JPH07105531B2 - Operation control method for superconducting device - Google Patents

Operation control method for superconducting device

Info

Publication number
JPH07105531B2
JPH07105531B2 JP60201697A JP20169785A JPH07105531B2 JP H07105531 B2 JPH07105531 B2 JP H07105531B2 JP 60201697 A JP60201697 A JP 60201697A JP 20169785 A JP20169785 A JP 20169785A JP H07105531 B2 JPH07105531 B2 JP H07105531B2
Authority
JP
Japan
Prior art keywords
superconducting
temperature
coil
superconducting coil
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60201697A
Other languages
Japanese (ja)
Other versions
JPS6262570A (en
Inventor
尚英 中山
勝治 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60201697A priority Critical patent/JPH07105531B2/en
Publication of JPS6262570A publication Critical patent/JPS6262570A/en
Publication of JPH07105531B2 publication Critical patent/JPH07105531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導装置に係り、特に核融合装置や超電導エ
ネルギー貯蔵装置に用いられる超電導コイルと、その運
転を行う制御装置とを有する超電導装置の運転制御方法
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device, and more particularly to the operation of a superconducting device having a superconducting coil used in a nuclear fusion device or a superconducting energy storage device, and a controller for operating the superconducting coil. Regarding control method.

〔発明の背景〕[Background of the Invention]

超電導体の1つの応用分野として、核融合装置に於る強
磁場発生用等のための超電導コイルがある。この超電動
コイル応用の最大の問題点は、冷却の不足等により生ず
るコイルの常電導転位(以下クエンチという)をどのよ
うに防止するかという点にある。このクエンチ防止法の
従来の公知例としては、特開昭48-52491,同49-91788,同
49-96691,同50-115995,同53-17292等に開示されてお
り、これらでは、例えばコイル端子電圧等の監視を行
い、電圧の異常上昇からクエンチ発生を検出した場合
は、コイルに蓄積されたエネルギーを外部抵抗等に放出
するという方法をとつていた。しかしこのような従来方
法では、クエンチ防止動作中は、超電導装置の運転を停
止しなければならないという欠点があつた。また、強制
循環冷却を行うときは、冷媒の循環量を常に十分大きく
すればクエンチ防止できるが、これは冷却系統設備の大
型化や、無駄なエネルギー消費の増大をまねくことにな
る。
One application field of superconductors is a superconducting coil for generating a strong magnetic field in a nuclear fusion device. The biggest problem in applying this super-electric coil is how to prevent the normal conducting dislocation (hereinafter referred to as quench) of the coil caused by insufficient cooling or the like. As a conventional publicly known example of this quench prevention method, there is disclosed in JP-A-48-52491, 49-91788,
49-96691, 50-115995, 53-17292, etc., in which, for example, the coil terminal voltage is monitored, and when a quench occurrence is detected from an abnormal rise in voltage, it is accumulated in the coil. The energy was released to an external resistor. However, such a conventional method has a drawback that the operation of the superconducting device must be stopped during the quench preventing operation. Further, when forced circulation cooling is performed, quenching can be prevented by always increasing the circulation amount of the refrigerant, but this leads to an increase in the size of the cooling system equipment and an increase in wasteful energy consumption.

〔発明の目的〕[Object of the Invention]

本発明の目的は、強制循環冷却を行う複数のパンケーキ
(層状)超電導コイルを有する超電導装置において、運
転を停止することなくクエンチ防止が行え、かつ無駄な
エネルギー消費の少ない超電導装置の運転制御方法を提
供するにある。
An object of the present invention is to provide an operation control method for a superconducting device having a plurality of pancake (layered) superconducting coils for forced circulation cooling, which can prevent quenching without stopping the operation, and which wastes little energy consumption. To provide.

〔発明の概要〕[Outline of Invention]

超電導装置の超電導コイルにクエンチが発生する場合、
一般には、コイルの全面的クエンチが突然発生するので
はなく、まずコイルの一つのパンケーキコイルに常電導
領域が発生し、冷却不足から発熱除去能力が不足してい
ると、この常電導領域が次第に他のパンケーキコイルに
も拡大して全面的クエンチに至るという過程をとる。そ
こで本発明では、各パンケーキコイル対応に温度検出器
及び強制冷却手段を設け、更にあるパンケーキコイルの
温度検出値が所定値をこえたときには、当該パンケーキ
コイルの冷媒量を通常時よりも増大させて当該パンケー
キコイルのクエンチの解消及びその拡大の防止を行うよ
うにしたことを特徴とするものである。
If a quench occurs in the superconducting coil of the superconducting device,
In general, the entire quench of the coil does not occur suddenly, but first the normal conduction region occurs in one pancake coil of the coil, and if the heat removal capacity is insufficient due to insufficient cooling, this normal conduction region will be generated. The process gradually expands to other pancake coils, leading to a full quench. Therefore, in the present invention, a temperature detector and a forced cooling means are provided for each pancake coil, and when the temperature detection value of a certain pancake coil exceeds a predetermined value, the refrigerant amount of the pancake coil is set to be smaller than that in a normal time. The present invention is characterized in that the quenching of the pancake coil is eliminated and the expansion thereof is prevented.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を説明する。第1図は、本発明
による超電導装置の一実施例を示すブロツク図で超電導
コイル6は、真空容器7に収納されて液体ヘリウムによ
り冷却され、外部の電源(図示省略)により励磁され
る。コイル6は、本例の場合、9個のパンケーキコイル
61〜69により構成され、各パンケーキコイルは、強制冷
却用の冷媒通路をその内部に有する(コイル6は2個図
示しているが、以下ではこのうちの1個のみの系統を示
す)。冷媒である液体ヘリウムは、冷凍機5により冷凍
され,ポンプ41〜49により配管91経由で各パンケーキコ
イル61〜69へ圧送される。コイル冷却後、温度の上昇し
た液体ヘリウムは、配管92経由で冷凍機5へ戻り、再び
冷却に必要なだけ温度を下げられる。各パンケーキコイ
ル61〜69の液体ヘリウム循環量は、制御装置100が各ポ
ンプ41〜49に指令を出力し制御する。即ちこの制御装置
100は本発明の特徴とするものであつて、各パンケーキ
コイル61〜69に設置された温度検出器81〜89からの信号
を受け、検出装置1によつてその温度が所定値をこえて
上昇したパンケーキコイルを温度比較により検出し、こ
の検出信号を該当するポンプ制御装置31〜39へ与えて該
当パンケーキコイルへの冷媒流量を増大させる。
An embodiment of the present invention will be described below. FIG. 1 is a block diagram showing an embodiment of the superconducting device according to the present invention. The superconducting coil 6 is housed in a vacuum container 7, cooled by liquid helium, and excited by an external power source (not shown). In this example, the coil 6 is nine pancake coils.
Each of the pancake coils 61 to 69 has a refrigerant passage for forced cooling therein (two coils 6 are shown, but only one of them is shown below). Liquid helium, which is a refrigerant, is frozen by the refrigerator 5, and pumped by the pumps 41 to 49 to the pancake coils 61 to 69 via the pipe 91. After cooling the coil, the liquid helium whose temperature has risen returns to the refrigerator 5 via the pipe 92, and the temperature can be lowered as much as necessary for cooling again. The controller 100 outputs a command to each of the pumps 41 to 49 to control the circulating amount of liquid helium in each of the pancake coils 61 to 69. That is, this control device
100 is a feature of the present invention, which receives signals from the temperature detectors 81 to 89 installed on the pancake coils 61 to 69, and the temperature thereof exceeds a predetermined value by the detection device 1. The rising pancake coil is detected by temperature comparison, and this detection signal is given to the corresponding pump control devices 31 to 39 to increase the refrigerant flow rate to the corresponding pancake coil.

第2図は検出装置1の実施例を示すもので、超電導コイ
ル6の各センサ81〜89からの温度信号を受けこれを適当
な電気信号に変換する変換器101〜109と、この電気信号
があらかじめ設定された所定値T0+ΔTに到達するとポ
ンプ制御装置31〜39へ信号出力する比較器111〜119から
構成される。
FIG. 2 shows an embodiment of the detection device 1, and converters 101 to 109 for receiving temperature signals from the respective sensors 81 to 89 of the superconducting coil 6 and converting them into appropriate electric signals, and the electric signals Comprising comparators 111 to 119 which output signals to the pump control devices 31 to 39 when reaching a preset predetermined value T 0 + ΔT.

第3図は比較器111〜119における比較の基準温度T0+Δ
Tの決定方法の説明図であり、パンケーキコイル61に常
電導転移が発生し、他コイルに転移が拡大する過程を模
擬しているものである。即ちまず、パンケーキコイル61
に試験的に常電導領域を発生させるため、入熱を行う。
入熱の方法は、コイル内に設置したヒータによるか、ま
たは冷媒流量の低下等による。試験用入熱をt=0から
t=taまで(図中実線で示す)行つた場合の、各パンケー
キコイル61〜69毎の温度変化をそれぞれ実線で示す。図
から明らかなように入熱したパンケーキコイル61に近い
もの程早くから温度が上昇し、入熱を終つてからは早目
に温度が低下する(クエンチに到らない場合)。即ちこ
の場合は入熱量に比べて冷却量が十分なため、入熱停止
後常電導領域は漸次超電導状態に復旧する(元の温度へ
戻る)。
FIG. 3 shows a reference temperature T 0 + Δ for comparison in the comparators 111 to 119.
It is an explanatory view of the determination method of T, simulating the process in which the normal conduction transition occurs in the pancake coil 61 and the transition expands to other coils. That is, first, pancake coil 61
Heat is applied in order to experimentally generate a normal conduction region.
The method of inputting heat is by using a heater installed in the coil or by reducing the flow rate of the refrigerant. Test heat input from t = 0
until t = t a (shown in solid line in the drawing) KoTsuta cases, showing the temperature change of each pancake coil 61-69 in solid lines. As is clear from the figure, the closer the heat is applied to the pancake coil 61, the sooner the temperature rises, and the lower the temperature after the end of heat input (when the quench is not reached). That is, in this case, since the cooling amount is sufficient as compared with the heat input amount, the normal conduction region gradually recovers to the superconducting state (returns to the original temperature) after the heat input is stopped.

一方、試験用入熱をt=0からt=tbまで(図中破線で示
す)行つた場合の、各パンケーキコイル61〜69毎の温度
変化をそれぞれ破線で示す。この場合は、入熱量が冷却
量を上回るため、入熱を停止しても常電導領域は超電導
状態に復旧せず、また常電導領域でのジユール損失によ
り発熱が引き続き行われるため、隣接したパンケーキコ
イルへの熱伝導により、超電導コイル全体の温度上昇、
つまりクエンチに到る。従つて各パンケーキコイルの温
度があまり上昇しない内にそのパンケーキコイルの冷媒
流量を大きくしてやる必要がある。そこで第3図のよう
な実験によつて、同図の実線の場合のように冷媒流量を
変化させなくても超電導状態へ復旧可能な入熱量をしら
べておき、そのときの最高の温度T1よりも低い目の温度
T0+ΔTを比較器111〜119の基準温度としておく。但し
T0は、通常運転時の温度である。なお、簡単のためにこ
こでは比較器111〜119の基準温度はすべて等しくT0+Δ
Tであるとしたが、実際にはパンケーキコイル61〜69の
構造上のばらつきやその配置された位置等によつて第3
図で述べた特性が異なる場合がありうるが、この場合に
は実験的に適切なT0+ΔTをパンケーキ対応に求めて設
定するようにすればよい。
On the other hand, when the test heat input is carried out from t = 0 to t = t b (shown by broken lines in the figure), temperature changes of the pancake coils 61 to 69 are shown by broken lines. In this case, the amount of heat input exceeds the amount of cooling, so the normal conduction region does not return to the superconducting state even if the heat input is stopped. Due to heat conduction to the cake coil, the temperature rise of the entire superconducting coil,
In other words, it reaches the quench. Therefore, it is necessary to increase the refrigerant flow rate of each pancake coil before the temperature of each pancake coil rises so much. Therefore, according to the experiment shown in Fig. 3, the heat input that can restore the superconducting state without changing the refrigerant flow rate as in the case of the solid line in Fig. 3 is investigated, and the maximum temperature T 1 at that time is calculated. Lower eye temperature than
Let T 0 + ΔT be the reference temperature of the comparators 111-119. However
T 0 is the temperature during normal operation. For simplicity, the reference temperatures of the comparators 111 to 119 are all equal to T 0 + Δ.
Although it is assumed to be T, it is actually the third due to the structural variations of the pancake coils 61 to 69 and the positions where they are arranged.
There may be cases where the characteristics described in the figure differ, but in this case, an appropriate T 0 + ΔT may be experimentally determined and set for pancake correspondence.

第4図は本実施例の動作タイムチヤート例であつて、今
パンケーキコイル61に何らかの原因で温度上昇がt=0
から始まつたとする。このために時刻t1にはパンケーキ
コイル61の温度は第3図のようにT0+ΔTに到達し比較
器111の出力がオンしてポンプ41による冷媒流量を増大
させる。そうすると基準値T0+ΔTの設定方法から、パ
ンケーキコイルの入熱は続いていてもそのための温度上
昇を冷媒流量の増大により防止でき、やがて超電導状態
へ復旧して温度もT0+ΔT以下となり、冷媒流量も通常
状態へもどる。このとき他のパンケーキコイル62〜69
は、パンケーキコイル61の温度上昇のために温度上昇す
るが、これらの温度上昇の原因であるパンケーキコイル
61への入熱は上述のポンプ41による冷媒流量増大のため
に早目に阻止されているから、冷媒流量の変化なしとし
た第3図の場合よりも小さい温度上昇になる。しかしそ
れでも温度上昇が時刻t2,t3,……等でΔT以上となつ
たときにはポンプ42〜49も冷媒流量を増大させ、パンケ
ーキコイル61の冷却を早める働きをする。
FIG. 4 shows an example of the operation time chart of the present embodiment, in which the temperature rise in the pancake coil 61 due to some cause is t = 0.
Let's start from Therefore, at time t 1 , the temperature of the pancake coil 61 reaches T 0 + ΔT as shown in FIG. 3, the output of the comparator 111 is turned on, and the refrigerant flow rate by the pump 41 is increased. Then, from the setting method of the reference value T 0 + ΔT, even if the heat input to the pancake coil continues, the temperature rise due to the heat input can be prevented by increasing the refrigerant flow rate, and eventually the temperature returns to the superconducting state and the temperature becomes T 0 + ΔT or less. The refrigerant flow rate also returns to the normal state. At this time, other pancake coils 62-69
Temperature rises due to the temperature rise of the pancake coil 61, which is the cause of these temperature rises.
Since the heat input to 61 is blocked early due to the increase in the refrigerant flow rate by the pump 41 described above, the temperature rise is smaller than in the case of FIG. 3 in which the refrigerant flow rate does not change. However, when the temperature rise still exceeds ΔT at times t 2 , t 3 , ... Etc., the pumps 42 to 49 also increase the flow rate of the refrigerant and have an effect of accelerating the cooling of the pancake coil 61.

以上述べたように、本実施例によると、装置の運転を止
めなくても冷媒流量の増加によりクエンチを防止でき、
しかもその冷媒流量の増加は温度上昇が生じたときだけ
であるので、冷却系統を効率よく運転できる。
As described above, according to the present embodiment, quenching can be prevented by increasing the refrigerant flow rate without stopping the operation of the device,
Moreover, since the flow rate of the refrigerant increases only when the temperature rises, the cooling system can be operated efficiently.

なお、本実施例では、検出装置は変換器およびハードウ
エアとしての比較器から構成したが、このうちの比較器
は計算機上のソフトウエアにより構成することもでき
る。また冷媒流量制御を、各パンケーキコイルの通常運
転時の温度T0からの偏差により比例的に行うこともで
き、この場合は比較器111〜119を、検出温度と通常運転
温度T0の差を算出して比例積分等の制御装置を行う制御
器に置換えればよい。なおこの制御器もアナログ回路あ
るいは計算機ソフトウエアのいずれによつても実現可能
である。
In this embodiment, the detection device is composed of the converter and the comparator as hardware, but the comparator can be composed of software on the computer. Further, the refrigerant flow rate control can be performed proportionally by the deviation from the temperature T 0 of the normal operation of each pancake coil. In this case, the comparators 111 to 119 are used to detect the difference between the detected temperature and the normal operation temperature T 0 . Should be calculated and replaced with a controller that performs a control device such as proportional-plus-integral. This controller can also be realized by either an analog circuit or computer software.

〔発明の効果〕〔The invention's effect〕

本発明によれば、強制循環冷却を行う複数のパンケーキ
コイルを有する超電導装置において、クエンチ発生を装
置運転を停止することなく防止でき、かつそのクエンチ
防止のためのエネルギー消費を不必要に行うのをなくせ
るという効果がある。
According to the present invention, in a superconducting device having a plurality of pancake coils for performing forced circulation cooling, quenching can be prevented without stopping the operation of the device, and energy consumption for preventing quenching is unnecessary. There is an effect that can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロツク図、第2図は
第1図の検出装置の詳細を示す図、第3図は試験用入熱
と各コイル温度変化を示す図、第4図は第1図の実施例
の動作タイムチヤート例である。 1……検出装置、31〜39……ポンプ制御装置、41〜49…
…ポンプ、5……冷凍機、6……超電導コイル、7……
真空容器、61〜69……パンケーキコイル、81〜89……温
度検出器、111〜119……比較器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing details of the detection device of FIG. 1, FIG. 3 is a diagram showing test heat input and coil temperature changes, and FIG. The figure shows an example of the operation time chart of the embodiment shown in FIG. 1 ... Detection device, 31-39 ... Pump control device, 41-49 ...
… Pump, 5 …… Refrigerator, 6 …… Superconducting coil, 7 ……
Vacuum vessel, 61-69 …… Pancake coil, 81-89 …… Temperature detector, 111-119 …… Comparator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】隣接して設けられた複数の超電導コイルで
あって各々が内部に冷媒通路を有する超電導コイルと、
各超電導コイルの冷媒通路に冷媒を流す超電導コイル対
応に設けたポンプと、各超電導コイルの温度を検出する
超電導コイル対応に設けた温度検出手段と、各ポンプを
制御して各ポンプによる冷媒循環量を制御する各ポンプ
対応に設けたポンプ制御装置とを備える超電導装置の運
転制御方法において、通常の運転温度T0で運転されてい
る各超電導コイルの各々に予め試験的に入熱して各超電
導コイルが冷媒流量を増加させなくても超電導状態への
復旧が可能な最大の入熱量に対応した温度上昇分ΔTを
超電導コイル対応に求めておき、各超電導コイルの運転
中に、対応する温度検出手段で検出された当該超電導コ
イルの温度上昇分と当該超電導コイル対応に求めた前記
ΔTとを比較し該温度上昇分が該ΔTより上回ったとき
当該超電導コイルに流す冷媒流量を増加させることを特
徴とする超電導装置の運転制御方法。
1. A plurality of superconducting coils provided adjacent to each other, each having a refrigerant passage therein,
A pump provided corresponding to the superconducting coil that flows the refrigerant in the refrigerant passage of each superconducting coil, a temperature detecting means provided for the superconducting coil that detects the temperature of each superconducting coil, and a refrigerant circulation amount by each pump by controlling each pump. In the operation control method of the superconducting device provided with a pump control device provided for each pump to control the, each superconducting coil is pre-test heat input to each of the superconducting coils operating at the normal operating temperature T0. A temperature increase ΔT corresponding to the maximum heat input that enables recovery to the superconducting state without increasing the refrigerant flow rate is obtained for the superconducting coils, and the corresponding temperature detecting means can be used during the operation of each superconducting coil. The detected temperature rise of the superconducting coil is compared with the ΔT obtained corresponding to the superconducting coil, and when the temperature rise exceeds the ΔT, the superconducting coil is detected. Operation control method of a superconducting device characterized by increasing to the refrigerant flow.
JP60201697A 1985-09-13 1985-09-13 Operation control method for superconducting device Expired - Lifetime JPH07105531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201697A JPH07105531B2 (en) 1985-09-13 1985-09-13 Operation control method for superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201697A JPH07105531B2 (en) 1985-09-13 1985-09-13 Operation control method for superconducting device

Publications (2)

Publication Number Publication Date
JPS6262570A JPS6262570A (en) 1987-03-19
JPH07105531B2 true JPH07105531B2 (en) 1995-11-13

Family

ID=16445413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201697A Expired - Lifetime JPH07105531B2 (en) 1985-09-13 1985-09-13 Operation control method for superconducting device

Country Status (1)

Country Link
JP (1) JPH07105531B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705861B2 (en) * 1996-03-21 2005-10-12 株式会社日立メディコ Superconducting magnet device and method for adjusting magnetization thereof
US6900714B1 (en) * 2004-06-30 2005-05-31 General Electric Company System and method for quench and over-current protection of superconductor
JP2006041274A (en) * 2004-07-28 2006-02-09 Toshiba Corp High temperature superconducting coil protecting device and high temperature superconducting magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596687A (en) * 1979-01-17 1980-07-23 Hitachi Ltd Device for cooling superconductive magnet
JPS58176904A (en) * 1982-04-12 1983-10-17 Hitachi Ltd Method and apparatus for cooling superconductive coil

Also Published As

Publication number Publication date
JPS6262570A (en) 1987-03-19

Similar Documents

Publication Publication Date Title
JP4688079B2 (en) System and method for quenching and overcurrent protection of superconductors
EP0466102B1 (en) Liquid cooling apparatus
JP2006014579A (en) System and method for protecting quench of superconductor
JPH04271229A (en) Temperature abnormality detecting system
JPH07105531B2 (en) Operation control method for superconducting device
US4263635A (en) Method and apparatus for sensing the clearance of fault current on an ac transmission line
EP0211551B1 (en) A superconducting system and method for controlling the same
Loyd et al. Coil protection for the 20.4 MWh SMES/ETM
CN110285077B (en) Shutdown method and shutdown system for reactor coolant pump for nuclear power station
JPH0875275A (en) Method for controlling operation of refrigerator provided with a plurality of compressors
JP2806663B2 (en) Liquid refrigerant circulation control device
JPH06187064A (en) Method and device for controlling clock
JPH02257207A (en) Cooler for electronic device
JPS6114731B2 (en)
Karner et al. Field coil protection for a SMES-supported all-purpose compensator
RU2082227C1 (en) Method for checking quality of space nuclear power plant
JP2894100B2 (en) Gas pressure regulator for electrical equipment
JPS5915000B2 (en) Computer-based load runback control method for power generation plants
JPH04308442A (en) Controller for generator refrigrant of power generating facility
JPS60175403A (en) Superconductive device
JPS61125634A (en) System for monitoring and controlling abnormality
JPH01141396A (en) Protective device for nuclear fusion system
JPS6326524B2 (en)
JPH02154453A (en) Protective circuit for power-supply apparatus
Turner et al. Safety consequences of shorted turns in a cryostable superconducting magnet