JPH07104956B2 - High-accuracy peak certification method - Google Patents

High-accuracy peak certification method

Info

Publication number
JPH07104956B2
JPH07104956B2 JP2200279A JP20027990A JPH07104956B2 JP H07104956 B2 JPH07104956 B2 JP H07104956B2 JP 2200279 A JP2200279 A JP 2200279A JP 20027990 A JP20027990 A JP 20027990A JP H07104956 B2 JPH07104956 B2 JP H07104956B2
Authority
JP
Japan
Prior art keywords
peak
value
point
differential
signal strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2200279A
Other languages
Japanese (ja)
Other versions
JPH0484280A (en
Inventor
秀人 古味
直昌 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2200279A priority Critical patent/JPH07104956B2/en
Publication of JPH0484280A publication Critical patent/JPH0484280A/en
Publication of JPH07104956B2 publication Critical patent/JPH07104956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、EPMA等によって得られるスペクトルデータか
らスペクトルピークを高精度(高信頼性)で認定する方
法に関する。
The present invention relates to a method for recognizing a spectral peak with high accuracy (high reliability) from spectral data obtained by EPMA or the like.

【従来の技術】[Prior art]

EPMA等で得られるスペクトルには、測定試料からの特性
X線から得られる検出信号以外に、ノイズや周辺から入
射する他のX線からの検出信号が含まれており、また、
特性X線からの信号でも、ランダムに入射するために、
統計的なゆらぎがあって、充分な積分時間をかけなけれ
ば、滑らかな曲線のスペクトルデータにはならない。通
常は、ピークが判定できる程度の積分時間で測定を行う
ために、得られるスペクトルは、ギザギザ状となってい
る。そこでスペクトルデータは、先ずスムージング処理
がなされギザギザのない理想的な曲線状とした後に、バ
ックグランドから突出した部分をスペクトルピークと認
定していた。
In addition to the detection signal obtained from the characteristic X-ray from the measurement sample, the spectrum obtained by EPMA contains noise and detection signals from other X-rays incident from the surrounding area.
Since the signal from the characteristic X-ray is randomly incident,
If there is statistical fluctuation and a sufficient integration time is not applied, the spectrum data of a smooth curve cannot be obtained. Usually, since the measurement is performed with an integration time such that the peak can be determined, the obtained spectrum is jagged. Therefore, the spectral data was first subjected to smoothing processing to form an ideal curved line without jaggedness, and then the portion protruding from the background was identified as a spectral peak.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

上述した従来例は、単にスムージングされたスペクトル
データで突出している部分を、ピークと認定するだけな
ので、偶然存在したノイズのピークを眞のピークと誤認
したり、逆に、ピークと認定するための選別レベル以下
の眞のピークを見逃すと云うことがあって、信頼性が充
分でなかった。 本発明は、再度チェックすることにより、検出ピークの
信頼性をより高めることを目的とする。
In the above-described conventional example, since the protruding portion in the smoothed spectrum data is simply identified as a peak, a noise peak that is accidentally present may be mistaken for a true peak, or conversely, it may be identified as a peak. The reliability was not sufficient because we sometimes missed the true peaks below the selection level. It is an object of the present invention to make the detection peak more reliable by checking again.

【課題を解決するための手段】[Means for Solving the Problems]

X線分光分析等で得てスムージングされたスペクトルデ
ータを微分して、微分値が+から−に変わる地点(微分
変曲点)を検索し、その微分変曲点をピーク頂点として
取り合えず認定し、同ピーク頂点における検出信号強度
値を(PK)とし、同(PK)から半値幅を推定し、上記ピ
ーク頂点から両側に上記半値幅のn倍離れた地点の検出
信号強度値を、バックグランド値[(BG−),(BG
+)]とし、上記ピーク信号強度値(PK)が、 を満足させる時、(PK)をピーク値として認定するよう
にした。
Differentiate the smoothed spectrum data obtained by X-ray spectroscopic analysis, search for the point where the differential value changes from + to − (differential inflection point), and recognize that differential inflection point as the peak apex. , The detection signal strength value at the same peak apex is (PK), the half-value width is estimated from the same (PK), and the detection signal strength value at a point separated by n times the half-value width on both sides from the peak apex is set to the background. Value [(BG-), (BG
+)] And the peak signal strength value (PK) is When satisfying, the (PK) was approved as the peak value.

【作用】[Action]

スペクトルデータをスムージング処理し、スムージング
処理したスペクトルデータを微分して、微分変曲点を検
索し、検索された微分変曲点に存在するピークが、検出
ピークであるかどうかを判定する。この判定は、スムー
ジングされたスペクトルのベースラインより、一定値
(選別レベル)以上突出していればピークと認定すると
云う方法でピークを検出するのではなく、微分信号の正
負反転によってピークを検出するので、微小なピークで
も見逃さない。他方、これではピークの過剰検出の恐れ
もある。そこで、本発明では、更に、次のピーク検定を
行い、2重検出でピークを確認しているのである。 或る物質に電子線を照射し、発生する放射線を検出器で
検出する放射線測定では、検出信号には統計変動誤差が
存在する。そして、この変動誤差は、眞値に対して、ガ
ウス分布をなす。従って、放射線の測定値に対して、誤
差標準偏差σは、 となる。このことより、測定値から1.5σの範囲内をと
ると約9割(87%)の確からしさとなることから、測定
値の1.5σ範囲内がバックグランドの1.5σ範囲内と交わ
らなくなった時に、測定値がバックグランドと有為差が
あると判定されるので、以下の判定式で判定を行うこと
ができる。 また、微小ピークの場合、ピーク強度≒バックグランド
強度となるので、 であり、上式は、 となり、実験等、経験的にこの式が最も判定精度が高
い。 上述したように、一応ピークと認定された点の検出信号
PKが、その両側の適当に離れたバックグランド部分と見
られる位置の検出信号から内挿されたピーク位置でのバ
ックグランドに、そのバックグランドの平方根のk倍を
加えた値より突出しているか否かを判定することで、当
初認定したピークが眞のピークか否かを再度チェックし
ているのである。
The spectrum data is smoothed, the smoothed spectrum data is differentiated, the differential inflection point is searched, and it is determined whether or not the peak existing at the searched differential inflection point is the detected peak. In this determination, the peak is detected by inverting the positive / negative of the differential signal, rather than detecting the peak by the method of recognizing it as a peak if it protrudes by a certain value (selection level) or more from the baseline of the smoothed spectrum. , Don't miss a minute peak. On the other hand, this may lead to over detection of peaks. Therefore, in the present invention, the following peak test is further performed to confirm the peak by double detection. In radiation measurement in which a certain substance is irradiated with an electron beam and the generated radiation is detected by a detector, there is a statistical fluctuation error in the detection signal. The variation error has a Gaussian distribution with respect to the true value. Therefore, the error standard deviation σ is Becomes From this, it is possible to obtain about 90% (87%) of the accuracy if the measured value is within the range of 1.5σ, so when the measured value within the 1.5σ range does not intersect with the background 1.5σ range. Since it is determined that the measured value has a significant difference from the background, the determination can be performed using the following determination formula. Also, in the case of a small peak, peak intensity ≈ background intensity, so And the above formula is Therefore, empirically, this formula has the highest determination accuracy. As mentioned above, the detection signal of the point that was once identified as the peak
Whether the PK is higher than the value obtained by adding k times the square root of the background to the background at the peak position interpolated from the detection signal at the position that is considered to be the background part that is appropriately separated on both sides. By deciding whether or not it is, it is checked again whether or not the initially recognized peak is a true peak.

【実施例】 第1図〜第4図に本発明のデータ処理方法の一実施例を
示す。第1図は電子線マイクロアナライザ(EPMA)等で
得られた未処理のスペクトルデータである。この未処理
のスペクトルデータをスムージング処理し、第2図に示
すようなスペクトルデータに変換する。このスペクトル
データを微分すると、第3図に示す微分曲線(増減関数
曲線)となる。ピーク頂上は増加から減少に変化する地
点であるから、微分曲線において+から−に変わる地点
(微分変曲点)にあると考えられる。従って、微分曲線
において、微分変曲点を検索し、その微分変曲点におけ
る、検出信号強度値(PK)を調べて記憶させると共に、
第4図に示すように、ピーク点における検出信号強度
(PK)に対応する半値幅を推定し、ピーク頂点から当半
値幅の3倍離れた地点の検出信号強度値を調べ、同強度
値をバックグランド値[(BG−),(BG+)]とする。
上記ピーク信号強度値(PK)を、 に代入して、不等式が成立した場合、(PK)をピーク値
として認定する。 バックグランドの測定位置について説明する。通常のス
ペクトルピーク波形も、ガウス分布をなす。しかし、強
度の点においては、眞値から1.5σ離れた地点でも、ピ
ーク強度の32%位の強度を有しており、3σ離れた地点
では、ピーク強度の1%位の強度となるので、EPMAによ
るX線強度測定では、装置安定性,試料の平滑性,清浄
性等の問題を考慮して、通常、測定誤差は1%以下を目
標としている。このため、バックグンド位置は、間に他
のピークが存在しない時、3σ離れた地点を設定するこ
とで、ピークによる影響を殆ど除くことができる。な
お、半値幅は約1.2σである。
Embodiment FIG. 1 to FIG. 4 show an embodiment of the data processing method of the present invention. FIG. 1 shows unprocessed spectral data obtained by an electron beam microanalyzer (EPMA) or the like. The unprocessed spectrum data is smoothed and converted into spectrum data as shown in FIG. Differentiating this spectrum data results in a differential curve (increase / decrease function curve) shown in FIG. Since the peak top is a point where the peak changes from increase to decrease, it is considered to be at a point (differential inflection point) where + changes to − in the differential curve. Therefore, in the differential curve, the differential inflection point is searched, and the detection signal strength value (PK) at the differential inflection point is checked and stored, and
As shown in FIG. 4, the half-value width corresponding to the detection signal strength (PK) at the peak point is estimated, the detection signal strength value at the point three times the half-value width away from the peak apex is examined, and the same strength value is calculated. Use the background value [(BG-), (BG +)].
The peak signal strength value (PK) When the inequality is satisfied by substituting into, the (PK) is recognized as the peak value. The measurement position of the background will be described. A normal spectrum peak waveform also has a Gaussian distribution. However, in terms of intensity, even at a point 1.5 σ away from the true value, the intensity is about 32% of the peak intensity, and at a point 3 σ away, the intensity is about 1% of the peak intensity. In X-ray intensity measurement by EPMA, the measurement error is usually set to 1% or less in consideration of problems such as equipment stability, sample smoothness, and cleanliness. Therefore, as for the background position, when there is no other peak in between, the influence of the peak can be almost eliminated by setting a point 3σ apart. The full width at half maximum is about 1.2σ.

【効果】【effect】

本発明によれば、検出ピークの認定がより高精度になっ
た。
According to the present invention, the qualification of the detection peak becomes more accurate.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の未処理のスペクトルデー
タ、第2図は上記実施例のスムージング処理したスペク
トルデータ、第3図は上記実施例の微分曲線(増減関数
曲線)、第4図は上記実施例のデータ処理説明図であ
る。
1 is an unprocessed spectrum data of one embodiment of the present invention, FIG. 2 is a spectrum data of the above embodiment subjected to smoothing processing, FIG. 3 is a differential curve (increase / decrease function curve) of the above embodiment, and FIG. FIG. 4 is an explanatory diagram of data processing of the above embodiment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】X線分光分析等で得てスムージングされた
スペクトルデータを微分して、微分値が+から−に変わ
る地点(微分変曲点)を検索し、その微分変曲点をピー
ク頂点として取り合えず認定し、同ピーク頂点における
検出信号強度値を(PK)とし、同(PK)から半値幅を推
定し、上記ピーク頂点から両側に上記半値幅のn倍離れ
た地点の検出信号強度値を、バックグランド値[(BG
−),(BG+)]とし、上記ピーク信号強度値(PK)
が、 を満足させる時、(PK)をピーク値として認定するよう
にしたことを特徴とする高精度ピーク認定法。
1. A method for differentiating smoothed spectral data obtained by X-ray spectroscopic analysis or the like to search for a point (differential inflection point) at which the differential value changes from + to −, and the differential inflection point is the peak apex. However, the detection signal strength value at the same peak apex is defined as (PK), the half width is estimated from the same (PK), and the detection signal strength at the point n times the half width on both sides from the peak apex. The background value [(BG
-), (BG +)], and the above peak signal strength value (PK)
But, A high-accuracy peak qualification method characterized by certifying (PK) as a peak value when satisfying
JP2200279A 1990-07-26 1990-07-26 High-accuracy peak certification method Expired - Fee Related JPH07104956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200279A JPH07104956B2 (en) 1990-07-26 1990-07-26 High-accuracy peak certification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200279A JPH07104956B2 (en) 1990-07-26 1990-07-26 High-accuracy peak certification method

Publications (2)

Publication Number Publication Date
JPH0484280A JPH0484280A (en) 1992-03-17
JPH07104956B2 true JPH07104956B2 (en) 1995-11-13

Family

ID=16421675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200279A Expired - Fee Related JPH07104956B2 (en) 1990-07-26 1990-07-26 High-accuracy peak certification method

Country Status (1)

Country Link
JP (1) JPH07104956B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070211248A1 (en) * 2006-01-17 2007-09-13 Innovative American Technology, Inc. Advanced pattern recognition systems for spectral analysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065296B2 (en) * 1985-10-31 1994-01-19 株式会社島津製作所 Peak detection method in X-ray spectrometer
JPH01199276A (en) * 1988-02-03 1989-08-10 Nec Corp Check device

Also Published As

Publication number Publication date
JPH0484280A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US5497407A (en) Contaminating-element analyzing method
GB2069692A (en) Photometric method and photometric apparatus for determining courses of reactions
US20100145659A1 (en) Spectra signal detection system
JP2002267417A (en) Film thickness measuring method and step measuring method
JP2823450B2 (en) Circuit pattern dimension measurement method
JP2841258B2 (en) X-ray fluorescence qualitative analysis method
US20190259592A1 (en) Method for Finding Species Peaks in Mass Spectrometry
US7539584B2 (en) Volume based extended defect sizing system
US5418826A (en) Fluorescent X-ray qualitative analytical method
JPH07104956B2 (en) High-accuracy peak certification method
JP3104804B2 (en) Pattern size measurement method using charged beam
CN111699378A (en) Method and system for optically inspecting a substrate
RU2090928C1 (en) Object condition signal analyzing method
EP0298398A2 (en) Analyzer of partial molecular structures
JP3876070B2 (en) Method for identifying analytical elements using surface analysis equipment
KR102537731B1 (en) System, method and non-transitory computer readable medium for tuning sensitivies of, and determinng a process window for, a modulated wafer
JP3174186B2 (en) Gas identification device
JPH11316199A (en) Method for calculating peak intensity of x-ray spectrum of semiconductor detector
JPH03172743A (en) Peak searching method in spectrochemical analysis apparatus
JPH07117457B2 (en) Spectral measurement data processing method
JPH08122442A (en) Spectral data collection unit
JP2000121333A (en) Appearance inspection apparatus and method
JPH0823312A (en) Signal processing unit
JPS59135349A (en) System for measuring transmittance of infrared rays
JPH0520993Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees