JPH07105571A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPH07105571A
JPH07105571A JP5250723A JP25072393A JPH07105571A JP H07105571 A JPH07105571 A JP H07105571A JP 5250723 A JP5250723 A JP 5250723A JP 25072393 A JP25072393 A JP 25072393A JP H07105571 A JPH07105571 A JP H07105571A
Authority
JP
Japan
Prior art keywords
refractive index
layer
reflectance
recording
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5250723A
Other languages
Japanese (ja)
Other versions
JP3028902B2 (en
Inventor
Michikazu Horie
通和 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5250723A priority Critical patent/JP3028902B2/en
Publication of JPH07105571A publication Critical patent/JPH07105571A/en
Application granted granted Critical
Publication of JP3028902B2 publication Critical patent/JP3028902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To increase reflectance and contrast by a relatively simple structure of layers and an easy sputtering method. CONSTITUTION:At least an intermediate layer formed by laminating two or more thin films different from each other in refractive index, a phase shift type optical recording layer, an upper dielectric layer and a reflecting layer are successively laminated on a substrate. The reflectance of the resulting medium is >=65% when the recording layer is in a crystalline state and it is <35% when the recording layer is in an amorphous state. A high refractive index thin film as one of the thin films constituting the intermediate layer is made of a semiconductor having a specified complex index of refraction to the wavelength of light for recording and reproduction. The absolute value of the imaginary part of the complex index of refraction is <0.1 and the real part is >=2.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザー光などの照射に
より、情報を記録、消去、再生可能な光学的情報記録用
媒体に関する。特に情報の記録、消去が可能で、加えて
従来のCD用再生機で再生可能な光学的情報記録用媒体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium capable of recording, erasing and reproducing information by irradiation with laser light or the like. In particular, the present invention relates to an optical information recording medium on which information can be recorded and erased and which can be reproduced by a conventional CD reproducing device.

【0002】[0002]

【従来の技術】光ディスクには再生専用型と光記録可能
型、さらには書換可能型があるが、再生専用型はビデオ
ディスク、オーディオディスク、さらには大容量コンピ
ューター用ディスクメモリーとしてすでに実用化されて
いる。これらの内で音楽等のオーディオ再生用として、
コンパクトディスク(CD)が広く普及している。コン
パクトディスク(CD)は、CDフォーマット化された
EFM(Eight to Fourteen Mod
ulation)信号の孔(ピット)をプラスチックか
らなる基板に転写し、その上にアルミニウム等の金属か
らなる反射膜および保護層を設けている。
2. Description of the Related Art Optical discs include a read-only type, an optical recordable type, and a rewritable type. The read-only type has already been put into practical use as a video disc, an audio disc, and a disc memory for a large-capacity computer. There is. Among these, for audio playback of music etc.,
Compact discs (CDs) are widespread. A compact disc (CD) is a CD-formatted EFM (Eight to Fourteen Mod).
(Translation) signal holes (pits) are transferred to a plastic substrate, and a reflective film and a protective layer made of a metal such as aluminum are provided thereon.

【0003】CDからの情報の読みとりは、半導体レー
ザービームを基板側から入射させて光ディスクに照射す
ることにより行われ、ピットの有無による反射率変化に
よってCDフォーマット信号等が読み取られる。この
際、従来のCDは65%以上の高い反射率と60%以上
の変調度を有することが特徴である。しかし、この再生
専用CDでは情報の記録・編集、あるいは書換等はでき
ない。
Information is read from a CD by irradiating a semiconductor laser beam from the substrate side and irradiating the optical disc, and a CD format signal or the like is read by a change in reflectance depending on the presence or absence of pits. At this time, the conventional CD is characterized by having a high reflectance of 65% or more and a modulation degree of 60% or more. However, this reproduction-only CD cannot record / edit or rewrite information.

【0004】また、ソフトウェア、データファイル、静
止画像等のファイルにおいてもCD−ROM(Read
only memory)またはCD−I(inte
ractive)用の光記録・消去可能な光ディスクが
望まれている。一方、光記録可能型の代表的なものには
孔あけ・変形型、光磁気型と相変化型がある。孔あけ・
変形型としてはTe等の低融点金属または染料等の記録
層が用いられ、レーザー光照射により局所的に加熱さ
れ、孔もしくは凹部が形成される。
Also, files such as software, data files, and still images can be read from a CD-ROM (Read
only memory) or CD-I (int
There is a demand for an optical recordable / erasable optical disc for rasive. On the other hand, typical examples of the optical recordable type are a hole-forming / deformable type, a magneto-optical type, and a phase change type. Drilling
As the deformable type, a recording layer made of a low melting point metal such as Te or a dye is used and locally heated by laser light irradiation to form a hole or a recess.

【0005】実際上そのような孔あけ型には記録層上に
空隙が存在しなければならない。このため2枚のディス
クを互いに向かい合わせてスペーサーを用いて貼り合わ
せ、記録層間に間隙を設けるようにする。当然のことな
がらこのような貼り合わせ構造のディスクでは現在普及
しているCD用ドライブには装着不能である。光磁気型
は記録層の磁化の向きにより記録や消去を行い、磁気光
学効果によって再生を行うため反射率の差を利用する従
来型のCD用ドライブでは再生不可能である。
In practice, such a perforation mold must have voids on the recording layer. For this reason, two discs are made to face each other and are pasted together by using a spacer so that a gap is provided between recording layers. As a matter of course, a disc having such a laminated structure cannot be mounted on a CD drive which is currently popular. The magneto-optical type performs recording and erasing according to the direction of magnetization of the recording layer, and performs reproduction by the magneto-optical effect, so that reproduction cannot be performed by a conventional CD drive that utilizes the difference in reflectance.

【0006】CDフォーマット信号の記録をおこなうデ
ィスクとしては、基板上に色素または色素を含むポリマ
ー等からなる記録層を有する光ディスク、および該光デ
ィスクを用いる光情報記録方法が提案されている(特開
昭61−237239号、61−233943号)が、
これらの光ディスクは書換可能にはなりえない。これに
対し、相変化型は相変化前後で反射率が変化することを
利用するものであり、外部磁界を必要とせず反射率の違
いで再生を行うという点でCDと共通している。
As a disc for recording a CD format signal, an optical disc having a recording layer made of a dye or a polymer containing the dye on a substrate, and an optical information recording method using the optical disc have been proposed (Japanese Patent Laid-Open Publication No. Sho. 61-237239, 61-233943),
These optical discs cannot be rewritable. On the other hand, the phase-change type utilizes the fact that the reflectance changes before and after the phase change, and is common to the CD in that reproduction is performed with a different reflectance without the need for an external magnetic field.

【0007】さらに、レーザー光のパワーを変調するだ
けで、記録・消去が可能であり、消去と再記録を単一ビ
ームで同時に行う、1ビームオーバーライトも可能であ
るという利点を有する。1ビームオーバーライト可能な
相変化記録方式では、記録膜を非晶質化させることによ
って記録ビットを形成し、結晶化させることによって消
去を行う場合が一般的である。
Further, there is an advantage that recording / erasing can be performed only by modulating the power of the laser beam, and one-beam overwriting in which erasing and re-recording are simultaneously performed by a single beam is also possible. In the one-beam overwritable phase change recording method, it is general that the recording film is made amorphous to form a recording bit and is crystallized to erase.

【0008】このような、相変化記録方式に用いられる
記録層材料としては、カルコゲン系合金薄膜を用いるこ
とが多い。例えば、Ge−Te系、Ge−Te−Sb
系、In−Sb−Te系、Ge−Sn−Te系合金薄膜
等が挙げられる。通常は記録層の変形等からの保護、酸
化等の変質からの保護、さらには干渉効果利用のために
記録層の上下に誘電体保護層を設ける。また冷却速度の
調整や干渉効果の有効的利用のため記録層上部の誘電体
層上に反射層を設ける層構成がよく用いられる。
As a recording layer material used in such a phase change recording system, a chalcogen alloy thin film is often used. For example, Ge-Te system, Ge-Te-Sb
System, In-Sb-Te system, Ge-Sn-Te system alloy thin film, and the like. Usually, a dielectric protective layer is provided above and below the recording layer in order to protect the recording layer from deformation and the like, to protect it from deterioration such as oxidation, and to utilize the interference effect. A layer structure in which a reflective layer is provided on the dielectric layer above the recording layer is often used in order to adjust the cooling rate and effectively use the interference effect.

【0009】すなわち基板上に誘電体保護層、相転移型
記録層、誘電体保護層、反射層を順次設けた層構成が一
般的である。なお、書換え型とほとんど同じ材料・層構
成により、追記型の相変化媒体も実現できる。この場
合、可逆性が無いという点でより長期にわたって情報を
記録・保存でき、原理的にはほぼ半永久的な保存が可能
である。
That is, a layer structure in which a dielectric protective layer, a phase transition type recording layer, a dielectric protective layer, and a reflective layer are sequentially provided on a substrate is common. A write-once type phase change medium can also be realized by using almost the same material and layer structure as the rewritable type. In this case, since there is no reversibility, information can be recorded and stored for a longer period of time, and in principle, it can be stored almost permanently.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
一般的層構成の相変化光ディスクは反射率が低くCD用
ドライブでは再生できない。記録層上下の誘電体層の膜
厚を変化させることにより反射率を大きくすることは可
能であるが、そのときは充分な変調度を得ることはでき
ない。
However, the phase change optical disk having the above-mentioned general layer structure has a low reflectance and cannot be reproduced by a CD drive. It is possible to increase the reflectance by changing the film thickness of the dielectric layers above and below the recording layer, but at that time, a sufficient degree of modulation cannot be obtained.

【0011】さらに、CD用ドライブで再生するために
は未記録部で反射率が高いことが必要であるので、初期
化が必要なGe−Te、Ge−Sb−Te系相変化媒体
の場合は結晶状態の反射率を高くする必要があるが、高
反射率では吸収係数(複素屈折率の虚数部)の小さいア
モルファス状態の反射率が大きくなる傾向にある。記録
層下部の誘電体層を2層にして反射率を上げる試みが提
案されている(特開平1−27324)。
Further, in order to reproduce with a CD drive, it is necessary for the unrecorded portion to have a high reflectance, so that in the case of a Ge-Te or Ge-Sb-Te phase change medium that requires initialization. It is necessary to increase the reflectance in the crystalline state, but at a high reflectance, the reflectance in the amorphous state with a small absorption coefficient (imaginary part of complex refractive index) tends to increase. There has been proposed an attempt to increase the reflectance by forming two dielectric layers below the recording layer (Japanese Patent Laid-Open No. 1-27324).

【0012】誘電体としては、屈折率、熱伝導率、化学
的安定性、機械的強度、密着性等に留意して決定され、
一般的には透明性が高く高融点である酸化物、硫化物、
窒化物やCa,Mg,Li等のフッ化物を用いることが
できる。作製プロセスを簡単にするため、界面でのはが
れ等を少なくするためには誘電体中間層の層数は少ない
方が好ましく、少ない層数で高反射率、高コントラスト
を達成するためには屈折率差の大きな2種類以上の誘電
体を用いるとよい。
The dielectric material is determined in consideration of the refractive index, thermal conductivity, chemical stability, mechanical strength, adhesiveness, etc.,
Generally, oxides, sulfides, which have high transparency and high melting point,
Nitride and fluorides such as Ca, Mg and Li can be used. In order to simplify the manufacturing process, it is preferable that the number of dielectric intermediate layers is small in order to reduce peeling at the interface, and in order to achieve high reflectance and high contrast with a small number of layers, the refractive index It is preferable to use two or more types of dielectrics having a large difference.

【0013】屈折率の比較的小さいものとしては、Ca
2、MgF2、Na3AlF6、SiO2 等があり、屈折
率の比較的大きいものとしては、TiO2、ZnS、T
2 5 、ZnSとSiO2の混合物等がある。高反射率
・高コントラストを得るには、記録層と基板との間に光
学膜厚がλ/4の低屈折率と高屈折率の誘電体膜を交互
に積層したいわゆる誘電体ミラーを設けるわけである
が、積層した層数が多いほど、あるいは両誘電体の屈折
率差が大きいほど高反射率が得られることが知られてい
る(特開平3−91128、特開平5−151614
等)。
Ca having a relatively small refractive index is Ca.
F2, MgF2, Na3AlF6, SiO2 Etc., refraction
TiO has a relatively high rate.2, ZnS, T
a2O Five , ZnS and SiO2There is a mixture of. High reflectance
・ To obtain high contrast, light between the recording layer and the substrate
Alternating low-refractive index and high-refractive index dielectric films with a film thickness of λ / 4
The so-called dielectric mirror laminated on the
However, as the number of laminated layers increases, or the refraction of both dielectrics
It is known that the larger the index difference, the higher the reflectance.
(JP-A-3-91128, JP-A-5-151614)
etc).

【0014】しかしながら、通常の誘電体ミラーに用い
られる上記酸化物、硫化物、窒化物、弗化物を用いる限
り、高屈折率としては高々TiO2 の2.5程度であ
り、低屈折率としては、MgF2、CaF2等の1.3程
度が下限である。従って、十分な誘電体ミラー効果を得
るためには、誘電体ミラー層だけで3〜6層の積層化が
必要であった。しかしながら、層数が多くなりすぎる場
合、製造コスト、再現性確保の難しさを考慮すると実用
的ではない。
However, as long as the above-mentioned oxides, sulfides, nitrides and fluorides used for ordinary dielectric mirrors are used, the high refractive index is at most about 2.5 of TiO 2 and the low refractive index is. , MgF 2 , CaF 2, etc. is about 1.3 as the lower limit. Therefore, in order to obtain a sufficient dielectric mirror effect, it is necessary to stack 3 to 6 layers with only the dielectric mirror layer. However, when the number of layers is too large, it is not practical considering the manufacturing cost and the difficulty of ensuring reproducibility.

【0015】また、界面で生じる欠陥、剥離も層数のが
増えるにつれ多くなるという問題がある。
There is also a problem that defects and peeling occurring at the interface increase as the number of layers increases.

【0016】[0016]

【問題点を解決するための手段】本発明者らは層構成お
よび材料を検討した結果、基板上に少なくとも、屈折率
の異なる2種以上の薄膜を積層した中間層、相転移型光
記録層、上部誘電体層、反射層を順次積層してなる光学
的情報記録用媒体において、記録層が結晶状態にある場
合の媒体の反射率が65%以上、アモルファス状態にあ
る場合の反射率が35%未満であって、上記中間層を構
成する屈折率の異なる2種以上の薄膜のうちの高屈折率
の薄膜が記録再生光波長に対する複素屈折率の虚部の絶
対値が0.1未満、実部が2.5以上である半導体とす
ることにより比較的簡単な層構成で反射率およびコント
ラストが大きくとれる光学的情報記録用媒体を作製し得
ることを見出した。
DISCLOSURE OF THE INVENTION As a result of studying the layer constitution and materials, the present inventors have found that an intermediate layer in which at least two kinds of thin films having different refractive indexes are laminated on a substrate, and a phase transition type optical recording layer. In an optical information recording medium in which an upper dielectric layer and a reflective layer are sequentially laminated, the medium has a reflectance of 65% or more when the recording layer is in a crystalline state, and a reflectance of 35 when the recording layer is in an amorphous state. %, And the absolute value of the imaginary part of the complex refractive index with respect to the recording / reproducing light wavelength is less than 0.1. It has been found that by using a semiconductor having a real part of 2.5 or more, it is possible to manufacture an optical information recording medium having a large reflectance and contrast with a relatively simple layer structure.

【0017】高屈折率薄膜として、高屈折率、低吸収率
の半導体薄膜を用いることにより、記録再生光波長に対
する吸収を実質上無視できるとともに、効率のよい誘電
体ミラーを形成でき、記録層結晶状態の反射率65%以
上、アモルファス状態の反射率35%以下の高反射率、
高コントラスト媒体を比較的少ない層数で達成できる。
By using a semiconductor thin film having a high refractive index and a low absorptivity as the high refractive index thin film, the absorption for the recording / reproducing light wavelength can be substantially ignored, and an efficient dielectric mirror can be formed, and the recording layer crystal can be formed. High reflectance of 65% or more in the state, 35% or less in the amorphous state,
High contrast media can be achieved with a relatively small number of layers.

【0018】上記半導体薄膜としては、バンドギャップ
が記録再生光波長と同等かそれより大きいものが望まし
く、たとえば通常のコンパクトディスクでの波長780
nmに対しては、非晶質シリコン、ゲルマニウム、Si
C、Sb23等が挙げられる。たとえ結晶状態の吸収率
が大きくても、非晶質化、水素化、弗素化することによ
り、バンドギャップをコントロールして所望の光学的特
性が得られるのも、半導体薄膜の特徴である。なかで
も、水素化または弗素化した非晶質シリコンは、バンド
ギャップが1.6〜2.0エレクトロンボルトと780
nm(約1.5エレクトロンボルト)に比べ十分広く、
780nmに対する複素屈折率は約3.5〜0.1i
(iは虚数)と良好な値を示し、結晶化温度が400℃
以上と熱的にも安定であるという点で、優れた材料であ
る。
The semiconductor thin film preferably has a bandgap equal to or larger than the wavelength of the recording / reproducing light, for example, a wavelength of 780 in an ordinary compact disc.
For nm, amorphous silicon, germanium, Si
C, Sb 2 S 3 and the like can be mentioned. It is also a characteristic of semiconductor thin films that the desired optical characteristics can be obtained by controlling the bandgap by amorphizing, hydrogenating or fluorinating even if the absorptance in the crystalline state is large. Among them, hydrogenated or fluorinated amorphous silicon has a band gap of 1.6 to 2.0 electron volts and 780.
Wider than nm (about 1.5 electron volts),
Complex refractive index for 780 nm is about 3.5-0.1i
(I is an imaginary number) and shows a good value, and the crystallization temperature is 400 ° C.
It is an excellent material in that it is also thermally stable.

【0019】さらに、反応性スパッタ時に炭化水素ガ
ス、NH3 、窒素、酸素ガス等から少なくとも1種のガ
スを水素ガスに混入して用いることにより、水素化非晶
質SiC、SiN、SiCN等種々のSiをベースとす
る非晶質膜が得られる。これらは、膜の光学定数、機械
的強度、他の膜との密着性を制御するのに有効である。
Furthermore, by using at least one gas selected from hydrocarbon gas, NH 3 , nitrogen, oxygen gas, etc. mixed with hydrogen gas during reactive sputtering, various hydrogenated amorphous SiC, SiN, SiCN, etc. can be obtained. An amorphous film based on Si is obtained. These are effective for controlling the optical constants of the film, the mechanical strength, and the adhesiveness with other films.

【0020】一方、低屈折率膜としてはMg,Ca,S
r,Y,La,Ce,Ho,Er,Yb,Zr,Hf,
V,Nb,Ta,Zn,Al,Si,Ge,Pb等の酸
化物、硫化物、窒化物、フッ化物を用いることができ
る。特に記録消去による熱ダメージが少ない場合、ある
いは繰り返し記録回数が少なくてもよい場合には、耐熱
性の有機物薄膜(ポリイミド、ポリフルオロカーボン等
のスパッタ膜、プラズマ重合膜、蒸着重合膜など)も使
用できる。
On the other hand, as the low refractive index film, Mg, Ca, S
r, Y, La, Ce, Ho, Er, Yb, Zr, Hf,
An oxide such as V, Nb, Ta, Zn, Al, Si, Ge, or Pb, a sulfide, a nitride, or a fluoride can be used. A heat-resistant organic thin film (sputtered film of polyimide, polyfluorocarbon, etc., plasma-polymerized film, vapor-deposited polymerized film, etc.) can also be used especially when the heat damage due to recording / erasing is small or the number of times of repeated recording may be small .

【0021】これらの誘電体膜は必ずしも化学量論的組
成をとる必要はなく、屈折率等の制御のために組成を制
御したり、混合して用いることも有効である。なお誘電
体層の膜厚は必ずしもλ/4の光学膜厚である必要はな
く、この膜厚からずらすことにより反射率や反射率の波
長依存性、及びコントラストの調整が可能である。
It is not always necessary that these dielectric films have a stoichiometric composition, and it is also effective to control the composition or mix them for controlling the refractive index and the like. Note that the film thickness of the dielectric layer does not necessarily have to be an optical film thickness of λ / 4, and by adjusting the film thickness from this film thickness, the reflectance, the wavelength dependence of the reflectance, and the contrast can be adjusted.

【0022】低屈折率薄膜の屈折率nL は、高屈折率薄
膜の屈折率nH とすると、nH /nL が1.2以上とな
るようにするのが好ましい。本発明においては、高屈折
率膜である半導体薄膜の屈折率が2.5以上と高いた
め、通常高屈折率とみなされる、酸化タンタル、Zn
S、ZnSとSiO2 の混合膜等(いずれも屈折率は約
2.0前後)も低屈折率膜として利用できる。この場
合、使用できる誘電体膜の範囲が広くなるという利点が
あるため、熱物性、機械的強度を重視した材料の選択が
可能になる。
The refractive index nL of the low refractive index thin film is preferably nH / nL of 1.2 or more, where nH / nL is the refractive index of the high refractive index thin film. In the present invention, since the semiconductor thin film which is a high refractive index film has a high refractive index of 2.5 or more, it is usually regarded as a high refractive index.
A mixed film of S, ZnS and SiO2 (both have a refractive index of about 2.0) can also be used as a low refractive index film. In this case, since there is an advantage that the range of usable dielectric films is widened, it is possible to select a material that places importance on thermophysical properties and mechanical strength.

【0023】高屈折率薄膜として記録再生光波長に対す
る複素屈折率の実部が2.5以上のものを用いる理由は
上述の通りであるが、複素屈折率の虚部の絶対値が0.
1以上のものでは吸収率が大きくなりすぎ良好な反射率
が得られない。さらに、上記低屈折率膜を上記高屈折率
半導体膜の酸化物または窒化物とすることにより、各層
間の密着性を改善でき、繰り返し記録消去にともなう界
面剥離等の劣化防止に効果がある。
The reason why the real part of the complex refractive index with respect to the wavelength of the recording / reproducing light is 2.5 or more is used as the high refractive index thin film, but the absolute value of the imaginary part of the complex refractive index is 0.
If it is 1 or more, the absorptance becomes too large and a good reflectance cannot be obtained. Further, by using the oxide or nitride of the high refractive index semiconductor film as the low refractive index film, the adhesion between the respective layers can be improved, and it is effective in preventing deterioration such as interfacial peeling due to repeated recording and erasing.

【0024】また、同一半導体ターゲットを用い、Ar
ガス中でスパッタして半導体膜を形成し、引き続き酸素
または窒素を導入して反応性スパッタすれば、上記半導
体の酸化膜または窒化膜が形成できる。屈折率を調整す
るために、酸素と窒素の両方を導入しても良い。いずれ
にせよ、酸素または窒素ガスの導入のオン・オフ操作に
よって、簡単にしかも界面での密着性に優れた積層膜が
得られる。
In addition, using the same semiconductor target, Ar
If a semiconductor film is formed by sputtering in gas and then reactive sputtering is performed by introducing oxygen or nitrogen, an oxide film or a nitride film of the above semiconductor can be formed. Both oxygen and nitrogen may be introduced to adjust the refractive index. In any case, a laminated film having excellent adhesion at the interface can be easily obtained by turning on / off the introduction of oxygen or nitrogen gas.

【0025】場合によっては、酸素または窒素ガスのオ
ン・オフを緩やかに行うことで、界面に傾斜組成を生ぜ
しめ、さらに密着性を改善することも可能である。ま
た、酸素と窒素の両方を混合した反応性ガスを用いれ
ば、屈折率を約1.5〜2.0の範囲で制御できる。と
くにシリコンの酸化膜は屈折率が1.5と低いので、上
述の水素化または弗素化非晶質シリコンとあわせて用い
れば、効率のよい誘電体ミラーが得られる。水素化、ま
たは弗素化シリコンは酸化しにくいという特性もあり、
酸化シリコンからの拡散による劣化防止にも効果的で経
時安定性に優れる。
In some cases, by gradually turning on or off the oxygen or nitrogen gas, it is possible to produce a graded composition at the interface and further improve the adhesion. Further, if a reactive gas in which both oxygen and nitrogen are mixed is used, the refractive index can be controlled within the range of about 1.5 to 2.0. In particular, since the oxide film of silicon has a low refractive index of 1.5, an efficient dielectric mirror can be obtained by using it together with the above-mentioned hydrogenated or fluorinated amorphous silicon. Hydrogenated or fluorinated silicon also has the property that it is difficult to oxidize,
It is also effective in preventing deterioration due to diffusion from silicon oxide and has excellent stability over time.

【0026】通常、相変化記録層はGeSbTe系、I
nSbTe系等が用いられるが、屈折率変化の大きな材
料がコントラストを大きくするために好ましい。GeS
bTe系に関しては、Sb2Te3−GeTeライン上組
成またはこの組成に少量のSb等を加えた組成が相変化
記録に適しているが、屈折率変化の面ではGeTeに近
い方が良い。
Usually, the phase change recording layer is a GeSbTe system, I
An nSbTe-based material or the like is used, but a material having a large change in refractive index is preferable for increasing the contrast. GeS
Regarding the bTe system, a composition on the Sb 2 Te 3 —GeTe line or a composition obtained by adding a small amount of Sb or the like to this composition is suitable for phase change recording, but in terms of refractive index change, it is better to be close to GeTe.

【0027】したがってGeTeをベースとする材料が
好ましく、第3の元素を添加してビット形状、結晶粒
形、経時安定性、記録感度、光学物性等を改善すること
も可能である。第3元素としてSb、Sn,In,T
e、Ge,Pb,As,Se,Si,Bi,Au,T
i,Cu、Ag、Pt、Pd、Co、Ni等を加えても
よい。なおGeTeの組成比は50at.%(原子%)
から±5at.%程度のずれは問題ない。
Therefore, a material based on GeTe is preferable, and it is possible to add a third element to improve the bit shape, crystal grain shape, stability over time, recording sensitivity, optical physical properties and the like. Sb, Sn, In, T as the third element
e, Ge, Pb, As, Se, Si, Bi, Au, T
You may add i, Cu, Ag, Pt, Pd, Co, Ni, etc. The composition ratio of GeTe is 50 at. %(atom%)
To ± 5 at. There is no problem with a deviation of about%.

【0028】本発明における記録媒体の基板としては、
ガラス、プラスチック、ガラス上に光硬化性樹脂を設け
たもの等のいずれであってもよいが、CD互換性の面で
はポリカーボネート樹脂が好ましい。また、反射層とし
ては、Au、Ag,CuまたはAl、あるいはこれらを
主成分とする合金膜が用いられる。さらにこの上に、光
または熱硬化性樹脂や誘電体膜からなる保護層を設ける
と、耐食性が向上し、繰り返し記録消去による劣化も抑
制できる。
As the substrate of the recording medium in the present invention,
It may be any of glass, plastic, glass provided with a photocurable resin, etc., but a polycarbonate resin is preferable from the viewpoint of CD compatibility. As the reflective layer, Au, Ag, Cu or Al, or an alloy film containing these as main components is used. Further, if a protective layer made of a photo- or thermosetting resin or a dielectric film is further provided thereon, corrosion resistance is improved and deterioration due to repeated recording / erasing can be suppressed.

【0029】記録層、誘電体層、反射層はスパッタリン
グ法などによって形成される。記録膜用ターゲット、保
護膜用ターゲット、必要な場合には反射層材料用ターゲ
ットを同一真空チャンバー内に設置したインライン装置
で膜形成を行うことが各層間の酸化や汚染を防ぐ点で望
ましい。また、生産性の面からもすぐれている。
The recording layer, the dielectric layer and the reflective layer are formed by a sputtering method or the like. It is desirable to perform film formation by an in-line apparatus in which the target for recording film, the target for protective film, and the target for reflective layer material, if necessary, are installed in the same vacuum chamber in order to prevent oxidation and contamination between the layers. It is also excellent in terms of productivity.

【0030】[0030]

【実施例】以下、実施例をもって本発明を詳細に説明す
る。 実施例1 基板をポリカーボネート樹脂、反射層を金、記録層を
Ge46Sb8Te46(原子%)とし、高屈折率誘電体と
して水素化非晶質シリコン(n=3.5〜0.05i)
または、Sb23(n=2.8〜0.05i)を用い、
低屈折率膜とし(ZnS)80(SiO220(屈折率
2.1)、SiO2(屈折率1.5)、Si34(屈折
率1.7)、Ta25(屈折率2.1) を用いてさま
ざまな層構成でディスクを作製したときの非晶質時の媒
体の反射率、結晶化時の媒体の反射率の測定結果を表1
にまとめる。
The present invention will be described in detail below with reference to examples. Example 1 A substrate is a polycarbonate resin, a reflective layer is gold, and a recording layer is
Ge 46 Sb 8 Te 46 (atomic%), and hydrogenated amorphous silicon (n = 3.5 to 0.05i) as a high refractive index dielectric
Alternatively, using Sb 2 S 3 (n = 2.8 to 0.05i),
As a low refractive index film (ZnS) 80 (SiO 2 ) 20 (refractive index 2.1), SiO 2 (refractive index 1.5), Si 3 N 4 (refractive index 1.7), Ta 2 O 5 (refractive index) Table 1 shows the measurement results of the reflectance of the medium in the amorphous state and the reflectance of the medium in the crystallization state when discs were manufactured with various layer configurations using the index 2.1).
Put together.

【0031】反射率についてはほぼ計算どおりの値が得
られた。またGeTe、Ge46Te 54、Ge54Te46
Ge47Se6Te47、Ge47Bi6Te47、Ge47In6
Te4 7の複素屈折率はGe46Sb8Te46といずれも結
晶時5.1〜4.5i、非晶質時4.2〜1.2iと大
きな差はなかった。結晶状態の記録層及び非晶質シリコ
ン層における吸収光量の割合を入射光量を1として計算
によって求めた値は、非晶質シリコン層への吸収率が
0.05〜0.06であり記録層への吸収率が0.25
であった。
About the reflectance, a value almost as calculated is obtained.
Was given. Also GeTe, Ge46Te 54, Ge54Te46,
Ge47Se6Te47, Ge47Bi6Te47, Ge47In6
TeFour 7Complex refractive index of Ge46Sb8Te46And both
Crystallized 5.1-4.5i, amorphous 4.2-1.2i
There was no difference. Recording layer in crystalline state and amorphous silicon
Calculate the ratio of the amount of light absorbed in the light source layer with the amount of incident light as 1.
The value obtained by
It is 0.05 to 0.06 and the absorption rate to the recording layer is 0.25.
Met.

【0032】実施例1のディスクについて1.4m/s
ecで196kHz、duty50%、19mWの信号
を記録したところC/N>50dBが得られ、10mW
のDCレーザーを投射したところ25dB以上の消去率
が得られた。レーザー波長は780nm、開口比NAは
0.55である。CDの再生と同条件で再生を行ったと
ころ良好に再生出来た。 [比較例1]記録層は膜厚200ÅのGe46Sb8Te
46 を用い、高屈折率誘電体として吸収率の高い非晶質
シリコン(3.5〜0.2i)を、低屈折率誘電体とし
てSiO2(屈折率1.5) を用い実施例1とほぼ同様
の層構成でディスクを作製したときの非晶質時の媒体の
反射率、結晶化時の媒体の反射率の測定結果を表1にま
とめる。
1.4 m / s for the disk of Example 1
When a signal of 196 kHz, duty 50%, 19 mW was recorded at ec, C / N> 50 dB was obtained and 10 mW
When the DC laser of No. 2 was projected, an erasing rate of 25 dB or more was obtained. The laser wavelength is 780 nm and the aperture ratio NA is 0.55. When it was reproduced under the same conditions as the reproduction of the CD, the reproduction was excellent. [Comparative Example 1] The recording layer is made of Ge 46 Sb 8 Te having a film thickness of 200 liters.
46 is used, a high-refractive-index dielectric is made of high absorption amorphous silicon (3.5 to 0.2i), and a low-refractive-index dielectric is SiO 2 (refractive index 1.5). Table 1 shows the measurement results of the reflectance of the medium in the amorphous state and the reflectance of the medium in the crystallization state when the disk was manufactured with almost the same layer structure.

【0033】結晶状態の記録層及び非晶質シリコン層に
おける吸収光量の割合を入射光量を1として計算によっ
て求めた値は、非晶質シリコン層への吸収率が0.17
〜0.18であり記録層への吸収率が0.17〜0.1
8であった。反射率についてはほぼ計算通りの値が得ら
れた。比較例1では、非晶質シリコン層への吸収が大き
すぎ、結晶状態で十分な反射率が得られない。
A value obtained by calculating the ratio of the amount of absorbed light in the recording layer and the amorphous silicon layer in the crystalline state with the amount of incident light being 1 indicates that the absorption rate in the amorphous silicon layer is 0.17.
.About.0.18 and the absorption rate to the recording layer is 0.17 to 0.1
It was 8. The reflectance was almost as calculated. In Comparative Example 1, absorption to the amorphous silicon layer is too large, and sufficient reflectance cannot be obtained in the crystalline state.

【0034】また、記録層と非晶質シリコン層への光吸
収が同程度になるため、記録層において有効に光エネル
ギーが利用されず、記録感度が大幅に低下した。CDの
再生と同条件で再生を行ったところ再生不能であった。 [比較例2]基板と記録層の間の誘電体中間層をすべ
て、絶縁物である、SiO2 (屈折率1.5)と(Zn
S)80(SiO220(屈折率2.1) で構成した場
合、各層の膜厚をλ/4とすると、それぞれ130n
m、93nm必要となる。
Further, since the light absorption in the recording layer and that in the amorphous silicon layer are almost the same, the light energy is not effectively utilized in the recording layer, and the recording sensitivity is significantly lowered. When the CD was reproduced under the same conditions, the reproduction was impossible. [Comparative Example 2] All the dielectric intermediate layers between the substrate and the recording layer were made of insulators such as SiO 2 (refractive index 1.5) and (Zn
S) 80 (SiO 2 ) 20 (refractive index 2.1), and the thickness of each layer is λ / 4, 130 n each
m, 93 nm is required.

【0035】これに対し、非晶質シリコンでは実施例の
ごとく、56nmで済む。例えば表1に示す層構成をと
れば、記録層の結晶状態反射率70%以上、非晶質状態
反射率35%未満とできるが、全体の膜厚が厚くなる。
また、これら絶縁物層は、一般に成膜速度が遅く、必要
膜厚も厚いので生産速度が遅くなる。また各層の膜厚が
厚くなると、膜の内部応力の影響が大きくなり、膜剥離
等の問題が生じ易かった。
On the other hand, with amorphous silicon, 56 nm is sufficient as in the embodiment. For example, if the layer structure shown in Table 1 is adopted, the crystalline state reflectance of the recording layer can be 70% or more and the amorphous state reflectance can be less than 35%, but the overall film thickness is increased.
In addition, these insulator layers generally have a low film formation rate and a large required film thickness, so that the production rate becomes slow. Further, when the film thickness of each layer is increased, the influence of the internal stress of the film is increased, and problems such as film peeling are likely to occur.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 表中〜は以下の通り、 :水素化非晶質シリコン :SiO2 :Sb23 :Ta25 :(ZnS)80(SiO220 :Si34 :Ge46Sb8Te46 :Au[Table 2] In the table-is as follows: hydrogenated amorphous silicon: SiO 2: Sb 2 S 3 : Ta 2 O 5: (ZnS) 80 (SiO 2) 20: Si 3 N 4: Ge 46 Sb 8 Te 46 : Au

【0038】[0038]

【発明の効果】本発明の光学的記録用媒体を用いること
により比較的簡単な層構成かつ簡単なスパッタ法によ
り、反射率およびコントラストが大きくとることのでき
る光学的情報記録用媒体を作製し得る。
EFFECT OF THE INVENTION By using the optical recording medium of the present invention, an optical information recording medium capable of achieving high reflectance and contrast can be prepared by a relatively simple layer structure and a simple sputtering method. .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に少なくとも、屈折率の異なる2
種以上の薄膜を積層した中間層、相転移型光記録層、上
部誘電体層、反射層を順次積層してなる光学的情報記録
用媒体において、記録層が結晶状態にある場合の媒体の
反射率が65%以上、アモルファス状態にある場合の反
射率が35%未満であって、上記中間層を構成する屈折
率の異なる2種以上の薄膜のうちの高屈折率の薄膜が記
録再生光波長に対する複素屈折率の虚部の絶対値が0.
1未満、実部が2.5以上である半導体からなることを
特徴とする光学的情報記録用媒体。
1. A substrate having at least two different refractive indexes.
Reflection of a medium when the recording layer is in a crystalline state in an optical information recording medium in which an intermediate layer in which thin films of at least one kind are laminated, a phase transition type optical recording layer, an upper dielectric layer, and a reflective layer are sequentially laminated. The reflectance is 65% or more, the reflectance in the amorphous state is less than 35%, and the thin film having a high refractive index among the two or more thin films having different refractive indexes forming the intermediate layer is a recording / reproducing light wavelength. The absolute value of the imaginary part of the complex index of refraction is 0.
An optical information recording medium comprising a semiconductor having a real part of less than 1 and a real part of 2.5 or more.
【請求項2】 上記中間層を形成する2種の薄膜のうち
低屈折率の薄膜が上記高屈折率の半導体膜の酸化物また
は窒化物である請求項1に記載の光学的情報記録用媒
体。
2. The optical information recording medium according to claim 1, wherein the thin film having a low refractive index among the two types of thin films forming the intermediate layer is an oxide or a nitride of the semiconductor film having a high refractive index. .
【請求項3】 上記中間層を形成する2種以上の薄膜の
うち高屈折率の薄膜が非晶質シリコンであり、低屈折率
の薄膜が酸化シリコン、窒化シリコンまたは酸窒化シリ
コンであることを特徴とする請求項2に記載の光学的情
報記録用媒体。
3. A thin film having a high refractive index is amorphous silicon and a thin film having a low refractive index is silicon oxide, silicon nitride or silicon oxynitride among the two or more thin films forming the intermediate layer. The optical information recording medium according to claim 2, which is characterized in that.
JP5250723A 1993-10-06 1993-10-06 Optical information recording medium Expired - Lifetime JP3028902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5250723A JP3028902B2 (en) 1993-10-06 1993-10-06 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5250723A JP3028902B2 (en) 1993-10-06 1993-10-06 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPH07105571A true JPH07105571A (en) 1995-04-21
JP3028902B2 JP3028902B2 (en) 2000-04-04

Family

ID=17212095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5250723A Expired - Lifetime JP3028902B2 (en) 1993-10-06 1993-10-06 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP3028902B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430376A (en) * 2020-04-09 2020-07-17 Tcl华星光电技术有限公司 Array substrate and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430376A (en) * 2020-04-09 2020-07-17 Tcl华星光电技术有限公司 Array substrate and display device
CN111430376B (en) * 2020-04-09 2022-12-23 Tcl华星光电技术有限公司 Array substrate and display device

Also Published As

Publication number Publication date
JP3028902B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4313387B2 (en) Alloys for reflective or semi-reflective layers of light storage media
JP2000298875A (en) Optical recording medium
EP0996950A2 (en) Rewritable optical information medium
US6040066A (en) Rewritable optical information medium
WO2002049025A1 (en) Optical information medium and its use
JPWO2004085167A1 (en) Information recording medium and manufacturing method thereof
US6141315A (en) Phase change optical recording medium containing oxygen and process for manufacturing the same
US6638594B1 (en) Rewritable optical information recording medium
US6159573A (en) Rewritable optical information medium
US6127049A (en) Rewritable optical information medium
JP3031135B2 (en) Optical information recording medium
US6254957B1 (en) Rewritable optical information medium
JP3028902B2 (en) Optical information recording medium
JP4227278B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JP2650507B2 (en) Optical information recording medium
JP2003511267A (en) Optical recording medium having GeSbTe recording layer
JP2512237B2 (en) Optical information recording medium
JP4086689B2 (en) Optical information recording medium and manufacturing method thereof
US6735165B1 (en) Rewritable optical information medium
JP3180559B2 (en) Optical information recording medium and recording method
JPH11232692A (en) Optical record medium and manufacture thereof
JPH0793814A (en) Optical information recording medium
JPH0644606A (en) Phase change optical recording medium
JPH10289478A (en) Optical information recording medium and its production
JPH07141695A (en) Optical information recording medium

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 13

EXPY Cancellation because of completion of term