JPH07105036B2 - Method of manufacturing magnetic recording medium - Google Patents

Method of manufacturing magnetic recording medium

Info

Publication number
JPH07105036B2
JPH07105036B2 JP11101387A JP11101387A JPH07105036B2 JP H07105036 B2 JPH07105036 B2 JP H07105036B2 JP 11101387 A JP11101387 A JP 11101387A JP 11101387 A JP11101387 A JP 11101387A JP H07105036 B2 JPH07105036 B2 JP H07105036B2
Authority
JP
Japan
Prior art keywords
film
magnetic recording
recording medium
manufacturing magnetic
accelerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11101387A
Other languages
Japanese (ja)
Other versions
JPS63275037A (en
Inventor
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11101387A priority Critical patent/JPH07105036B2/en
Publication of JPS63275037A publication Critical patent/JPS63275037A/en
Publication of JPH07105036B2 publication Critical patent/JPH07105036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に適する強磁性金属薄膜を磁気
記録層とする磁気記録媒体の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium having a ferromagnetic metal thin film suitable for high density magnetic recording as a magnetic recording layer.

従来の技術 高分子フィルム上に直接または下地層を介して電子ビー
ム蒸着法でCo−Ni合金を蒸着した、いわゆる蒸着テープ
は、蒸着時に酸素ガスを導入することで、電磁変換特
性,耐久性,耐食性の向上をはかっている〔例えば、外
国論文誌.アイイーイーイー トランザクションズ オ
ン マグネティクス(I EEE TRANSACTIONS ON MAGNETIC
S)vol−MA G−20,NO−5,p.p.824〜826(1984)参
照〕。
2. Description of the Related Art A so-called vapor-deposited tape in which a Co-Ni alloy is vapor-deposited on a polymer film by an electron beam vapor deposition method directly or through an underlayer, electromagnetic conversion characteristics, durability, We are trying to improve corrosion resistance [for example, foreign journals. I EEE TRANSACTIONS ON MAGNETIC
S) vol-MA G-20, NO-5, pp824-826 (1984)].

更に耐久性の向上をはかる有効な手段としては磁気記録
層の微細凹凸化がある〔同上記論文誌.vol−MA G−21,
p.p.1524〜1526(1985)参照〕が、加えて保護膜,潤滑
剤との多くの組み合わせも提案され、とりわけ、ダイヤ
モンド状硬質炭素薄膜(以下、DLC膜と記す)の保護性
が注目されている〔電子通信学会、磁気記録研究会資
料.MR85−56(1986)参照〕。
Further, an effective means for improving the durability is to make the magnetic recording layer finely roughened (see the above-mentioned journal.vol-MA G-21,
pp1524 to 1526 (1985)], and many combinations of a protective film and a lubricant have been proposed, and attention is particularly paid to the protective property of a diamond-like hard carbon thin film (hereinafter referred to as a DLC film). See IE 85, Magnetic Recording Study Group. MR85-56 (1986)].

発明が解決しようとする問題点 しかしながら従来知られる方法によってDLC膜を形成す
ると、保護性能が必要なレベルとなるにたりる膜厚が厚
いため、記録する信号の短波長化が更に進むと、スペー
シング損失が大きくC/Nが劣化し、ディジタル記録での
エラー率に影響を与えるようになるため、改善が望まれ
ている。
Problems to be Solved by the Invention However, when the DLC film is formed by a conventionally known method, the film thickness is large enough to reach the required level of protection performance, so if the wavelength of the recorded signal is further shortened, Since pacing loss is large and C / N is deteriorated to affect the error rate in digital recording, improvement is desired.

本発明は上記した事情に鑑み、DLC膜が薄くても十分な
耐久性を得ることの出来る製造方法であって、かつ高速
化のはかれる製造方法を提供することを目的とするもの
である。
In view of the above-mentioned circumstances, the present invention has an object to provide a manufacturing method capable of obtaining sufficient durability even when the DLC film is thin, and also capable of achieving high speed.

問題点を解決するための手段 上記目的を達成するため、本発明の磁気記録媒体の製造
方法は、炭化水素ガスプラズマを加速する電極にリップ
ルを含んだ直流電圧を印加して、強磁性金属薄膜上に硬
質炭素膜を形成するものである。
Means for Solving the Problems In order to achieve the above object, a method of manufacturing a magnetic recording medium according to the present invention comprises applying a DC voltage containing ripples to an electrode for accelerating a hydrocarbon gas plasma to form a ferromagnetic metal thin film. A hard carbon film is formed on top.

作 用 上記製造方法により、硬質炭素膜の形成が、移動する強
磁性金属薄膜上で、ピンホールの少ない緻密な膜が得ら
れる状態で行われるため、膜厚を薄くすることができ、
耐久性を確保した上で高速化がはかれるようになるので
ある。
By the above manufacturing method, the hard carbon film is formed on the moving ferromagnetic metal thin film in a state where a dense film with few pinholes can be obtained, so that the film thickness can be reduced.
The speed can be improved while ensuring the durability.

実施例 以下、図面を参照しながら、本発明に係る一実施例につ
いて説明する。図は本発明の製造方法の実施に用いた硬
質炭素薄膜(DLC膜)形成装置の要部構成図である図に
おいて、1はポリエチレンフタレート,ポリカーボネー
ト等の高分子フィルム上に、Co−Cr,Co−Cr−Nb,Co−Ni
−O等の強磁性金属薄膜を形成した被処理体、2は被処
理体1上にDLC膜が形成された処理体、3は回転支持
体、4は巻出し軸、5は巻取り軸、6はパイレックスガ
ラス,石英等から成る反応管、7は外部高周波コイル、
8はメッシュ状の加速電極、9は加速電源、10は炭化水
素系のガス、11は真空槽、12は真空排気系である。回転
支持体3の直径は50cmとし、反応管6先端と、回転支持
体の距離は7mmとし、外部高周波コイル7は13.56MHzの
高周波を印加できるようにした水冷式のコイルで4ター
ン直径25cmの反応管6の周囲に巻回したものを用い、加
速電極8はメッシュMo製のもので、加速電源9は接地電
位に対して正であって、交番電界を重畳したものを出力
する。
Embodiment Hereinafter, one embodiment according to the present invention will be described with reference to the drawings. The figure is a schematic view of the essential parts of a hard carbon thin film (DLC film) forming apparatus used for carrying out the production method of the present invention. In the figure, 1 is a polymer film such as polyethylene phthalate or polycarbonate, Co--Cr, Co -Cr-Nb, Co-Ni
An object to be processed on which a ferromagnetic metal thin film such as -O is formed, 2 is an object to be processed on which a DLC film is formed, 3 is a rotary support, 4 is an unwinding shaft, 5 is a winding shaft, 6 is a reaction tube made of Pyrex glass, quartz, etc., 7 is an external high frequency coil,
8 is a mesh-shaped accelerating electrode, 9 is an accelerating power source, 10 is a hydrocarbon-based gas, 11 is a vacuum tank, and 12 is a vacuum exhaust system. The diameter of the rotary support 3 is 50 cm, the distance between the tip of the reaction tube 6 and the rotary support is 7 mm, and the external high-frequency coil 7 is a water-cooled coil capable of applying a high frequency of 13.56 MHz and a diameter of 4 turns of 25 cm. The accelerating electrode 8 is made of mesh Mo, the accelerating power source 9 is positive with respect to the ground potential, and outputs the superimposed alternating electric field.

図の装置を用いて、厚み12μmのポリエチレンテレフタ
レートフィルム上に、直径100ÅのSiO2微粒子を1.4×10
9/cm2塗布し、その上に高周波スパッタリング法でCo−C
r−Ti(Co:Cr:Ti=78.5:14.5:7wt%)垂直磁化膜を0.15
μm形成したフィルムを被処理体1として準備し、温度
25℃の回転支持体3に沿って、この被処理体1を移動さ
せながら、DLC膜形成を行い、その上にパーフロロアラ
キン酸50Åを真空蒸着し8ミリ幅の磁気テープとし、市
販の8ミリビデオ〔AV−300,ソニー製〕を用い、比較評
価した。
Using the equipment shown in the figure, 1.4 × 10 SiO 2 particles with a diameter of 100 Å were formed on a polyethylene terephthalate film with a thickness of 12 μm.
9 / cm 2 coating and Co-C on it by high frequency sputtering
r-Ti (Co: Cr: Ti = 78.5: 14.5: 7wt%) Perpendicular magnetic film 0.15
A film having a thickness of μm is prepared as the object to be processed 1, and the temperature is set.
While moving the object 1 to be processed along the rotary support 3 at 25 ° C., a DLC film was formed, and 50Å perfluoroarachidic acid was vacuum-deposited on it to form an 8 mm wide magnetic tape. Comparative evaluation was performed using Millivideo [AV-300, manufactured by Sony].

テープAは、DLC膜をメタンガスを0.8/min導入しなが
ら13.56(MHz),1.96(KW)の投入によりプラズマを形
成し、加速電極8に1.2KVの直流電圧に、260V,70KHzの
交番電圧を重畳した電圧を印加して、70Aの膜厚で形成
した。その時フィルムの巻取速度は16m/minであった。
Tape A forms plasma by introducing 13.56 (MHz) and 1.96 (KW) while introducing methane gas to the DLC film at 0.8 / min, and applies alternating voltage of 260V and 70KHz to the accelerating electrode 8 at a DC voltage of 1.2KV. By applying the superimposed voltage, a film having a film thickness of 70 A was formed. At that time, the winding speed of the film was 16 m / min.

テープBは、DLC膜をメタンガスを0.8/min導入しなが
ら13.56(MHz),1.96(KV)の投入によりプラズマを形
成し、加速電極8に1.4KVの直流電圧を印加して70Åの
膜厚で形成したもので、フィルム巻取速度は11m/minで
あった。
Tape B forms a plasma by introducing 13.56 (MHz) and 1.96 (KV) into the DLC film while introducing methane gas at 0.8 / min, and a DC voltage of 1.4 KV is applied to the accelerating electrode 8 to give a film thickness of 70 Å. The film was formed and the film winding speed was 11 m / min.

この両者をギャップ長0.14μmのフェライトヘッドでPC
M録音し、LPモードでのエラー率を比較した。初期の値
はテープAが1.2×10-4〜1.3×10-4,テープBが1.3×10
-4〜3.2×10-4であったが、23℃16%RHの環境で190パス
後の値は、テープAが1.1×10-4〜1.3×10-4と変らなか
ったのに対し、テープBは1.9×10-4〜8.9×10-4と記録
位置によるバラツキが大きくなっていた。
PC with both of them with a ferrite head with a gap length of 0.14 μm
We recorded M and compared the error rates in LP mode. Initial values are 1.2 x 10 -4 to 1.3 x 10 -4 for tape A and 1.3 x 10 for tape B.
Although it was -4 to 3.2 x 10 -4 , the value after 190 passes in the environment of 23 ° C and 16% RH was 1.1 x 10 -4 to 1.3 x 10 -4, which was the same as that of Tape A. variation due tape B is 1.9 × 10 -4 ~8.9 × 10 -4 and the recording position is large.

以上のように本実施例によれば、PLM記録時のエラー率
が大幅に改善されるものである。
As described above, according to this embodiment, the error rate during PLM recording is significantly improved.

上記実施例ではCo−Cr−Ti膜で具体的に説明したが、他
にCo−Cr,Co−Ti,Co−Ta,Co−Mo,Co−W,Co−Sm,Co−Ni,
Co−O,Co−P,Co−Ni−O,Co−Cr−Nb等の強磁性金属薄膜
上でも同じ効果があり、炭化水素系のガスは他にプロパ
ン,アセチレン,ブタン等の単独或いは混合気体、更に
他のガスを必要に応じて混合してもよい。加速電圧は直
流電圧をED〔KV〕とした時、重畳する交番電圧は0.1〜
0.3EDが好ましく、周波数は10(KHz)〜1(MHz)が好
ましい。
In the above embodiment, the Co-Cr-Ti film was specifically described, but other Co-Cr, Co-Ti, Co-Ta, Co-Mo, Co-W, Co-Sm, Co-Ni,
The same effect can be obtained on ferromagnetic metal thin films such as Co-O, Co-P, Co-Ni-O, and Co-Cr-Nb. Hydrocarbon-based gas can be used alone or mixed with propane, acetylene, butane, etc. A gas and further another gas may be mixed if necessary. When the accelerating voltage is DC voltage E D [KV], the superimposed alternating voltage is 0.1 ~
0.3E D is preferred, the frequency is preferably 10 (KHz) ~1 (MHz) .

発明の効果 本発明によれば、炭化水素ガスのプラズマを加速する電
極にリップルを含んだ直流電圧を印加する方法としたた
めに硬質炭素膜を高速で得られ、かつ、薄い厚みでも十
分な耐久性,エラー率が確保できるといったすぐれた効
果がある。
EFFECTS OF THE INVENTION According to the present invention, a hard carbon film can be obtained at a high speed because a method of applying a DC voltage containing ripples to an electrode for accelerating plasma of hydrocarbon gas is obtained, and sufficient durability is obtained even with a thin thickness. There is an excellent effect that the error rate can be secured.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の磁気記録媒体の製造方法を実施するのに用
いた硬質薄膜形成装置の要部構成図である。 1……被処理体、3……回転支持体、6……反応管、7
……外部高周波コイル、8……加速電極、9……加速電
源。
FIG. 1 is a schematic view of the essential parts of a hard thin film forming apparatus used to carry out the method of manufacturing a magnetic recording medium of the present invention. 1 ... Object to be treated, 3 ... Rotating support, 6 ... Reaction tube, 7
...... External high-frequency coil, 8 ...... accelerating electrode, 9 ...... accelerating power supply.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】移動する高分子フィルム上の強磁性金属薄
膜上に硬質炭素膜を形成するとき、炭化水素系ガスのプ
ラズマを加速する電極にリップルを含んだ直流電圧を印
加することを特徴とする磁気記録媒体の製造方法。
1. When forming a hard carbon film on a ferromagnetic metal thin film on a moving polymer film, a DC voltage containing ripples is applied to an electrode for accelerating plasma of a hydrocarbon gas. Method for manufacturing magnetic recording medium.
JP11101387A 1987-05-07 1987-05-07 Method of manufacturing magnetic recording medium Expired - Fee Related JPH07105036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11101387A JPH07105036B2 (en) 1987-05-07 1987-05-07 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11101387A JPH07105036B2 (en) 1987-05-07 1987-05-07 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63275037A JPS63275037A (en) 1988-11-11
JPH07105036B2 true JPH07105036B2 (en) 1995-11-13

Family

ID=14550182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11101387A Expired - Fee Related JPH07105036B2 (en) 1987-05-07 1987-05-07 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07105036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835523B1 (en) * 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
US5932302A (en) 1993-07-20 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating with ultrasonic vibration a carbon coating

Also Published As

Publication number Publication date
JPS63275037A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPH07105036B2 (en) Method of manufacturing magnetic recording medium
JP2548233B2 (en) Method of manufacturing magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JP2543123B2 (en) Method of manufacturing magnetic recording medium
JP2558753B2 (en) Magnetic recording media
JP2597685B2 (en) Magnetic recording media
JP2532503B2 (en) Magnetic recording media
JPH01264632A (en) Method and apparatus for producing magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JPH03116523A (en) Production of magnetic recording medium
JPH0196823A (en) Production of magnetic recording medium
JPS63275034A (en) Production of magnetic recording medium
JPH02108240A (en) Production of magnetic recording medium
JPH06111272A (en) Magnetic recording medium and its manufacture
JPH03116525A (en) Production of magnetic disk
JPH0766513B2 (en) Magnetic recording medium
JPS60251519A (en) Magnetic recording medium
JPH01264631A (en) Production of magnetic recording medium
JPH0799569B2 (en) Magnetic recording medium
JPS6199921A (en) Magnetic recording medium
JPH11350146A (en) Device for film forming by plasma cvd and its method
JPS6378339A (en) Production of magnetic recording medium
JPS63144421A (en) Production of magnetic recording medium
JPH01118215A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees