JPS6326524B2 - - Google Patents

Info

Publication number
JPS6326524B2
JPS6326524B2 JP11565080A JP11565080A JPS6326524B2 JP S6326524 B2 JPS6326524 B2 JP S6326524B2 JP 11565080 A JP11565080 A JP 11565080A JP 11565080 A JP11565080 A JP 11565080A JP S6326524 B2 JPS6326524 B2 JP S6326524B2
Authority
JP
Japan
Prior art keywords
voltage
superconducting coil
quenching
value
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11565080A
Other languages
Japanese (ja)
Other versions
JPS5739511A (en
Inventor
Masaomi Nagae
Eiichi Yonezawa
Shinichi Nose
Masamichi Mobara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp filed Critical Fuji Electric Co Ltd
Priority to JP11565080A priority Critical patent/JPS5739511A/en
Publication of JPS5739511A publication Critical patent/JPS5739511A/en
Publication of JPS6326524B2 publication Critical patent/JPS6326524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • H02H7/065Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors against excitation faults

Description

【発明の詳細な説明】 本発明は、励磁装置としてサイリスタ変換装置
を備えている超電導コイルのクエンチング発生時
の保護方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protection method when quenching occurs in a superconducting coil equipped with a thyristor converter device as an excitation device.

超電導コイルは最近広く実用されつつあるが、
その適用例として同期機の界磁巻線を超電導状態
に構成した超電導同期機がある。この種の超電導
同期機は一般同期機に比べ機器サイズ縮小、損失
低減、系統に供給できる進相無効電力を定格
KVA一杯にとれる(一般同期機では安定度の制
約、コイル端加熱の制約があり不可能である。)
等の利点があり、電力系統の発電機、調相機に使
用して大きなメリツトがある。
Superconducting coils have recently been widely put into practical use, but
An example of its application is a superconducting synchronous machine in which the field winding of the synchronous machine is configured in a superconducting state. Compared to general synchronous machines, this type of superconducting synchronous machine has smaller equipment size, lower loss, and is rated for phase-advanced reactive power that can be supplied to the grid.
Full KVA can be obtained (this is not possible with general synchronous machines due to stability restrictions and coil end heating restrictions).
It has the following advantages and has great merits when used in power system generators and phase modifiers.

界磁巻線は超電導状態にあるので平常は純粋イ
ンダクタンスLで抵抗は実用上零であり、電流If
が流れているとき1/2Ll2 fの電磁エネルギを貯えて
いる。界磁磁界の急変、温度の異常上昇等の異常
現象のために超電導状態の部分破壊が発生する
と、その部分は抵抗rとなり、流通電流Ifにより
rI2 fの熱を発生する。この発熱は隣接部分の温度
上昇をもたらし、超電導破壊部が漸次拡大して行
く。このような超電導破壊現象(クエンチング)
が発生したときには、健全状態において界磁イン
ダクタンスに貯えられていた電磁エネルギ1/2Ll2 f
をできるだけ早急に同期機外部で消費せしめ、故
障による被害の局限を計る必要がある。
Since the field winding is in a superconducting state, normally the pure inductance is L, the resistance is practically zero, and the current I f
When flowing, it stores 1/2Ll 2 f of electromagnetic energy. When a partial breakdown of the superconducting state occurs due to an abnormal phenomenon such as a sudden change in the field magnetic field or an abnormal rise in temperature, that part becomes a resistance r, and due to the flowing current I f
Generates heat of rI 2 f . This heat generation causes the temperature of the adjacent parts to rise, and the superconducting breakdown area gradually expands. Such superconducting breakdown phenomenon (quenching)
occurs, the electromagnetic energy stored in the field inductance under normal conditions is 1/2Ll 2 f
It is necessary to consume it outside the synchronous machine as soon as possible in order to limit the damage caused by the failure.

従来公知の方法としてはクエンチング発生時に
界磁回路に外部直列抵抗を挿入してエネルギの外
部消費を計るのが一般である。この外部挿入抵抗
値を過大にすれば界磁電磁エネルギの急速外部消
費には有効であるが、界磁巻線に過大電圧を発生
してその絶縁を脅かす。逆に外部挿入抵抗値が過
小では界磁電流減衰もおそく同期機内部発生熱量
の方が大きくなり好ましくない。クエンチング発
生時の現象も初期界磁電流の値、部分的超電導破
壊の発生状況により多様であり、上記抵抗挿入方
式では挿入抵抗の最適値の選定が困難である。
A conventionally known method generally involves inserting an external series resistor into the field circuit to measure the external consumption of energy when quenching occurs. If the externally inserted resistance value is increased too much, it is effective for rapid external consumption of field electromagnetic energy, but excessive voltage is generated in the field winding, threatening its insulation. On the other hand, if the external insertion resistance value is too small, the field current decay will be slow and the amount of heat generated inside the synchronous machine will be large, which is not preferable. Phenomena when quenching occurs vary depending on the value of the initial field current and the state of occurrence of partial superconducting breakdown, and it is difficult to select the optimum value of the insertion resistance in the above-mentioned resistor insertion method.

本発明の目的は、励磁装置としてサイリスタ変
換装置を備えた超電導コイルにおいて、そのサイ
リスタ変換装置のインバータ動作によりコイルの
絶縁に支障のない範囲でコイルの電磁エネルギを
できるだけ急速に電力系統側に回生せしめクエン
チングによるコイル発生熱量を低減することを可
能にする保護方式を提供することにある。
An object of the present invention is to use a superconducting coil equipped with a thyristor converter as an excitation device to regenerate the electromagnetic energy of the coil to the power system as quickly as possible without interfering with the insulation of the coil by the inverter operation of the thyristor converter. An object of the present invention is to provide a protection method that makes it possible to reduce the amount of heat generated by a coil due to quenching.

この目的は、本発明によれば、クエンチング発
生検出によりサイリスタ変換装置をインバータ動
作させ、しかもその際に超電導コイルに印加され
るサイリスタ変換装置の直流逆電圧を予め定めた
最大値からクエンチング発生により生じる抵抗電
圧際下相当分だけ減じた値に制限することによつ
て達成される。
According to the present invention, the purpose of this is to operate the thyristor converter as an inverter by detecting the occurrence of quenching, and at the same time to cause the quenching to occur from a predetermined maximum value of the DC reverse voltage of the thyristor converter applied to the superconducting coil. This is achieved by limiting the resistance voltage to a value that is reduced by an amount corresponding to the resistance voltage generated by .

以下、図面を参照しながら本発明を更に詳細に
説明する。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明を超電導同期発電機に適用し
た例を原理的にブロツク図で示している。3相同
期発電機1の界磁巻線2は超電導コイルであり、
これには3相純ブリツジサイリスタ変換装置3が
励磁装置として付属している。界磁電流Ifは発電
機出力側変圧器4(必要あれば図示のとおり電力
用電流変成器5との組み合せ)を電源として常時
サイリスタ変換装置3より供給される。サイリス
タ変換装置3内の個々のサイリスタはゲート角制
御部6を介して点弧制御される。平常時において
はゲート角制御部6の制御入力は図示されていな
い自動電圧制御装置(AVR)によつて与えられ
る。ゲート角制御部6に導かれている図示の制御
入力esはクエンチング発生検出部7の出力信号に
よつて活かされる。すなわち、第1図はクエンチ
ング発生検出によつて形成される制御系のブロツ
ク図であり、平常時については公知の発電機の自
動電圧制御系が形成されている。
FIG. 1 shows, in principle, a block diagram of an example in which the present invention is applied to a superconducting synchronous generator. The field winding 2 of the three-phase synchronous generator 1 is a superconducting coil,
A three-phase pure bridge thyristor converter 3 is attached as an excitation device. The field current I f is constantly supplied from the thyristor converter 3 using the generator output side transformer 4 (combined with a power current transformer 5 as shown if necessary) as a power source. The firing of the individual thyristors in the thyristor conversion device 3 is controlled via the gate angle control section 6 . In normal times, control input to the gate angle control section 6 is provided by an automatic voltage controller (AVR), not shown. The illustrated control input es led to the gate angle control section 6 is activated by the output signal of the quenching occurrence detection section 7. That is, FIG. 1 is a block diagram of a control system formed by detecting the occurrence of quenching, and in normal times a known automatic voltage control system for a generator is formed.

クエンチング発生検出部7の出力信号によつて
ゲート角制御部6に作用する制御入力esは、電圧
指令演算部8の出力信号(電圧指令値)と電圧検
出部9の出力信号(電圧検出値)との比較結果に
よつて得られる電圧制御偏差である。電圧指令演
算部8は界磁電圧検出部9および界磁電流変化率
検出部10の出力信号を受け取り、これらの情報
をもとに、サイリスタ変換装置3が発生すべき直
流逆電圧の指令値を算出する。
The control input e s that acts on the gate angle control unit 6 based on the output signal of the quenching occurrence detection unit 7 is composed of the output signal (voltage command value) of the voltage command calculation unit 8 and the output signal (voltage detection value) of the voltage detection unit 9. This is the voltage control deviation obtained from the comparison result with The voltage command calculation unit 8 receives the output signals of the field voltage detection unit 9 and the field current change rate detection unit 10, and based on this information, calculates the command value of the DC reverse voltage to be generated by the thyristor conversion device 3. calculate.

クエンチング発生検出部7の検出原理および電
圧指令演算部8の演算原理を説明するために、第
2図にクエンチング発生検出によりサイリスタ変
換装置をインバータ動作へ移行させた後の界磁回
路の等価回路を示す。ここで、界磁巻線全体
(100%)に対して超電導状態を維持している健全
部がα×100%だけ存在しており、常電導状態に
移行した故障部(クエンチング発生部)が(1−
α)×100%だけあるものとする。この場合に、故
障部が全く存在しない平常運転時(α=1)にお
ける界磁巻線インダクタンスをLとし、全域常電
導移行時(α=0)における界磁巻線抵抗値をR
とすると、図示の如く、健全部はαLの等価イン
ダクタンスとして表わすことができ、一方故障部
は(1−α)Lの等化インダクタンスと(1−
α)Rの等価抵抗とで表わすことができる。界磁
電流Ifの絞り込み過程における各等価インピーダ
ンス要素の電圧極性は図示のとおりであり、界磁
電圧Efおよびインバータ直流逆電圧EINVを図示の
極性で表わすものとすると、 Ef=LdIf/dt+(1−α)RIf ……(1) EINV=−Ef ……(2) なる関係式が成り立つ。
In order to explain the detection principle of the quenching occurrence detection section 7 and the calculation principle of the voltage command calculation section 8, FIG. Shows the circuit. Here, for the entire field winding (100%), there is a healthy part that maintains a superconducting state by α × 100%, and a faulty part (quenching part) that has transitioned to a normal conducting state exists. (1-
Assume that there is only α)×100%. In this case, let L be the field winding inductance during normal operation with no faulty parts (α=1), and let R be the field winding resistance value when normal conduction occurs throughout the area (α=0).
Then, as shown in the figure, the healthy part can be expressed as an equivalent inductance of αL, while the faulty part can be expressed as an equalized inductance of (1-α)L and (1-α).
α) Equivalent resistance of R. The voltage polarity of each equivalent impedance element in the process of narrowing down the field current I f is as shown in the diagram, and if the field voltage E f and the inverter DC reverse voltage E INV are expressed with the polarities shown, E f = LdI f /dt+(1-α)RI f ...(1) E INV =-E f ...(2) The following relation holds true.

式(1)から分るように、α=1のとき、すなわち
正常運転時には Ef−LdIf/dt=0 となるのに対して、α≠1のとき、すなわちクエ
ンチング発生時には、 Ef−LdIf/dt=(1−α)RIf≠0 となる。第1図におけるクエンチング発生検出部
7は、かゝる関係を利用してクエンチング発生を
早期に検出しようとするものであり、このために
電圧検出部9からは界磁電圧Efに相当する情報
を、そして界磁電流変化率検出部11からは界磁
電流変化率dIf/dtに相当する情報を受け取つて
両者を比較し、両者のバランスがくずれた際にク
エンチング発生検出信号を出力する。このような
検出原理で動作するクエンチング発生検出部7の
代りに、他の公知の検出原理で動作するものを使
用することもできる。
As can be seen from equation (1), when α=1, that is, during normal operation, E f −LdI f /dt=0, whereas when α≠1, that is, when quenching occurs, E f −LdI f /dt=(1−α)RI f ≠0. The quenching occurrence detection section 7 in FIG . and information corresponding to the field current change rate dI f /dt from the field current change rate detection section 11, compare the two, and generate a quenching occurrence detection signal when the balance between the two is lost. Output. Instead of the quenching occurrence detection section 7 that operates on such a detection principle, it is also possible to use one that operates on other known detection principles.

次に、電圧指令演算部8が算出すべきインバー
タ直流逆電圧EINVのための最適指令値について説
明する。
Next, the optimum command value for the inverter DC reverse voltage E INV to be calculated by the voltage command calculation unit 8 will be explained.

第2図の等価回路において、健全部および故障
部のそれぞれにおける電圧をE1、E2とすると、
それぞれにおける巻線内電位傾度の尺度として、
E1/α、E2/(1−α)を用いることができ、
これらはそれぞれ E1/α=−LdIf/dt ……(3) E2/1−α=−LdIf/dt−RIf ……(4) と表わすことができる。この場合に両式の値はい
ずれも正であり、かつ E1/α−E2/1−α=RIf>0 であることから、クエンチング発生時においては
故障部よりも健全部のほうが巻線内電位傾度が高
くなり、絶縁上つらくなる。本発明は、このこと
に着目して健全部の巻線内電位傾度E1/αを絶
縁上の理由から考慮した最大値に制限しようとす
るものである。この場合にその最大値は正常時に
おいて予め定められている最大許容界磁電圧
Efnaxに対応して選定することが好ましい。ここ
では界磁巻線全体を1として仮定していることか
ら、計算式の上では最大値=Efnaxとして取り扱
うことができる。したがつて健全部の巻線内電位
傾度に関する式(3)の値をEfnaxとおけばよいので、 −LdIf/dt=Efnax ……(5) とすればよいことがわかる。この式(5)と先に挙げ
た式(1)、(2)とから EINV=Efnax−(1−α)RIf ……(6) が得られる。すなわち、界磁巻線2に印加される
サイリスタ変換装置3の直流逆電圧EINVを、所定
の最大値(とりわけ健全時においてあらかじめ定
められている最大許容界磁電圧Efnax)からクエ
ンチング発生により生じる抵抗電圧降下相当分
(1−α)RIfだけを減じた値に制限するならば、
超電導コイルの絶縁を脅かすことなしに界磁電流
を急速減衰させることが可能となるのである。こ
の場合に上記の抵抗電圧降下分は、式(1)の変形か
ら (1−α)RIf=Ef−LdIf/dt が成り立つことから、界磁電圧Efおよび界磁電流
変化率dIf/dtをそれぞれ検出部9,10によつ
て検出した実測値を電圧指令演算部8に入力して
やれば、この演算部8では既知のコイルインダク
タンス値Lを考慮して抵抗電圧降下分を算定する
ことができる。したがつて、演算指令部8は同様
に既知のEfnaxからその算定結果を差し引くこと
によつて最適な直流電圧指令値を発生することが
できる。界磁巻線に印加される直流逆電圧の実際
値が電圧検出部9によつて検出されて、比較点1
1においてその指令値と比較され、電圧制御偏差
esが形成される。そして、ゲート角制御6を介す
るサイリスタ変換装置3の制御により直流逆電圧
が指令値どおりに保持される。
In the equivalent circuit of Fig. 2, if the voltages in the healthy part and the faulty part are E 1 and E 2 respectively, then
As a measure of the potential gradient in each winding,
E 1 /α, E 2 /(1−α) can be used,
These can be respectively expressed as E 1 /α=−LdI f /dt (3) E 2 /1−α=−LdI f /dt−RI f (4). In this case, the values of both equations are positive, and E 1 /α−E 2 /1−α=RI f > 0, so when quenching occurs, the healthy part is stronger than the failed part. The potential gradient inside the winding increases, making it difficult to insulate. The present invention focuses on this and attempts to limit the in-winding potential gradient E 1 /α of the healthy portion to the maximum value taken into consideration for insulation reasons. In this case, the maximum value is the predetermined maximum allowable field voltage under normal conditions.
It is preferable to select one that corresponds to E fnax . Here, since the entire field winding is assumed to be 1, it can be treated as the maximum value = E fnax in the calculation formula. Therefore, since it is sufficient to set the value of equation (3) regarding the potential gradient in the winding in the healthy part as E fnax , it is understood that -LdI f /dt=E fnax (5). From this equation (5) and the above-mentioned equations (1) and (2), E INV = E fnax - (1 - α) RI f ... (6) is obtained. That is, the DC reverse voltage E INV of the thyristor converter 3 applied to the field winding 2 is reduced from a predetermined maximum value (in particular, the maximum allowable field voltage E fnax predetermined in a healthy state) by quenching. If we limit it to the value obtained by subtracting only the resistance voltage drop (1-α) RI f that occurs, then
This makes it possible to rapidly attenuate the field current without threatening the insulation of the superconducting coil. In this case, the above resistance voltage drop is determined by the field voltage E f and the field current rate of change dI because (1-α) RI f = E f - LdI f /dt holds true from the modification of equation (1). If the actual measured values of f /dt detected by the detection units 9 and 10 are input to the voltage command calculation unit 8, the calculation unit 8 calculates the resistance voltage drop by taking into account the known coil inductance value L. be able to. Therefore, the calculation command unit 8 can generate the optimal DC voltage command value by similarly subtracting the calculation result from the known E fnax . The actual value of the DC reverse voltage applied to the field winding is detected by the voltage detection section 9, and the comparison point 1 is detected by the voltage detection section 9.
1, the voltage control deviation is compared with the command value.
e s is formed. Then, the DC reverse voltage is maintained at the command value by controlling the thyristor conversion device 3 via the gate angle control 6.

第3図はクエンチング発生時点t=0からの動
作波形例を示したものである。分り易い図示のた
めにコイル全体に対する健全部の割合αおよび故
障部の割合(1−α)が破線曲線で示されている
ように経過するものとすると、界磁電流Ifのほゞ
直線状の減衰曲線に対して、クエンチング発生に
よる抵抗電圧降下分(1−α)RIfおよび直流逆
電圧EINVは図示のよう曲線にしたがつて経過する
ことになる。
FIG. 3 shows an example of operation waveforms from the time point t=0 when quenching occurs. For easy-to-understand illustration, we assume that the proportion α of the healthy part and the proportion (1 - α ) of the defective part to the whole coil change as shown by the broken line curve. With respect to the attenuation curve, the resistance voltage drop (1-α) RI f due to the occurrence of quenching and the DC reverse voltage E INV will change according to the curve as shown in the figure.

以上説明したとおり、本発明によれば、クエン
チング発生検出によりインバータ動作に移行させ
られたサイリスタ変換装置から超電導コイルに印
加される直流逆電圧を所定の最大値からクエンチ
ング発生により生じた抵抗電圧降下相当分を減じ
た値に制限することにより、超電導コイルの絶縁
を脅かすことなく急速に超電導コイルの電磁エネ
ルギの抜き取ることができるので、超電導コイル
のクエンチング発生時の保護を行なう上で極めて
効果的である。
As explained above, according to the present invention, the DC reverse voltage applied to the superconducting coil from the thyristor converter, which is shifted to inverter operation upon detection of the occurrence of quenching, is reduced from a predetermined maximum value to the resistance voltage caused by the occurrence of quenching. By limiting the electromagnetic energy of the superconducting coil to a value that reduces the drop equivalent, the electromagnetic energy of the superconducting coil can be rapidly extracted without threatening the insulation of the superconducting coil, making it extremely effective in protecting the superconducting coil when quenching occurs. It is true.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例を示すブロツク図、第
2図は超電導コイルのクエンチング発生時の等価
回路図、第3図は本発明の動作説明図である。 1……同期発電機、2……界磁巻線(超電導コ
イル)、3……サイリスタ変換装置、6……ゲー
ト角制御部、7……クエンチング発生検出部、8
……電圧指令演算器、9……電圧検出部、10…
…電流変化率検出部。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram when quenching occurs in a superconducting coil, and FIG. 3 is an explanatory diagram of the operation of the present invention. DESCRIPTION OF SYMBOLS 1... Synchronous generator, 2... Field winding (superconducting coil), 3... Thyristor conversion device, 6... Gate angle control section, 7... Quenching occurrence detection section, 8
...Voltage command calculator, 9...Voltage detection section, 10...
...Current change rate detection section.

Claims (1)

【特許請求の範囲】 1 サイリスタ変換装置を励磁装置として備えて
いる超電導コイルのクエンチング発生時の保護の
ために、クエンチング発生検出により前記サイリ
スタ変換装置にインバータ動作をさせ、しかもそ
の際に超電導コイルに印加されるサイリスタ変換
装置の直流逆電圧を、予め定めた最大値からクエ
ンチング発生により生じる抵抗電圧降下相当分だ
け減じた値に制限するようにしたことを特徴とす
る超電導コイルの保護方式。 2 特許請求の範囲第1項において、前記抵抗電
圧降下相当分は超電導コイルの電圧および電流変
化率の測定値から算出することを特徴とする超電
導コイルの保護方式。 3 特許請求の範囲第1項または第2項におい
て、前記最大値は超電導コイルの健全時の最大許
容電圧値であることを特徴とする超電導コイルの
保護方式。
[Claims] 1. In order to protect a superconducting coil equipped with a thyristor conversion device as an excitation device when quenching occurs, the thyristor conversion device is caused to perform an inverter operation upon detection of the occurrence of quenching, and at that time, the superconducting coil is A protection method for a superconducting coil, characterized in that the DC reverse voltage of a thyristor converter applied to the coil is limited to a value that is reduced from a predetermined maximum value by an amount equivalent to the resistance voltage drop caused by the occurrence of quenching. . 2. The superconducting coil protection method according to claim 1, wherein the resistance voltage drop equivalent is calculated from measured values of the voltage and current change rate of the superconducting coil. 3. The superconducting coil protection method according to claim 1 or 2, wherein the maximum value is a maximum allowable voltage value when the superconducting coil is healthy.
JP11565080A 1980-08-22 1980-08-22 Protecting system for superconductive coil Granted JPS5739511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11565080A JPS5739511A (en) 1980-08-22 1980-08-22 Protecting system for superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11565080A JPS5739511A (en) 1980-08-22 1980-08-22 Protecting system for superconductive coil

Publications (2)

Publication Number Publication Date
JPS5739511A JPS5739511A (en) 1982-03-04
JPS6326524B2 true JPS6326524B2 (en) 1988-05-30

Family

ID=14667883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11565080A Granted JPS5739511A (en) 1980-08-22 1980-08-22 Protecting system for superconductive coil

Country Status (1)

Country Link
JP (1) JPS5739511A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679683B2 (en) * 1995-04-28 1997-11-19 日本電気株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS5739511A (en) 1982-03-04

Similar Documents

Publication Publication Date Title
US9337762B1 (en) System and method for magnetizing a transformer in an electrical system prior to energizing the electrical system
JP4856393B2 (en) System and method for quench protection of superconductors
US9083200B2 (en) Uninterruptible power supply
CN109889111A (en) Device and method for network transformer of the premagnetization in converter system
CA2940499C (en) System and method for starting a variable frequency drive with reduced arc flash risk
Ding et al. Testing and commissioning of a 135 MW pulsed power supply at the Wuhan National High Magnetic Field Center
CN106959406A (en) For carrying out the magnetized experimental rig of generator core and its method at lower voltages
KR20150136534A (en) Current-limiting/flow control device
Ashmole et al. System flicker disturbances from industrial loads and their compensation
JPS6326524B2 (en)
US4636708A (en) Static VAR generator
Bukhari et al. A cost-effective, single-phase line-interactive UPS system that eliminates inrush current phenomenon for transformer-coupled loads
Meyer et al. Design of a novel low loss fault current limiter for medium-voltage systems
Benmouyal et al. A unified approach to controlled switching of power equipment
CN105830182B (en) For reducing the device and method of the unidirectional flux component in the iron core of three-phase transformer
JP2019054641A (en) Power conversion equipment
Srivastava et al. Development of High Current Thyristor Controlled Rectifier System for Nuclear Reactor Safety Studies
Yamada et al. Characteristics of a dc 75 kA power supply in the superconducting magnet test facilities
JPS6328330B2 (en)
JPS6188767A (en) Method and circuit for preventing trouble
JPS6346968B2 (en)
JP2573725B2 (en) Instantaneous power failure protection device using superconducting switch
US11804789B2 (en) System and method for protecting an electrical load of a drive system
Kumari Study of Methods for Mitigation of Inrush Current in Transformer
JP2703566B2 (en) AC excitation synchronous machine controller