JPH07103867A - Method for supplying sample to moisture measuring equipment - Google Patents

Method for supplying sample to moisture measuring equipment

Info

Publication number
JPH07103867A
JPH07103867A JP5249557A JP24955793A JPH07103867A JP H07103867 A JPH07103867 A JP H07103867A JP 5249557 A JP5249557 A JP 5249557A JP 24955793 A JP24955793 A JP 24955793A JP H07103867 A JPH07103867 A JP H07103867A
Authority
JP
Japan
Prior art keywords
carrier gas
moisture
phosphorus pentoxide
dehydrator
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5249557A
Other languages
Japanese (ja)
Inventor
Hiromasa Katou
弘眞 加藤
Masuko Tanaka
満寿子 田中
Fumio Hatakeyama
二三男 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5249557A priority Critical patent/JPH07103867A/en
Publication of JPH07103867A publication Critical patent/JPH07103867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enhance accuracy in the measurement of moisture by drying the carrier gas using an electrolytically regenerative phosphorus pentoxide dehydrator thereby dehydrating the carrier gas reliably for a long term. CONSTITUTION:Phosphorus pentoxide(P2O5) absorbs water(H2O) to produce metaphosphoric acid(2HPO3) which returns back to phosphorus pentoxide through electrolysis upon application of voltage (2HPO3 H2+1/202+P2O5). When a flow rate of gas in the range of 100-500ml/min is required, two platinum wires and two copper wires having diameter in the range of 0.1-1mm are wound alternately around a copper pipe of 1.2-2.0mm. It is then inserted into a glass pipe and secured to the inner wall thereof by heating and then copper is dissolved into a nitric acid solution thus leaving only platinum. Two platinum wires, spaced apart from each other, are employed as anode 32 and cathode 33 which are fed with P2O2 solution and dried. A voltage of 5-90V is then applied to cause electrolysis for forming a thin film of P2O5 between the electrodes 32, 33 thus providing a regenerative dehydrator. This constitution allows easy removal of moisture from carrier gas for a long term.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料中の水分を加熱気化
させ、キャリアーガスによって水分測定装置の測定容器
に導入し、そこで滴定を行わせる水分測定方法に関し、
特に測定容器への試料供給方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture measuring method in which moisture in a sample is vaporized by heating, introduced into a measuring container of a moisture measuring device by a carrier gas, and titrated there.
In particular, it relates to a method of supplying a sample to a measurement container.

【0002】[0002]

【従来の技術】各種試料の水分測定にはカールフイッシ
ャー滴定法が広く用いられている。カールフイッシャー
滴定法は以下のカールフイッシャー反応
The Karl Fischer titration method is widely used for measuring the water content of various samples. The Karl Fischer titration method uses the following Karl Fischer reaction

【0003】[0003]

【数1】SO2 +I2 +H2 O+3Base+CH3
H →2BaseH・I+BaseH・SO4 CH3
[Equation 1] SO 2 + I 2 + H 2 O + 3Base + CH 3 O
H → 2 BaseH ・ I + BaseH ・ SO 4 CH 3

【0004】を利用した滴定法であり、容量分析法と電
量滴定法がある。そして、各々の方法に適したカールフ
イッシャー試薬を用いて滴定を行う。流動性の良い液体
試料については滴定セルに直接導入して水分測定が可能
であるが、固体試料や粘性のある液体試料の水分測定で
は、直接、滴定セルに導入する方法はあまり用いられな
い。
This is a titration method utilizing the method, and there are a volumetric analysis method and a coulometric titration method. Then, a Karl Fischer reagent suitable for each method is used for titration. Although a liquid sample having good fluidity can be directly introduced into a titration cell to measure water content, a method of directly introducing it into a titration cell is rarely used for water content measurement of a solid sample or a viscous liquid sample.

【0005】それは試料が溶媒に溶解しないため水分の
抽出が十分ではなく測定が不正確になるからである。こ
のような場合は、試料に応じて数10℃から1000℃
まで可変に加熱が出来る加熱炉を保持した加熱気化装置
を用いて試料から水分を気化させ、キャリアーガスで追
い出し、滴定セルに水分を導入して測定を行っている。
キャリアーガスは通常窒素ガスまたは空気、時にはアル
ゴンガスが用いられるが、これらキャリアーガス中には
水分が数10ppm(V/V)含まれている。そのため
試料中の水分とキャリアーガス中の水分とが識別できな
いため、キャリアーガスの脱水をしないと低濃度域の水
分測定は行えない。
This is because the sample is not dissolved in the solvent, so that the extraction of water is not sufficient and the measurement becomes inaccurate. In such cases, depending on the sample, dozens of degrees Celsius to 1000 degrees Celsius
The moisture is vaporized from the sample using a heating vaporizer that holds a heating furnace that can variably heat up to, and is expelled by a carrier gas, and the moisture is introduced into the titration cell for measurement.
Nitrogen gas or air, and sometimes argon gas is usually used as the carrier gas, and the carrier gas contains several tens of ppm (V / V) of water. Therefore, the water content in the sample cannot be distinguished from the water content in the carrier gas, so that the water content in the low concentration range cannot be measured unless the carrier gas is dehydrated.

【0006】従来、キャリアーガスの脱水には市販され
ている試薬としての五酸化燐、あるいはモレキュラーシ
ーブ、シリカゲルなどが単独または併用して用いられて
いた。
Conventionally, for the dehydration of carrier gas, commercially available reagents such as phosphorus pentoxide, molecular sieves and silica gel have been used alone or in combination.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記の
ような従来の乾燥剤は、脱水効果がなくなる時期が外観
からは不明であったり、また脱水効果がなくなった場合
は新しいものとの取り換えが必要であるという難点があ
った。また、モレキュラーシーブ、シリカゲルは取扱い
が容易であるが、水分除去能力の劣化の状態がわかりに
くく、また水分除去能力は五酸化燐に比べて低い。また
試薬五酸化燐の場合は水分除去能力は高いが吸湿しやす
い性質があるため取扱いが難しく、また廃棄する場合も
水と激しく反応するため危険性があった。このようにこ
れまでの加熱気化装置はキャリアーガスの脱水方法に問
題が残されていた。
However, in the conventional desiccant as described above, the time when the dehydration effect disappears is unknown from the appearance, and when the dehydration effect disappears, it is necessary to replace it with a new one. There was a drawback that was. Further, although molecular sieves and silica gel are easy to handle, it is difficult to understand the state of deterioration of water removal capacity, and the water removal capacity is lower than that of phosphorus pentoxide. Further, in the case of the reagent phosphorus pentoxide, it is difficult to handle since it has a high water removal capacity but tends to absorb moisture, and when it is discarded, it reacts violently with water, which is dangerous. As described above, the conventional heating vaporization device has a problem in the method of dehydrating the carrier gas.

【0008】[0008]

【課題を解決するための手段】本発明者らは、かかる難
点を克服すべく鋭意検討の結果、キャリアーガスを電解
再生型五酸化燐脱水器を用いて乾燥することにより、十
分に乾燥されたキャリアーガスを用いて水分測定容器に
試料を供給することが可能となり、長期間にわたって水
分除去を行えるので取扱いが容易となることを見出し、
本発明に到達した。
Means for Solving the Problems As a result of intensive studies to overcome the above-mentioned problems, the present inventors found that the carrier gas was dried sufficiently by using an electrolytic regeneration phosphorus pentoxide dehydrator. It is possible to supply a sample to a moisture measuring container using a carrier gas, and it is possible to remove moisture over a long period of time, which makes it easy to handle,
The present invention has been reached.

【0009】すなわち、かかる本発明の目的は、加熱に
より固体及び液体試料中の水分を気化させ、該気化水分
をキャリアーガスで測定容器内へ供給する水分測定装置
における試料供給方法において、前記キャリアーガスが
予め電解再生型五酸化燐脱水器を通過していることを特
徴とする水分測定装置における試料供給方法によって容
易に達成される。
That is, the object of the present invention is to provide a sample supply method in a water content measuring device for vaporizing water in a solid or liquid sample by heating and supplying the vaporized water into a measurement container by a carrier gas. Has already passed through the electrolytic regeneration type phosphorus pentoxide dehydrator in advance, which is easily achieved by the sample supply method in the water content measuring device.

【0010】以下、本発明を詳細に説明する。図1は、
本発明方法に用いる加熱気化部の一例の模式図であり、
図2は、本発明方法を適用した水分測定方法を示す模式
図であり、図3は、本発明に用いる電解再生型五酸化燐
脱水器の模式図である。本発明の試料供給方法において
は、まず加熱により固体及び液体試料中の水分を気化さ
せる。
The present invention will be described in detail below. Figure 1
It is a schematic diagram of an example of a heating vaporization unit used in the method of the present invention,
FIG. 2 is a schematic diagram showing a moisture measuring method to which the method of the present invention is applied, and FIG. 3 is a schematic diagram of an electrolytic regeneration phosphorus pentoxide dehydrator used in the present invention. In the sample supply method of the present invention, first, moisture in the solid and liquid samples is vaporized by heating.

【0011】気化方法としては特に限定はされないが、
例えば、図1に示すように、加熱コイル11によって、
耐熱性加熱容器12内に封入された被測定試料13を所
期通りに加熱して水分を気化させる。次に、図2に模式
的に示すように電解再生型五酸化燐脱水器21を通過さ
せて十分に乾燥させたキャリアーガスを用いて、前記加
熱容器12を含有する加熱気化部22から、気化した試
料中の水分を排出し、水分測定部23内に設けられた測
定容器へ導入する。キャリアーガスとしては、前述のよ
うに、窒素、アルゴン、酸素などを用いることが一般的
である。
The vaporization method is not particularly limited,
For example, as shown in FIG.
The sample 13 to be measured enclosed in the heat-resistant heating container 12 is heated as expected to vaporize water. Next, as schematically shown in FIG. 2, using a carrier gas that has been passed through an electrolytic regeneration phosphorus pentoxide dehydrator 21 and sufficiently dried, it is vaporized from a heating vaporization section 22 containing the heating container 12. The water contained in the sample is discharged and introduced into a measurement container provided in the water measuring unit 23. As described above, nitrogen, argon, oxygen or the like is generally used as the carrier gas.

【0012】また、前記気化水分の排出方法としては、
特に限定はされないが、例えば、図1のように、加熱容
器12に連通されたキャリアーガス導入管14からキャ
リアーガスを導入し、加熱容器12内の水分をパージ処
理させ、処理後の水分を含んだキャリアーガスをキャリ
アーガス排出管15から排出する。
Further, as a method of discharging the vaporized water,
Although not particularly limited, for example, as shown in FIG. 1, a carrier gas is introduced from a carrier gas introducing pipe 14 communicated with the heating container 12 to cause the water inside the heating container 12 to be purged so as to contain the water after the treatment. The carrier gas is discharged from the carrier gas discharge pipe 15.

【0013】排出されたキャリアーガスは、水分測定部
内に設けられた測定容器(図示省略)へ導入され、当該
試料中に含まれる水分量を測定する。本発明を構成する
電解再生型五酸化燐脱水器の原理は米国特許第2,83
0,945号明細書などに示されている水分計の検出器
と同様の原理のものが用いられる。その原理は、五酸化
燐は水を吸収してメタリン酸になるが、このメタリン酸
は電圧が印加された電極で電解され元の五酸化燐に戻る
というものである。
The discharged carrier gas is introduced into a measuring container (not shown) provided in the moisture measuring section, and the amount of moisture contained in the sample is measured. The principle of the electrolytic regeneration type phosphorus pentoxide dehydrator constituting the present invention is described in US Pat.
A detector having the same principle as the detector of the moisture meter shown in the specification of 0,945 is used. The principle is that phosphorus pentoxide absorbs water to become metaphosphoric acid, but this metaphosphoric acid is electrolyzed at the electrode to which a voltage is applied and returns to the original phosphorus pentoxide.

【0014】[0014]

【数2】 H2 O+P2 5 → 2HPO3 (1) 2HPO3 → H2 +1/2O2 +P2 5 (2)[Equation 2] H 2 O + P 2 O 5 → 2HPO 3 (1) 2HPO 3 → H 2 + 1 / 2O 2 + P 2 O 5 (2)

【0015】図3に従って脱水器の製法の一例を説明す
る。0.1〜1mmの径の白金線と銅線各2本ずつを互
い違いに適当な太さ、例えば0.5〜2mmの銅パイプ
に巻く。この巻いたものを、これより径が少し太いガラ
ス管31に挿入してコイル状に巻いた白金線、銅線をガ
ラス管31内壁に加熱することによってガラス管31を
収縮させて固定させる。この後、硝酸溶液で銅を溶解し
白金のみを残す。このことによって互い違いに接触しな
い2本の白金線が残るので、それぞれ陽極32、陰極3
3とする。上記脱水管は直線状で用いても良く、またU
字状の形状にしてもよい。更に燐酸溶液を流した後、乾
燥し、両極に好ましくは5〜90Vの電圧をかけて燐酸
を電解する。この電解により電極及び電極間は薄く被覆
された五酸化燐の状態になり、脱水器として用いること
ができる。
An example of the manufacturing method of the dehydrator will be described with reference to FIG. Two platinum wires and two copper wires each having a diameter of 0.1 to 1 mm are alternately wound on a copper pipe having an appropriate thickness, for example, 0.5 to 2 mm. The coiled platinum wire or copper wire inserted into a glass tube 31 having a diameter slightly larger than that of the coiled wire is heated on the inner wall of the glass tube 31 to shrink and fix the glass tube 31. After this, the nitric acid solution dissolves copper to leave only platinum. This leaves two platinum wires that do not touch each other alternately, so that the anode 32 and the cathode 3 respectively.
Set to 3. The dehydration pipe may be used in a straight line, and U
You may make it a character shape. Further, after flowing a phosphoric acid solution, it is dried, and a voltage of preferably 5 to 90 V is applied to both electrodes to electrolyze phosphoric acid. By this electrolysis, a thin coating of phosphorus pentoxide is formed between the electrodes, and the electrode can be used as a dehydrator.

【0016】既に用いられている五酸化燐水分検出器は
上記作り方において述べた内径が極めて細く、ガス流量
は100ml/min以下でないと定量的な反応が起き
なかった。本発明における加熱気化装置ではガス流量と
して、通常100〜500ml/minが必要であるた
め、五酸化燐脱水管の内径を好ましくは1.0〜2.0
mmとする。太くすることによって大きな流量において
も定量的な脱水が可能となる。本脱水管は常時両極に電
圧が印加されているため前記式(1)および(2)の反
応が常に行われている。従って、脱水管の水分除去能力
は異物などで脱水管が汚染されない限り長期にわたって
水分除去能力が維持される。キャリアーガス中のダスト
などの汚染を防ぐため脱水管の前にフィルターなどを設
ければ、更に長期の水分除去能力が維持される。以下に
実施例により本発明を更に具体的に説明するが、本発明
はその要旨を越えない限り、以下の実施例によって限定
されるものではない。
The phosphorus pentoxide moisture detector that has been used already has an extremely small inner diameter as described in the above-mentioned manufacturing method, and a quantitative reaction did not occur unless the gas flow rate was 100 ml / min or less. In the heating vaporizer of the present invention, a gas flow rate of 100 to 500 ml / min is usually required. Therefore, the inner diameter of the phosphorus pentoxide dehydration tube is preferably 1.0 to 2.0.
mm. By making it thicker, quantitative dehydration is possible even at a large flow rate. Since a voltage is constantly applied to both electrodes of this dehydration tube, the reactions of the above formulas (1) and (2) are always performed. Therefore, the water removal ability of the dehydration pipe is maintained for a long period of time unless the dehydration pipe is contaminated by foreign matter or the like. If a filter or the like is installed in front of the dehydration pipe in order to prevent dust or the like in the carrier gas from being contaminated, the water removal capability can be maintained for a longer period of time. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples without departing from the gist thereof.

【0017】[0017]

【実施例】【Example】

実施例−1 図3に模式的に示した構成の脱水器(外径3.0mm、
内径1.0mm、陰極及び陽極の白金線直径は0.2m
m、長さ約1m)を加熱気化装置の前につけて水分測定
を行った。水分測定にはカールフイッシャー滴定装置で
ある微量水分測定装置「CA−06」(三菱化成(株)
製)を用いた。キャリアーガスには約10から30pp
m(V/V)の水分が含まれている窒素ガスを使用した
が、30V印加した本脱水器を用いることによって半年
経過(積算窒素ガス通気時間約1200時間)するが脱
水器としての性能の劣化はない。バックグランド(試料
からの水分が入り込まない状態での1秒間当りの水分換
算電解量)は常に0.03μg水/sec以下であっ
た。また、本装置から脱水器をはずした時のバックグラ
ンドは0.23μg水/sec以上であった。
Example-1 A dehydrator having a configuration schematically shown in FIG. 3 (outer diameter 3.0 mm,
Inner diameter 1.0 mm, cathode and anode platinum wire diameter 0.2 m
m, length about 1 m) was attached in front of the heating vaporizer to measure water content. For water content measurement, Karl Fischer titrator "CA-06", a micro water content analyzer (Mitsubishi Kasei Co., Ltd.)
Manufactured) was used. About 10 to 30 pp for carrier gas
Nitrogen gas containing m (V / V) of water was used, but using this dehydrator with 30 V applied, half a year has passed (integrated nitrogen gas aeration time of about 1200 hours). There is no deterioration. The background (moisture-converted electrolysis amount per second when water from the sample did not enter) was always 0.03 μg water / sec or less. The background when the dehydrator was removed from this apparatus was 0.23 μg water / sec or more.

【0018】比較例−1 乾燥剤として「シカペント」(メルク社製)をキャリア
ーガスの脱水器とした市販の加熱気化装置「VA−0
6」(三菱化成(株)製)を用いた場合、乾燥剤の交換
は約1カ月(積算窒素ガス通気時間約200時間)に一
度の割で行わなければ脱水効果がなくなり、バックグラ
ンドが0.20μg水/sec以上になって、キャリア
ーガスの脱水が不十分になり微量域の正確な水分測定が
行えなくなった。
Comparative Example-1 A commercially available heating vaporizer "VA-0" using "Shikapent" (manufactured by Merck & Co., Inc.) as a drying agent as a carrier gas dehydrator.
6 "(manufactured by Mitsubishi Kasei Co., Ltd.), the dehydrating effect will be lost and the background will be zero unless the desiccant is replaced once every one month (total nitrogen gas aeration time is about 200 hours). At more than 20 μg water / sec, the dehydration of the carrier gas was insufficient, and accurate water content measurement in the trace amount area was impossible.

【0019】[0019]

【発明の効果】本発明の水分測定装置における試料供給
方法を用いることにより、キャリアーガス中の水分を長
期間にわたって容易に除去することが可能となる。
By using the sample supply method in the water content measuring device of the present invention, it becomes possible to easily remove the water content in the carrier gas for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法に用いる加熱気化部の一例の模式図
である。
FIG. 1 is a schematic view of an example of a heating vaporization section used in the method of the present invention.

【図2】本発明方法を適用した水分測定方法を示す模式
図である。
FIG. 2 is a schematic diagram showing a moisture measuring method to which the method of the present invention is applied.

【図3】本発明に用いる電解再生型五酸化燐脱水器の模
式図である。
FIG. 3 is a schematic diagram of an electrolytic regeneration type phosphorus pentoxide dehydrator used in the present invention.

【符号の説明】[Explanation of symbols]

11 加熱コイル 12 耐熱性加熱容器 13 被測定試料 14 キャリアーガス導入管 15 キャリアーガス排出管 21 電解再生型五酸化燐脱水器 22 加熱気化部 23 水分測定部 31 ガラス管 32 陽極 33 陰極 Reference Signs List 11 heating coil 12 heat-resistant heating container 13 sample to be measured 14 carrier gas introduction pipe 15 carrier gas discharge pipe 21 electrolytic regeneration type phosphorus pentoxide dehydrator 22 heating vaporization section 23 moisture measurement section 31 glass tube 32 anode 33 cathode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 31/00 Y ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G01N 31/00 Y

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱により固体及び液体試料中の水分を
気化させ、該気化水分をキャリアーガスで測定容器内へ
供給する水分測定装置における試料供給方法において、 前記キャリアーガスが予め電解再生型五酸化燐脱水器を
通過していることを特徴とする水分測定装置における試
料供給方法。
1. A sample supply method in a water content measuring device in which moisture in a solid or liquid sample is vaporized by heating and the vaporized moisture is supplied as carrier gas into a measurement container, wherein the carrier gas is electrolytically regenerated pentoxide. A sample supply method in a moisture measuring apparatus, which is characterized in that the sample is passing through a phosphorus dehydrator.
【請求項2】 前記電解再生型五酸化燐脱水器が、金属
の電極と五酸化燐から構成され電極間に印加される電圧
が5〜90Vであることを特徴とする請求項1記載の水
分測定装置における試料供給方法。
2. The water according to claim 1, wherein the electrolytic regenerated phosphorus pentoxide dehydrator is composed of a metal electrode and phosphorus pentoxide, and a voltage applied between the electrodes is 5 to 90V. Sample supply method in measuring device.
JP5249557A 1993-10-05 1993-10-05 Method for supplying sample to moisture measuring equipment Pending JPH07103867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5249557A JPH07103867A (en) 1993-10-05 1993-10-05 Method for supplying sample to moisture measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5249557A JPH07103867A (en) 1993-10-05 1993-10-05 Method for supplying sample to moisture measuring equipment

Publications (1)

Publication Number Publication Date
JPH07103867A true JPH07103867A (en) 1995-04-21

Family

ID=17194773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5249557A Pending JPH07103867A (en) 1993-10-05 1993-10-05 Method for supplying sample to moisture measuring equipment

Country Status (1)

Country Link
JP (1) JPH07103867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144369A (en) * 1998-11-04 2000-05-26 Sumitomo Metal Ind Ltd Oxidation treatment of inside face of stainless steel tube
JP2011117807A (en) * 2009-12-02 2011-06-16 Air Liquide Japan Ltd In-line apparatus and method for measurement of minute amount of moisture in organic solvent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144369A (en) * 1998-11-04 2000-05-26 Sumitomo Metal Ind Ltd Oxidation treatment of inside face of stainless steel tube
JP2011117807A (en) * 2009-12-02 2011-06-16 Air Liquide Japan Ltd In-line apparatus and method for measurement of minute amount of moisture in organic solvent

Similar Documents

Publication Publication Date Title
Wimer Titration of sulfoxides in acetic anhydride
Shoor et al. Salting out of nonpolar gases in aqueous potassium hydroxide solutions
RU2291229C2 (en) Water electrolysis method and apparatus for determining content of stable isotopes of hydrogen and oxygen
EP4054412B1 (en) Exhaled breath collection device
Dye Preparation and analysis of metal/solvent solutions and the formation of alkali metal anions
JPS61247955A (en) Electrolyte for karl fischer coulometric titration
Capon et al. The rate of a simple electron exchange reaction as a function of the electrode material
Meng et al. Simultaneous derivatization and extraction of free cyanide in biological samples with home-made hollow fiber-protected headspace liquid-phase microextraction followed by capillary electrophoresis with UV detection
Jensen et al. Atomic-absorption spectrometric determination of cadmium, lead and zinc in salts or salt solutions by hanging mercury drop electrodeposition and atomization in a graphite furnace
Behr et al. Medium effect: Electroreduction of Eu (III) in water+ acetone and water+ N, N-dimethylformamide mixtures
JPH07103867A (en) Method for supplying sample to moisture measuring equipment
US3565583A (en) Method and apparatus for determination of nitrogen in water and in oxygenated hydrocarbon matrices
Danner et al. THE DEGREE OF IONIZATION OF ETHYL ALCOHOL. I. FROM MEASUREMENTS OF CONDUCTIVITY1
US3003932A (en) Apparatus for the galvanic analysis of hydrogen
Hickam Determination of Carbon, Oxygen, and Sulfur in Copper
Allan et al. Microdetermination of osmium
US5185268A (en) Method for the determination of total nitrogen including adding an alkali metal halide or an alkaline earth metal halide to the sample
Paulik et al. Simultaneous TG, DTG, DTA and EGA technique for the determination of carbonate, sulphate, pyrite and organic material in minerals, soil and rocks: II. Operation of the thermo-gas-titrimetric device and examination procedure
US3410763A (en) Continuous polarographic method
Sequaris et al. Polarographic investigations of 7-methylguanosine
Lexa et al. Determination of arsenic by galvanostatic stripping analysis and its application to steels
Marshall et al. Mercury displacement detection for the determination of picogram amounts of sulfite ion or sulfur dioxide by atomic spectrometry
JPS61191956A (en) Method and apparatus for measuring sulfur portion in material containing nitrogen and sulfur
SU1046668A1 (en) Device for measuring volume part of gas mixture components
Hersch et al. Trace addition of nitric oxide and nitrogen dioxide to air by electrolysis