込む必要
性に起因する問題が予想される。具体的に言えば、中央
炉心部の長さと内筒の長さを完全に一致させ、かつ、中
央炉心部の内面と内筒の外面とが完全に一致するよう
に、非常に高い機械的な精密で中央炉心部と内筒とを製
造しなければならない。このように非常に高い機械的精
度で中央炉心部と内筒を製造したとしても、これらは非
常な高温に晒されることになり、特に、加熱器に近い中
央炉心部の外壁と内筒とでは加熱の程度が異なるから、
中央炉心部と内筒との熱膨張の大きさが異なる。その結
果として、上部炉心部と下部炉心部との間に嵌め込まれ
た中央炉心部と内筒との熱膨張差が生じて、嵌め込み部
分に隙間が生ずる可能性が高い。加えて、中央炉心部と
内筒との材料が異なる場合はさらに隙間が生ずる可能性
が高い。特開平3−109228号公報においては、こ
のような隙間は不活性ガスが封入されている部分に繋が
っている。したがって、隙間が発生すると、不活性ガス
封止空間と炉心管内部の処理ガス空間とが連通し、アル
ゴンガスなどの不活性ガスとヘリュームなどの処理ガス
が混じり合う可能性が生ずる。さらに、特開平3−10
9228号公報においては、耐熱性を高めるために、炭
化珪素膜を被覆した高純度カーボンで炉心管を製造する
場合を述べているが、加熱器によってカーボンが蒸発す
る可能性があり、蒸発したカーボンが炉心管内でプリフ
ォームに付着すると、製造される光ファイバの品質を低
下させる場合がある。
However, when the contents disclosed in JP-A-3-109228 are analyzed, various practical problems listed below are expected. First, the central core and the inner side of the central core are brought into face-to-face contact with the central core in the vicinity of the heater that is heated as the core is deformed, and the inner cylinder is improved in accuracy with the central core and the upper core and lower core. Problems due to the need to fit in are expected. Specifically, the length of the central core and the length of the inner cylinder are perfectly matched, and the inner surface of the central core and the outer surface of the inner cylinder are completely matched so that the mechanical strength is extremely high. The central core and inner cylinder must be manufactured precisely. Even if the central core and the inner cylinder are manufactured with extremely high mechanical accuracy in this way, they are exposed to extremely high temperatures.In particular, the outer wall and inner cylinder of the central core near the heater are Because the degree of heating is different,
The magnitude of thermal expansion between the central core and the inner cylinder is different. As a result, there is a high possibility that a difference in thermal expansion will occur between the central core portion fitted between the upper core portion and the lower core portion and the inner cylinder, resulting in a gap in the fitted portion. In addition, when the material of the central core and the material of the inner cylinder are different, there is a high possibility that a gap will occur. In Japanese Patent Laid-Open No. 3-109228, such a gap is connected to a portion in which an inert gas is filled. Therefore, when a gap is generated, the inert gas sealed space and the processing gas space inside the core tube communicate with each other, and there is a possibility that an inert gas such as argon gas and the processing gas such as helium are mixed. Furthermore, JP-A-3-10
Japanese Patent No. 9228 describes a case where a furnace tube is manufactured from high-purity carbon coated with a silicon carbide film in order to enhance heat resistance. However, carbon may be evaporated by a heater, and the evaporated carbon Adherence to the preform in the core tube may reduce the quality of the optical fiber produced.

【0010】上述したように、特開平4−342433
号公報および特開平3−109228号公報のいずれに
開示した方法も、依然として問題がある。なお、特開平
3−109228号公報とは逆に、加熱器の近傍の炉心
管の厚さをその他の部分に対して薄くし、軸方向に沿っ
て温度分布を異ならせるように温度制御する方法も提案
されている(たとえば、特開平4−260631号方
法)。しかしながら、この方法は、軸方向に長い加熱器
を設け、複雑な温度制御を行わなければならないという
問題がある。
As mentioned above, Japanese Patent Laid-Open No. 4-342433
The methods disclosed in both JP-A No. 3-109228 and JP-A-3-109228 still have problems. Incidentally, contrary to JP-A-3-109228, a method of controlling the temperature so that the thickness of the core tube in the vicinity of the heater is made thinner than other portions and the temperature distribution is made different along the axial direction Has also been proposed (for example, the method of Japanese Patent Laid-Open No. 4-260631). However, this method has a problem that it is necessary to provide a long heater in the axial direction and perform complicated temperature control.

【0011】本発明は、上述した問題を解決し、脱水焼
結炉の価格、ひいては光ファイバの製造価格を高騰させ
ずに加熱に起因する炉心部の耐久性を高めてその交換頻
度を低下させ、しかも、保守性に優れた脱水焼結炉を提
供することを目的とする。
The present invention solves the above-mentioned problems and increases the durability of the core portion caused by heating without lowering the price of the dehydration / sintering furnace, and thus the manufacturing cost of the optical fiber, and lowering the replacement frequency thereof. Moreover, it is an object of the present invention to provide a dehydration sintering furnace having excellent maintainability.

【0012】[0012]

【課題を解決するための手段】上述した問題を解決し、
上記目的を達成するため、本発明の脱水焼結炉は、加熱
器に対向する炉芯管の厚さを耐熱性を有するように厚く
形成する。好適には、炉芯管が、肉厚部、該肉厚部の上
下の肉薄部に分割された製造され、これらを組み立てて
構成され、肉厚部の外周に不活性ガスを封入し加熱器を
配設する空間が規定されるように肉厚部を製造する。
[Means for Solving the Problems] The above problems are solved,
In order to achieve the above object, in the dehydration / sintering furnace of the present invention, the furnace core tube facing the heater is formed thick so as to have heat resistance. Preferably, the furnace core tube is manufactured by being divided into a thick portion and a thin portion above and below the thick portion, and is constructed by assembling these, and an inert gas is sealed in the outer periphery of the thick portion to form a heater. The thick portion is manufactured so that the space for arranging is defined.

【0013】[0013]

【作用】炉芯管の加熱器の近傍で熱変形を受けやすい部
分の肉厚を厚くして耐熱性を高める。これにより、炉芯
管の交換頻度が低下する。好適には、炉芯管を、肉厚
部、該肉厚部の上下の肉薄部の3つに分割し、これらを
組み立てて炉芯管を構成させる。つまり、耐熱性を向上
させた肉厚部も長期間使用していると、変形し交換しな
ければならない時が来るので、肉厚部のみ交換可能とす
る。炉芯管を、肉厚部、上部肉薄部と下部肉薄部に分割
して製造しこれらを組み立てるとき、これらの接続部分
の気密性が問題となるが、肉厚部が加熱器を配設し、不
活性ガスを封入する空間を規定するように構成されてい
るので、熱膨張による繋ぎ部分に隙間が生じたとして
も、不活性ガスと処理ガスとの混合は発生しない。
[Function] The heat resistance is enhanced by increasing the thickness of the portion of the furnace core tube near the heater which is susceptible to thermal deformation. This reduces the replacement frequency of the furnace core tube. Preferably, the furnace core tube is divided into three parts, that is, the thick portion and the thin portions above and below the thick portion, and these are assembled to form the furnace core tube. In other words, if the thick portion having improved heat resistance is used for a long time, it may be deformed and need to be replaced. Therefore, only the thick portion can be replaced. When the furnace core tube is manufactured by dividing it into thick-walled parts, upper thin-walled parts and lower thin-walled parts, and assembling these, the airtightness of these connecting parts becomes a problem, but the thick-walled part is equipped with a heater. Since the space for enclosing the inert gas is defined, the inert gas and the processing gas are not mixed even if a gap is created in the connecting portion due to thermal expansion.

【0014】[0014]

【実施例】図1は本発明の脱水焼結炉の第1実施例の断
面構成図である。この脱水焼結炉は、上部肉薄部11、
中央肉厚部12および下部肉薄部13が一体構成された
炉芯管1を用いる。上部肉薄部11、中央肉厚部12お
よび下部肉薄部13は同じ石英で形成されている。下部
肉薄部13の下部には処理ガス供給口6が設けられ、上
部肉薄部11の上部には処理ガス排出口61が設けられ
ている。炉芯管1の上部から回転する支持棒91に懸垂
されてプリフォーム9が炉芯管1内に導入される。中央
肉厚部12の外周には炉本体外壁4が設けられ、中央肉
厚部12と炉本体外壁4とで、不活性ガス封止空間40
を規定している。この不活性ガス封止空間40には、中
央肉厚部12の近傍の周囲に加熱器(ヒータ)2が配設
され、この加熱器2を囲んで断熱材3が配設されてい
る。この不活性ガス封止空間40には不活性ガス供給口
5から不活性ガス、たとえば、アルゴンガスが封入され
る。支持棒91に支持されたプリフォーム9は、処理ガ
ス供給口6から導入された処理ガス、たとえば、ヘリュ
ームが処理ガス排出口61から排出される処理ガス雰囲
気で、加熱器2からの熱によって加熱されて脱水処理さ
れ、透明ガラス化される。
FIG. 1 is a cross-sectional view of the first embodiment of the dehydration / sintering furnace of the present invention. This dehydration / sintering furnace has an upper thin portion 11,
The furnace core tube 1 in which the central thick portion 12 and the lower thin portion 13 are integrally configured is used. The upper thin portion 11, the central thick portion 12, and the lower thin portion 13 are made of the same quartz. A processing gas supply port 6 is provided below the lower thin portion 13, and a processing gas discharge port 61 is provided above the upper thin portion 11. The preform 9 is introduced into the furnace core tube 1 by being suspended from the upper portion of the furnace core tube 1 by a supporting rod 91 that rotates. A furnace body outer wall 4 is provided on the outer periphery of the central thick portion 12, and the central thick portion 12 and the furnace body outer wall 4 form an inert gas sealed space 40.
Is prescribed. In this inert gas sealed space 40, a heater (heater) 2 is arranged around the central thick portion 12, and a heat insulating material 3 is arranged so as to surround the heater 2. The inert gas sealed space 40 is filled with an inert gas, for example, argon gas, from the inert gas supply port 5. The preform 9 supported by the support rod 91 is heated by the heat from the heater 2 in the processing gas atmosphere in which the processing gas introduced from the processing gas supply port 6 such as helium is discharged from the processing gas discharge port 61. Then, it is dehydrated and made into transparent glass.

【0015】図1に示した脱水焼結炉において、加熱器
2の近傍の中央肉厚部12は耐熱性が高くなるように、
肉厚が厚く構成されている。したがって、従来に比して
加熱器2による熱変形が生じて炉芯管1の交換が必要に
なるまでに時間がかかり、炉芯管1の交換頻度が著しく
低下する。したがって、脱水焼結炉のランニング価格は
低下し、光ファイバの製造価格は低下する。特に、中央
肉厚部12の肉厚を耐熱性が確保できるように構成すれ
ばよく、上部肉薄部11および下部肉薄部13は、図3
に示した一体構成の炉芯管1に比較して相当薄くするこ
とができる。つまり、図3に示した炉芯管1は全体が耐
熱性があるように炉芯管1の全体を所定の厚さに構成し
たが、本実施例の炉芯管1は中央肉厚部12のみの肉厚
を厚くすればよく、炉芯管1全体の材料費を実質的に低
減できる。
In the dehydration / sintering furnace shown in FIG. 1, the central thick portion 12 near the heater 2 has high heat resistance.
It is made thick. Therefore, as compared with the conventional case, it takes time until the furnace core tube 1 needs to be replaced due to thermal deformation caused by the heater 2, and the replacement frequency of the furnace core tube 1 is significantly reduced. Therefore, the running price of the dehydration sintering furnace is lowered, and the manufacturing cost of the optical fiber is lowered. In particular, the thickness of the central thick portion 12 may be configured so as to ensure heat resistance, and the upper thin portion 11 and the lower thin portion 13 may be formed as shown in FIG.
It can be made considerably thinner than the core tube 1 having the integral structure shown in FIG. In other words, the furnace core tube 1 shown in FIG. 3 is formed to have a predetermined thickness so that the whole furnace core tube 1 has heat resistance, but the furnace core tube 1 of the present embodiment has the central thick portion 12. The material cost of the entire furnace core tube 1 can be substantially reduced by increasing the wall thickness of the chisel.

【0016】上部肉薄部11、中央肉厚部12および下
部肉薄部13の製造方法としては、たとえば、上部肉薄
部11と中央肉厚部12と下部肉薄部13を独立に製造
し、これらを加熱加工により一体に組み立てる。加熱加
工して一体に組み立てる部分は、加熱器2から離れてお
り、加熱器2の熱によってこれら加工部が熱膨張し、隙
間が生ずることがない。もちろん、上部肉薄部11、中
央肉厚部12および下部肉薄部13を一体として製造し
てもよい。
As a method of manufacturing the upper thin portion 11, the central thick portion 12 and the lower thin portion 13, for example, the upper thin portion 11, the central thick portion 12 and the lower thin portion 13 are independently manufactured and heated. Assembled integrally by processing. The part which is heat-processed and assembled together is apart from the heater 2, and the heat of the heater 2 causes these processed parts to thermally expand, so that no gap is generated. Of course, the upper thin portion 11, the central thick portion 12 and the lower thin portion 13 may be integrally manufactured.

【0017】図2に本発明の脱水焼結炉の第2実施例と
しての断面構成図を示す。図2に示した脱水焼結炉は、
炉芯管1Aが、上部肉薄部11A、中央肉厚部12Aお
よび下部肉薄部13Aに3分割されて別個に製造された
ものを組み合わせて構成されている。上部肉薄部11A
と中央肉厚部12Aとの組合せにはフランジ14、15
を接合し、中央肉厚部12Aと下部肉薄部13Aとの組
合せにはフランジ16、17を接合する。上部肉薄部1
1Aの肉厚は図1に示した上部肉薄部11の肉厚と実質
的に同じであり、中央肉厚部12Aの肉厚は中央肉厚部
12の肉厚と実質的に同じであり、下部肉薄部13Aの
肉厚は下部肉薄部13の肉厚と実質的に同じである。上
部肉薄部11A、中央肉厚部12A、下部肉薄部13A
は同じ石英で製造されている。図2に示した脱水焼結炉
のその他の構成部分は図1に示した脱水焼結炉における
構成部分と実施的に同じである。
FIG. 2 is a sectional view showing the second embodiment of the dehydration / sintering furnace of the present invention. The dehydration sintering furnace shown in FIG.
The furnace core tube 1A is composed of an upper thin portion 11A, a central thick portion 12A and a lower thin portion 13A, which are separately manufactured by being divided into three parts. Upper thin part 11A
And the central thick portion 12A are combined with flanges 14 and 15
And the flanges 16 and 17 are joined to the combination of the central thick portion 12A and the lower thin portion 13A. Upper thin part 1
The thickness of 1A is substantially the same as the thickness of the upper thin portion 11 shown in FIG. 1, and the thickness of the central thick portion 12A is substantially the same as the thickness of the central thick portion 12, The thickness of the lower thin portion 13A is substantially the same as the thickness of the lower thin portion 13. Upper thin portion 11A, central thick portion 12A, lower thin portion 13A
Are manufactured from the same quartz. Other components of the dehydration-sintering furnace shown in FIG. 2 are practically the same as those of the dehydration-sintering furnace shown in FIG.

【0018】中央肉厚部12Aを用いることにより、長
期間使用してかりに中央肉厚部12Aが変形したとして
も、中央肉厚部12Aのみを交換すればよい。この交換
作業は、フランジ14、15とフランジ16、17を外
せばよいので容易である。つまり、第2実施例によれ
ば、中央肉厚部12Aを用いて交換頻度を低下させたこ
とに加えて、その交換作業も短時間ですみ、脱水焼結炉
のランニング価格を低下させ、ひいては、光ファイバの
製造価格を低下させることができる。
By using the central thick portion 12A, even if the central thick portion 12A is deformed after a long period of use, only the central thick portion 12A needs to be replaced. This replacement work is easy because the flanges 14 and 15 and the flanges 16 and 17 may be removed. That is, according to the second embodiment, in addition to lowering the replacement frequency by using the central thick portion 12A, the replacement work can be completed in a short time, lowering the running price of the dehydration / sintering furnace, and eventually The manufacturing cost of the optical fiber can be reduced.

【0019】なお、図2に図解したように、中央肉厚部
12Aのフランジ15、16の間に、中央肉厚部12A
と炉本体4によって不活性ガス封止空間40が規定さ
れ、この不活性ガス封止空間40内に加熱器2および断
熱材3が配設されていることに留意されたい。換言すれ
ば、フランジ14、15の接続部、および、フランジ1
6、17の接続部が不活性ガス封止空間40に含まれて
いず、加熱器2から離れていることに留意されたい。特
開平3−109228号公報においては、上部炉心部と
下部炉心部への中央炉心部の嵌め込み位置が不活性ガス
封止空間40を規定する部分に含まれていた。その結
果、不活性ガス封止空間40と炉芯管1内の処理ガス空
間とが加熱による隙間の発生により連通する可能性があ
った。本実施例においては、フランジ14、15の接合
部、および、フランジ16、17の接合部が不活性ガス
封止空間40に含まれていないので、特開平3−109
228号公報に開示された脱水焼結炉における問題が解
決されている。さらに本実施例においては、フランジ1
4、15の接合部、および、フランジ16、17の接合
部が加熱器2から離れた位置に位置しているから、これ
ら接合部において加熱器2の加熱による熱膨張に起因す
る隙間が発生することがない。
As illustrated in FIG. 2, the central thick portion 12A is provided between the flanges 15 and 16 of the central thick portion 12A.
It should be noted that the furnace body 4 defines the inert gas sealed space 40, and the heater 2 and the heat insulating material 3 are disposed in the inert gas sealed space 40. In other words, the connection between the flanges 14 and 15 and the flange 1
It should be noted that the connections of 6, 17 are not included in the inert gas sealed space 40 and are separated from the heater 2. In Japanese Patent Laid-Open No. 3-109228, the fitting positions of the central core portion into the upper core portion and the lower core portion are included in the portion defining the inert gas sealed space 40. As a result, the inert gas sealed space 40 and the processing gas space in the furnace core tube 1 may communicate with each other due to generation of a gap due to heating. In the present embodiment, since the joint portion of the flanges 14 and 15 and the joint portion of the flanges 16 and 17 are not included in the inert gas sealed space 40, JP-A-3-109.
The problem in the dehydration sintering furnace disclosed in Japanese Patent No. 228 is solved. Further, in this embodiment, the flange 1
Since the joints 4 and 15 and the joints of the flanges 16 and 17 are located away from the heater 2, a gap is generated in these joints due to thermal expansion due to heating of the heater 2. Never.

【0020】[0020]

【発明の効果】以上述べたように、本発明によれば、炉
芯管の加熱による変形の生じ易い部分を特に耐熱性を強
化させたことにより炉心管の交換頻度を低減できる。そ
の一方でその他の炉心管の部分の肉厚を薄くすることが
でき、実施的に炉心管の価格を低下させることができ
る。また本発明によれば、炉芯管の一部、つまり、中央
肉厚部を交換すればよいので、交換作業は短縮でき、炉
芯管の価格も低下する。さらに本発明によれば、加熱に
起因する炉心管の膨張によって不活性ガス封止空間と処
理ガス空間が連通するのを防止できる。
As described above, according to the present invention, the frequency of replacement of the furnace core tube can be reduced by particularly strengthening the heat resistance of the portion of the furnace core tube which is likely to be deformed by heating. On the other hand, the thickness of the other core tube portions can be reduced, and the cost of the core tube can be practically reduced. Further, according to the present invention, it is only necessary to replace a part of the furnace core tube, that is, the central thick portion, so that the replacement work can be shortened and the cost of the furnace core tube is reduced. Further, according to the present invention, it is possible to prevent the inert gas sealing space and the processing gas space from communicating with each other due to expansion of the core tube due to heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の脱水焼結炉の第1実施例の脱水焼結炉の
断面図である。
FIG. 1 is a sectional view of a dehydration / sintering furnace according to a first embodiment of the dehydration / sintering furnace of the present invention.

【図2】発明の脱水焼結炉の第2実施例の脱水焼結炉の
断面図である。
FIG. 2 is a sectional view of a dehydration / sintering furnace according to a second embodiment of the dehydration / sintering furnace of the present invention.

【図3】従来例の脱水焼結炉の断面図である。FIG. 3 is a sectional view of a conventional dehydration sintering furnace.

【符号の説明】[Explanation of symbols]

1〜1B・・炉芯管 11、11A・・上部肉薄部 12、12A・・中央肉厚部 13、13A・・下部肉薄部 14、15、16、17・・フランジ 2・・加熱器 3・・断熱材 4・・炉本体外壁 5・・不活性ガス供給口 6・・処理ガス供給口 9・・プリフォーム 61・・処理ガス排出口 91・・支持棒 1 to 1B ··· Furnace core tube 11, 11A · · Upper thin portion 12, 12A · · Central thick portion 13, 13A · · Lower thin portion 14, 15, 16, 17 · · Flange 2 · · Heater 3 ·・ Insulating material 4 ・ ・ Outer wall of furnace body 5 ・ ・ Inert gas supply port 6 ・ ・ Processing gas supply port 9 ・ ・ Preform 61 ・ ・ Processing gas discharge port 91 ・ ・ Support rod

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光ファイバ用母材を炉芯管内で回転させな
がら加熱器で加熱して脱水、透明ガラス化する脱水焼結
炉において、 前記炉芯管の前記加熱器に対向する部分の厚さを耐熱性
を有するように厚く形成したことを特徴とする脱水焼結
炉。
1. A dehydration / sintering furnace in which an optical fiber preform is heated in a furnace while being heated in a furnace core tube for dehydration and transparent vitrification, wherein a thickness of a portion of the furnace core tube facing the heater The dehydration sintering furnace is characterized in that it is formed thick so as to have heat resistance.
【請求項2】前記炉芯管が、前記加熱器に対向する位置
の肉厚部、該肉厚部の上下の肉薄部を組み立てて構成さ
れ、前記肉厚部の外周に不活性ガスを封入し前記加熱器
を配設する空間が規定されるように前記肉厚部を製造
し、配設した請求項1に記載の脱水焼結炉。
2. The furnace core tube is constructed by assembling a thick portion at a position facing the heater and thin portions above and below the thick portion, and an inert gas is filled in the outer periphery of the thick portion. The dehydration / sintering furnace according to claim 1, wherein the thick portion is manufactured and arranged so that a space for arranging the heater is defined.
JP14617593A 1993-06-17 1993-06-17 Dehydration sintering furnace Pending JPH0710583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14617593A JPH0710583A (en) 1993-06-17 1993-06-17 Dehydration sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14617593A JPH0710583A (en) 1993-06-17 1993-06-17 Dehydration sintering furnace

Publications (1)

Publication Number Publication Date
JPH0710583A true JPH0710583A (en) 1995-01-13

Family

ID=15401836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14617593A Pending JPH0710583A (en) 1993-06-17 1993-06-17 Dehydration sintering furnace

Country Status (1)

Country Link
JP (1) JPH0710583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154946A (en) * 2016-03-03 2017-09-07 信越化学工業株式会社 Heat treatment apparatus
CN107793021A (en) * 2017-10-31 2018-03-13 江苏亨通光导新材料有限公司 Controlled micro crystallization furnace core tube and quick controlled micro crystallization method suitable for preform sintering furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154946A (en) * 2016-03-03 2017-09-07 信越化学工業株式会社 Heat treatment apparatus
US10781130B2 (en) 2016-03-03 2020-09-22 Shin-Etsu Chemical Co., Ltd. Heat treatment apparatus
CN107793021A (en) * 2017-10-31 2018-03-13 江苏亨通光导新材料有限公司 Controlled micro crystallization furnace core tube and quick controlled micro crystallization method suitable for preform sintering furnace
CN107793021B (en) * 2017-10-31 2021-07-30 江苏亨通光导新材料有限公司 Microcrystallization furnace core pipe suitable for optical fiber preform sintering furnace and rapid microcrystallization method

Similar Documents

Publication Publication Date Title
JP4159247B2 (en) Method and apparatus for manufacturing optical fiber preform
US4720407A (en) Double-walled quartz-glass tube for semiconductor-technology processes
CN107601840A (en) Segmented preform sintering furnace device and corresponding optical wand sintering method
TWI819105B (en) Glass forming apparatuses comprising modular glass fining systems
WO2000029342A1 (en) Optical fiber drawing method and drawing furnace
JPH0710583A (en) Dehydration sintering furnace
JP4615085B2 (en) Optical fiber preform suspension support device
EP1736447B1 (en) Method for sintering porous glass base material
JPH1179778A (en) Optical fiber drawing furnace provided with heating element, furnace shell and characteristic hardened high purity graphite felt insulating material placed between the same heating element and furnace shell
US11739019B2 (en) High-strength welding process for making heavy glass preforms with large cross sectional areas
JP3108545B2 (en) Optical fiber drawing furnace
CN214167777U (en) Graphite piece structure for optical fiber drawing furnace
JP4062407B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP2002047014A (en) Thermal shielding cylinder, device and method of manufacturing glass preform provided with it
CN112876060B (en) Preparation method of large-size optical fiber preform core rod
JP2000169174A (en) Apparatus for production of porous preform for optical fiber
KR20010023071A (en) Method of and apparatus for manufacturing an optical fiber preform
JPH0421586A (en) Glass crucible for pulling up single crystal and production thereof
JPH0426524A (en) Method for drawing optical fiber
JP3994840B2 (en) Glass base material manufacturing method and manufacturing apparatus
CN117602815A (en) Powder rod heating vitrification device and method
JP2006151715A (en) Method and apparatus for manufacturing glass preform
JP2006124252A (en) Method and apparatus for manufacturing optical fiber preform
JPH0733465A (en) Dehydration sintering furnace for optical fiber preform
JPH10310444A (en) Heating furnace for producing base material for optical fiber