JPH07103755A - Photoelectric sensor and method for correcting received signal level - Google Patents

Photoelectric sensor and method for correcting received signal level

Info

Publication number
JPH07103755A
JPH07103755A JP24815293A JP24815293A JPH07103755A JP H07103755 A JPH07103755 A JP H07103755A JP 24815293 A JP24815293 A JP 24815293A JP 24815293 A JP24815293 A JP 24815293A JP H07103755 A JPH07103755 A JP H07103755A
Authority
JP
Japan
Prior art keywords
light
light receiving
signal
distance
detection target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24815293A
Other languages
Japanese (ja)
Other versions
JP2968423B2 (en
Inventor
Tomonori Nishiki
朋範 錦
Kazuhiro Nishihara
一寛 西原
Shoji Fujii
祥二 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Izumi Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP24815293A priority Critical patent/JP2968423B2/en
Publication of JPH07103755A publication Critical patent/JPH07103755A/en
Application granted granted Critical
Publication of JP2968423B2 publication Critical patent/JP2968423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a photosensor for producing an output that depends only on the optical reflectivity of an object by eliminating the distance dependency if the distance between them varies. CONSTITUTION:An adder 13 and a subtractor 14 for adding and subtracting current i1 and i2 at both terminals of a photodetector element 5 are provided and both output are divided by a division circuit 16 to obtain the distance signal to a target to be detected. A squaring circuit 17 for obtaining the square of the distance signal is provided and then a multiplication circuit 18 for multiplying the added value of current at both terminals of the photodetector element 5 by the output of the squaring circuit and an addition circuit for adding a multiple of the received signal to the multiplication result are provided. The multiplication circuit 18 and the addition circuit compensate the reception light signal of the photodetector element 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、検出対象の有無また
は検出対象の色変化または濃淡の読取を行う光電センサ
およびその受光信号レベルの補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric sensor for detecting the presence / absence of a detection target, a color change of the detection target, or a reading / shading of the detection target, and a method of correcting the light reception signal level thereof.

【0002】[0002]

【従来の技術】コンベア上を移動する物体の有無やこの
物体の色変化または濃淡の読取を行うものとして、投光
素子と受光素子とからなる光電センサが用いられてい
る。この光電センサは、投光素子から検出対象である物
体に対して光を照射し、物体における反射光を受光素子
において受光する。投光センサの光の照射位置に検出対
象が存在しない場合には受光素子は光を受光しないた
め、受光素子から出力される受光信号レベルによって検
出対象の有無を検出することができる。同様に、検出対
象に色変化または濃淡がある場合には、検出対象の濃淡
等による反射率の変化により受光素子の受光量が変わる
ため、受光素子から出力される受光信号レベルによって
検出対象の濃淡を判別することができる。
2. Description of the Related Art A photoelectric sensor composed of a light projecting element and a light receiving element is used for reading the presence / absence of an object moving on a conveyer, the color change of the object, or the reading of the shade. This photoelectric sensor irradiates an object to be detected with light from a light projecting element, and receives light reflected by the object at a light receiving element. When the detection target does not exist at the light irradiation position of the light projecting sensor, the light receiving element does not receive the light. Therefore, the presence or absence of the detection target can be detected by the light reception signal level output from the light receiving element. Similarly, when there is a color change or shade in the detection target, the amount of light received by the light receiving element changes due to the change in reflectance due to the shade of the detection target, etc. Can be determined.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、光電セ
ンサを構成する受光素子が受光する検出対象からの反射
光量は、検出対象と受光レンズとの間の距離の二乗に反
比例するため、受光素子の受光信号レベルは、検出対象
の反射率が一定であっても、図10の曲線91または9
2に示すように、検出対象と受光レンズとの間の距離に
よって大きく変化する。このため、物体表面に表記され
たマークの有無を検出する場合などのように、物体から
の反射光量の差異によって検出対象を検出する場合に
は、図10に示すように、マークからの反射光の受光信
号レベルの曲線91と下地からの反射光の受光信号レベ
ルの曲線92の関係においてしきい値レベルCとした場
合に、検出対象と光電センサの前面との間の距離の許容
変動範囲はΔxと狭く、受光信号の感度調整を厳格に維
持しなければならず、また検出対象の搬送位置を適正に
すべく搬送精度を高く維持する必要がある。特に、濃淡
を検出する場合、または、検出面に凹凸がある場合など
には誤動作を生じる問題がある。
However, the amount of light reflected by the light receiving element that constitutes the photoelectric sensor from the detection target is inversely proportional to the square of the distance between the detection target and the light receiving lens, and therefore the light receiving element receives light. Even if the reflectance of the detection target is constant, the signal level is the curve 91 or 9 in FIG.
As shown in FIG. 2, it greatly changes depending on the distance between the detection target and the light receiving lens. Therefore, when detecting a detection target based on a difference in the amount of reflected light from the object, such as when detecting the presence or absence of a mark written on the surface of the object, as shown in FIG. When the threshold level C is set in the relationship between the curve 91 of the received light signal level and the curve 92 of the received signal level of the light reflected from the base, the allowable variation range of the distance between the detection target and the front surface of the photoelectric sensor is It is as narrow as Δx, the sensitivity adjustment of the received light signal must be strictly maintained, and the transport accuracy must be maintained high in order to properly position the transport position of the detection target. In particular, there is a problem that a malfunction occurs when detecting light and shade, or when the detection surface has irregularities.

【0004】この発明の目的は、光電センサを構成する
受光素子の受光信号レベルを、検出対象と受光レンズと
の間の距離情報を用いて補正することにより、受光信号
の距離依存性を除去して検出対象の反射率の変化のみを
正確に検出できる光電センサおよびその受光信号レベル
の補正方法を提供することにある。
An object of the present invention is to eliminate the distance dependency of the light receiving signal by correcting the light receiving signal level of the light receiving element which constitutes the photoelectric sensor using the distance information between the detection object and the light receiving lens. SUMMARY OF THE INVENTION It is an object of the present invention to provide a photoelectric sensor capable of accurately detecting only a change in reflectance of a detection target and a method of correcting a light reception signal level thereof.

【0005】[0005]

【課題を解決するための手段】請求項1に記載した発明
に係る光電センサは、検出対象に対して光を照射する投
光素子と、投光素子から照射された光の検出対象におけ
る反射光を受光レンズを介して受光して受光レベルに応
じた信号を出力する受光素子と、受光素子から出力され
た受光信号を検出対象の検出信号に変換する信号変換手
段と、を備えた光電センサにおいて、前記受光素子が、
検出対象からの反射光の入射角に応じた受光信号を出力
する光電素子であって、受光素子から出力された受光信
号を距離信号に変換する距離信号変換手段と、距離信号
変換手段の出力を二乗する演算手段と、演算手段の演算
結果に基づいて受光信号の距離依存性を除去する距離依
存性除去手段と、を設けたことを特徴とする。
According to a first aspect of the present invention, there is provided a photoelectric sensor including a light projecting element for irradiating a detection target with light, and light reflected from the detection target for light emitted from the light projecting element. In a photoelectric sensor including a light receiving element that receives light through a light receiving lens and outputs a signal according to a light receiving level, and a signal conversion unit that converts the light receiving signal output from the light receiving element into a detection signal of a detection target. , The light receiving element,
A photoelectric element that outputs a light receiving signal according to an incident angle of reflected light from a detection target, and a distance signal converting unit that converts the light receiving signal output from the light receiving element into a distance signal, and an output of the distance signal converting unit. It is characterized in that a calculating means for squaring and a distance dependence removing means for removing the distance dependence of the received light signal based on the calculation result of the calculating means are provided.

【0006】請求項2に記載した発明に係る光電センサ
は、前記距離依存性除去手段を、前記演算手段の出力を
受光信号に乗算する乗算手段およびその乗算結果に受光
信号の定数倍を加算する加算手段としたものである。
According to a second aspect of the photoelectric sensor of the present invention, the distance dependence removing means adds multiplication means for multiplying the light reception signal by the output of the computing means, and adds a constant multiple of the light reception signal to the multiplication result. This is an addition means.

【0007】請求項3に記載した発明に係る光電センサ
は、前記距離依存性除去手段を前記演算手段の出力が所
定距離に対応する距離信号の二乗値からある定数を減じ
た値に一致するように投光素子の投光量を調整する投光
量調整手段としたものである。
In the photoelectric sensor according to the third aspect of the present invention, the distance dependence removing means sets the output of the computing means to match the value obtained by subtracting a constant from the square value of the distance signal corresponding to the predetermined distance. In addition, the light projection amount adjusting means for adjusting the light projection amount of the light projecting element is used.

【0008】請求項4に記載した発明に係る光電センサ
は、前記受光素子が、半導体位置検出素子によって構成
されたものである。
According to a fourth aspect of the photoelectric sensor of the present invention, the light receiving element is composed of a semiconductor position detecting element.

【0009】請求項5に記載した発明に係る光電センサ
は、前記受光素子が、少なくとも2個のフォトダイオー
ドによって構成されたものである。
In a photoelectric sensor according to a fifth aspect of the present invention, the light receiving element is composed of at least two photodiodes.

【0010】請求項6に記載した発明に係る受光信号レ
ベルの補正方法は、投光素子から照射した光の検出対象
における反射光の入射角に応じて受光素子から出力され
る受光信号に基づいて受光レンズから検出対象までの距
離を測定し、この測定結果を二乗演算して受光素子の受
光信号に乗算した後に、前記受光信号の定数倍を加算す
ることを特徴とする。
According to a sixth aspect of the present invention, there is provided a method for correcting a received light signal level based on a received light signal output from a light receiving element according to an incident angle of reflected light on a detection target of light emitted from the light projecting element. It is characterized in that the distance from the light receiving lens to the detection target is measured, the measurement result is squared, the light receiving signal of the light receiving element is multiplied, and then a constant multiple of the light receiving signal is added.

【0011】請求項7に記載した発明に係る受光信号レ
ベルの補正方法は、投光素子から照射した光の検出対象
における反射光の入射角に応じて受光素子から出力され
る受光信号に基づいて受光レンズから検出対象までの距
離を測定し、この測定結果を二乗演算した後に一定値と
比較し、この比較において両者が一致するように投光素
子の投光量を調整することを特徴とする。
According to a seventh aspect of the present invention, there is provided a method for correcting a light receiving signal level based on a light receiving signal output from a light receiving element according to an incident angle of reflected light on a detection target of light emitted from the light projecting element. It is characterized in that the distance from the light receiving lens to the detection target is measured, the measurement result is squared and then compared with a constant value, and the light projecting amount of the light projecting element is adjusted so that the two match.

【0012】[0012]

【作用】請求項1に記載した発明においては、受光素子
から検出対象における反射光の入射角に応じた受光信号
が出力され、この受光信号が距離信号変換手段により距
離信号に変換される。更にこの距離信号の二乗値に受光
信号を乗算し、受光信号の定数倍を加算することによ
り、受光信号の距離依存性が除去される。このようにし
て、検出対象の反射率のみに基づく受光信号が得られ
る。
In the invention described in claim 1, the light receiving element outputs a light receiving signal corresponding to the incident angle of the reflected light on the detection target, and the light receiving signal is converted into the distance signal by the distance signal converting means. Further, the squared value of the distance signal is multiplied by the received light signal, and a constant multiple of the received light signal is added to remove the distance dependency of the received light signal. In this way, the received light signal based only on the reflectance of the detection target is obtained.

【0013】請求項2および6に記載した発明において
は、距離信号の二乗値が受光素子の受光信号に乗算さ
れ、さらに受光信号の定数倍がこれに加算される。これ
は、検出対象と受光レンズとの間の距離の二乗に反比例
する反射光量の減少を除去した値となる。
In the inventions described in claims 2 and 6, the square value of the distance signal is multiplied by the light receiving signal of the light receiving element, and the constant multiple of the light receiving signal is added to this. This is a value obtained by eliminating the decrease in the reflected light amount that is inversely proportional to the square of the distance between the detection target and the light receiving lens.

【0014】請求項3および7に記載した発明において
は、距離信号の二乗値が所定距離における受光信号レベ
ルに対応する値からある定数を減じた一定値に一致する
ように投光素子の投光量が調整される。したがって、距
離信号の二乗値に基づくフィードバック制御により、検
出対象と受光レンズとの間の距離の大小に応じて投光素
子の投光量が増減され、検出対象と受光レンズとの間の
距離変化に影響されない反射光が受光素子によって受光
される。
According to the invention described in claims 3 and 7, the light projection amount of the light projecting element is adjusted so that the square value of the distance signal matches a constant value obtained by subtracting a constant from the value corresponding to the light receiving signal level at a predetermined distance. Is adjusted. Therefore, by the feedback control based on the square value of the distance signal, the light projection amount of the light projecting element is increased or decreased according to the size of the distance between the detection target and the light receiving lens, and the distance between the detection target and the light receiving lens is changed. The reflected light that is not affected is received by the light receiving element.

【0015】請求項4に記載した発明においては、受光
素子が半導体位置検出素子であり、精度の高い検出が行
える。
In the invention described in claim 4, the light receiving element is a semiconductor position detecting element, and highly accurate detection can be performed.

【0016】請求項5に記載した発明においては、受光
素子が少なくとも2個のフォトダイオードによって構成
される。したがって、位置検出用の比較的高価な光電素
子を用いる必要がなく、コストが低廉化される。
In a fifth aspect of the invention, the light receiving element is composed of at least two photodiodes. Therefore, it is not necessary to use a relatively expensive photoelectric element for position detection, and the cost is reduced.

【0017】[0017]

【実施例】図1は、この発明の実施例である光電センサ
の構成および検出対象からの反射光路の変化を示す図で
ある。光電センサ1はレーザダイオードなどによって構
成される投光素子2、投光レンズ3、受光レンズ4およ
びPSD(半導体位置検出素子)などの距離測定用の光
電素子である受光素子5を備えている。投光素子2から
照射された光はレンズ3により絞られ、検出対象に照射
される。検出対象からの反射光は受光レンズ4を透過し
て受光素子5上に集光される。受光素子5を構成するP
SDは、長さ2xの範囲において検出対象からの反射光
を受光し、その集光位置に応じた両端電流i1,2 を出
力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the structure of a photoelectric sensor according to an embodiment of the present invention and changes in the optical path reflected from a detection target. The photoelectric sensor 1 includes a light projecting element 2 configured by a laser diode or the like, a light projecting lens 3, a light receiving lens 4, and a light receiving element 5 which is a photoelectric element for distance measurement such as a PSD (semiconductor position detecting element). The light emitted from the light projecting element 2 is focused by the lens 3 and is emitted to the detection target. The reflected light from the detection target passes through the light receiving lens 4 and is condensed on the light receiving element 5. P constituting the light receiving element 5
The SD receives the reflected light from the detection target in the range of the length 2x and outputs the both-end currents i 1 and i 2 according to the condensing position.

【0018】図1に示す位置関係において、同位角の関
係に基づいて下記(1) 式が得られる。ここに、距離R
は、光電センサ1の本体前面から受光素子5の中心SO
に反射光が集光する検出対象の位置PO から距離rだけ
遠方の基準位置Pr までの距離である。この距離Rは
(1) 式より(2) 式で表される。同様に、この基準位置P
rから距離ΔRだけ遠方の位置P1 までの距離R+ΔR
は(3) 式によって表すことができ、距離ΔRは(2) 式お
よび(3) 式から(4) 式で表すことができる。
In the positional relationship shown in FIG. 1, the following equation (1) is obtained based on the relationship of isotopes. Where the distance R
Is the center S O of the light receiving element 5 from the front surface of the main body of the photoelectric sensor 1.
Is the distance from the detection target position P O where the reflected light is condensed to the reference position P r which is a distance r away. This distance R is
It is expressed by equation (2) from equation (1). Similarly, this reference position P
Distance R + ΔR from r to a position P 1 that is a distance ΔR away
Can be expressed by equation (3), and the distance ΔR can be expressed by equations (2) and (3) to (4).

【0019】上記位置P1 における検出対象からの反射
光が受光素子5の受光位置S1 に集光すると、受光素子
の両端電流i1,2 の比は、(5) 式で表される。この
(5) 式から(6) 式が得られ、基準位置Pr に位置する検
出対象からの反射光の受光位置Sr から受光位置S1
での受光素子5における距離Δxは、(6) 式から(7) 式
で表すことができる。この(7) 式を(4) 式に代入するこ
とにより(8) 式を得ることができる。このようにして、
基準位置Pr から検出対象までの距離ΔRを受光素子5
の両端電流i1,2 から求めることができる。しかし、
ここで問題となるのは、検出対象から受光レンズ4まで
の距離である。したがってPrから受光レンズ4までの
距離をT,P1 から受光レンズ4までの距離をT+ΔT
とすると(9) 式、(10)式となる。
When the reflected light from the detection object at the position P 1 is focused on the light receiving position S 1 of the light receiving element 5, the ratio of the currents i 1 and i 2 across the light receiving element is expressed by equation (5). . this
(5) (6) is obtained from the formula, the distance Δx in the light-receiving element 5 from the receiving position S r of the reflected light from the detection object located at the reference position P r to the light receiving position S 1 is (6) Therefore, it can be expressed by equation (7). By substituting equation (7) into equation (4), equation (8) can be obtained. In this way
The distance ΔR from the reference position P r to the detection target is determined by the light receiving element 5
Can be obtained from the currents i 1 and i 2 at both ends. But,
The problem here is the distance from the detection target to the light receiving lens 4. Therefore, the distance from Pr to the light receiving lens 4 is T, and the distance from P 1 to the light receiving lens 4 is T + ΔT.
Then, equations (9) and (10) are obtained.

【0020】 以上のようにして距離信号を得ることができる受光素子
5において、検出対象からの反射光の受光量は検出対象
からレンズ4までの距離の二乗に反比例する。
[0020] In the light-receiving element 5 capable of obtaining the distance signal as described above, the amount of received reflected light from the detection target is inversely proportional to the square of the distance from the detection target to the lens 4.

【0021】したがって、基準の受光位置Sr における
受光量Wr と受光位置S1 における受光量W1 との比は
下記(11)式によって表すことができ、この(11)式は(12)
式のように表すことができる。ここで、受光位置S1
おける受光量W1 は受光素子5の両端電流i1,2 を用
いて(13)式のように表すことができる。ここに、K2
定数である。この受光位置S1 における受光量W1 が基
準の受光位置Sr における受光量Wr に一致するように
補正するのであるから、補正後の受光位置S1 の受光出
力CW1 は(14)式に示すように受光量Wr に等しくな
る。この(14)式を(12)式に代入して(15)式を得、この(1
5)式に(13)式を代入して整理することにより(20)式を得
る。この(20)式から明らかなように、補正後の受光出力
CW1 として検出物体までの距離に依存することのない
値を得ることができる。
Therefore, the ratio of the received light amount W r at the reference light receiving position S r and the received light amount W 1 at the light receiving position S 1 can be expressed by the following equation (11), and this equation (11) is (12)
It can be expressed as an expression. Here, the received light amount W 1 in the light receiving position S 1 can be expressed as by using both ends currents i 1, i 2 of the light-receiving element 5 (13). Here, K 2 is a constant. Since the received light amount W 1 of the light receiving position S 1 is at the corrected so as to match the received light amount W r in the light receiving position S r of the reference, the light receiving output CW 1 of the light receiving position S 1 of the corrected (14) It becomes equal to the received light amount W r as shown in. Substituting equation (14) into equation (12) yields equation (15),
Equation (20) is obtained by substituting Equation (13) into Equation 5 and rearranging. As is clear from the equation (20), a value that does not depend on the distance to the detected object can be obtained as the corrected light reception output CW 1 .

【0022】 図2は、上記光電センサの信号変換回路の構成を示す図
である。受光素子5の両端電流i1,2 はアンプ11,
12を介して加算器13,15および減算器14に入力
される。加算器13にはアンプ11の出力が抵抗比1の
抵抗r1 を介して入力されるとともに、アンプ12の出
力が抵抗比Aの抵抗rA を介して入力される。この結
果、加算器13からは(i1 +Ai2 )の信号が出力さ
れる。減算器14にはアンプ11の出力が抵抗比Bの抵
抗rB を介して入力されるとともに、アンプ12の出力
が抵抗比Cの抵抗rC を介して入力される。したがっ
て、減算器14からは(Bi1 −Ci2 )の信号が出力
される。更に、加算器15にはアンプ11および12の
出力がそれぞれ抵抗比1の抵抗r1 を介して入力され
る。したがって、加算器15からは(i1 +i2 )の信
号が出力される。
[0022] FIG. 2 is a diagram showing a configuration of a signal conversion circuit of the photoelectric sensor. The currents i 1 and i 2 across the light receiving element 5 are
It is input to the adders 13 and 15 and the subtractor 14 via 12. The output of the amplifier 11 is input to the adder 13 via the resistor r 1 having the resistance ratio of 1, and the output of the amplifier 12 is input to the adder 13 via the resistor r A of the resistance ratio A. As a result, the signal of (i 1 + Ai 2 ) is output from the adder 13. The output of the amplifier 11 is input to the subtractor 14 via the resistance r B of the resistance ratio B, and the output of the amplifier 12 is input to the subtractor 14 via the resistance r C of the resistance ratio C. Therefore, the subtractor 14 outputs a (Bi 1 -Ci 2 ) signal. Further, the outputs of the amplifiers 11 and 12 are input to the adder 15 via the resistor r 1 having a resistance ratio of 1, respectively. Therefore, the adder 15 outputs the signal of (i 1 + i 2 ).

【0023】加算器13および減算器14の後段には除
算器16および二乗演算回路17が接続されている。加
算器13および減算器14の出力信号は除算器16に入
力され、除算器16からは(Bi1 −Ci2 )/(i1
+Ai2 )の信号が出力される。この除算器16の出力
信号は二乗演算回路17を経て乗算器18に入力され
る。二乗演算回路17の出力は、(20)式の右辺第1項に
おける二乗部分に一致する。この乗算器18には加算器
15の出力信号も入力される。これによって乗算器18
の出力信号は上述の(20)式の右辺第1項に一致する。さ
らに乗算器18の出力信号は、抵抗比1の抵抗r1 を介
して加算器19に入力され、また加算器15の出力信号
も抵抗比Mの抵抗rM を介して加算器19に入力され
る。この加算器15から加算器19への入力は、(20)式
の右辺第二項に一致する。したがって、加算器19への
出力は(20)式の右辺に一致する。この(20)式の右辺にお
いてA〜CおよびMは定数K、基準距離Rおよびα、β
およびγによって定まる値であり、α,βおよびγの各
数値は(8) 式に示すように焦点距離f、レンズ4の配置
間隔D、受光素子5の受光範囲の長さの1/2の長さ
x、受光素子5における中央の受光位置So から基準の
受光位置Sr までの距離x′、および、レンズ4の中心
から受光素子5の中央の受光位置So までの垂直方向の
距離xo によって定まる値であり、いずれも光電センサ
1の配置状態に依存する固定された値である。
After the adder 13 and the subtractor 14, a divider 16 and a square operation circuit 17 are connected. The output signals of the adder 13 and the subtractor 14 are input to the divider 16, and the divider 16 outputs (Bi 1 −Ci 2 ) / (i 1
The signal + Ai 2 ) is output. The output signal of the divider 16 is input to the multiplier 18 via the squaring circuit 17. The output of the square calculation circuit 17 coincides with the square part in the first term on the right side of the equation (20). The output signal of the adder 15 is also input to the multiplier 18. By this, the multiplier 18
The output signal of is in agreement with the first term on the right side of the above equation (20). Further, the output signal of the multiplier 18 is input to the adder 19 via the resistance r 1 having a resistance ratio of 1, and the output signal of the adder 15 is also input to the adder 19 via the resistance r M of the resistance ratio M. It The input from the adder 15 to the adder 19 matches the second term on the right side of the expression (20). Therefore, the output to the adder 19 matches the right side of the expression (20). On the right side of the equation (20), A to C and M are constant K, reference distances R and α, β
And γ, and the respective numerical values of α, β, and γ are, as shown in equation (8), the focal length f, the arrangement interval D of the lens 4, and 1/2 of the length of the light receiving range of the light receiving element 5. Length x, distance x ′ from the central light receiving position S o in the light receiving element 5 to the reference light receiving position S r , and the vertical distance from the center of the lens 4 to the central light receiving position S o of the light receiving element 5. It is a value that is determined by x o and is a fixed value that depends on the arrangement state of the photoelectric sensor 1.

【0024】このようにして加算器15から出力された
受光素子5の両端電流の加算値を二乗演算回路17から
出力された距離情報により補正し、さらに前記加算値の
定数倍を前記補正値に加えることにより、受光レンズ4
から検出対象までの距離に関わらず検出対象の反射率の
みに依存する受光信号レベルを出力することができる。
即ち、光電センサ1から出力される受光信号レベルは図
3に示すように、マークからの反射光の受光信号レベル
51と下地からの反射光の受光信号レベル52の関係に
おいてしきい値レベルCとした場合に、検出対象と光電
センサの前面との距離の許容変動範囲はΔXとなり広範
囲にわたって一定になり、検出対象までの距離に影響さ
れることなく、検出対象の反射率のみに依存する値とす
ることができる。
In this way, the added value of the current across the light receiving element 5 output from the adder 15 is corrected by the distance information output from the squaring circuit 17, and a constant multiple of the added value is used as the correction value. By adding the light receiving lens 4
It is possible to output the received light signal level that depends only on the reflectance of the detection target regardless of the distance from the detection target to the detection target.
That is, as shown in FIG. 3, the received light signal level output from the photoelectric sensor 1 is the threshold level C in the relationship between the received light signal level 51 of the reflected light from the mark and the received light signal level 52 of the reflected light from the base. In this case, the permissible variation range of the distance between the detection target and the front surface of the photoelectric sensor is ΔX, which is constant over a wide range, and the value depends only on the reflectance of the detection target without being affected by the distance to the detection target. can do.

【0025】図4は、請求項3に記載した発明に係る光
電センサの実施例の信号変換回路を示す図である。図2
に示した回路において二乗演算回路17の出力を誤差検
出回路21において一定電圧V0 との誤差を検出し、こ
の誤差信号を投光素子2の駆動回路22に供給する。誤
差検出回路21において二乗演算回路17の出力と比較
される電圧V0 は、基準位置における二乗演算回路17
の出力をV1 とすると、これは基準位置における(20)式
の右辺第一項の二乗部分に相当する。したがって、同第
二項の定数Mに相当する電圧をVr とすると(21)式より
(22)式のようになる。
FIG. 4 is a diagram showing a signal conversion circuit of an embodiment of the photoelectric sensor according to the invention described in claim 3. In FIG. Figure 2
The error detection circuit 21 detects an error between the output of the square calculation circuit 17 and the constant voltage V 0, and supplies the error signal to the drive circuit 22 of the light projecting element 2. The voltage V 0 compared with the output of the square calculation circuit 17 in the error detection circuit 21 is the square calculation circuit 17 at the reference position.
When the output of V is V 1 , this corresponds to the squared portion of the first term on the right side of equation (20) at the reference position. Therefore, if the voltage corresponding to the constant M in the second term is V r , then from equation (21)
It becomes like the formula (22).

【0026】Vr =V1 +VM (21) V0 =V1 =Vr −VM (22) 前述のように二乗演算回路17から出力される電圧は、
検出対象までの距離のみによって変化し、検出対象の反
射率に影響されない値であるため、誤差検出回路21に
おいては基準位置に対する検出対象の位置の距離的な誤
差が求められる。この距離的誤差を補正するように駆動
回路22における投光素子2の駆動電圧が制御されるた
め、検出対象までの距離が基準位置までの距離より遠い
場合には投光素子2の駆動電圧が大きくされて投光量が
増加し、検出対象までの距離が基準位置までの距離より
近い場合には投光素子2の駆動電圧が小さくされて投光
量が減少する。このように投光素子2の投光量を検出対
象までの距離に応じて増減することにより、加算器15
の出力である光電センサ1の受光信号から検出対象まで
の距離的誤差を除去して検出対象の反射率のみに依存す
る値を出力することができる。
V r = V 1 + V M (21) V 0 = V 1 = V r −V M (22) As described above, the voltage output from the squaring circuit 17 is
Since the value changes only by the distance to the detection target and is not affected by the reflectance of the detection target, the error detection circuit 21 obtains a distance error of the position of the detection target with respect to the reference position. Since the drive voltage of the light projecting element 2 in the drive circuit 22 is controlled so as to correct this distance error, when the distance to the detection target is longer than the distance to the reference position, the drive voltage of the light projecting element 2 is When the distance to the detection target is shorter than the distance to the reference position, the drive voltage of the light projecting element 2 is reduced and the light projection amount is decreased. In this way, by increasing or decreasing the light projection amount of the light projecting element 2 according to the distance to the detection target, the adder 15
It is possible to remove a distance error from the received light signal of the photoelectric sensor 1 to the detection target, which is the output of, and output a value that depends only on the reflectance of the detection target.

【0027】図5は、受光素子の出力信号の補正をディ
ジタル回路を用いて行う場合を示すブロック図である。
受光素子5の両端出力i1 ,i2 のそれぞれはアンプ1
1,12を介してA/Dコンバータ31を介して二値化
され、CPU32に入力される。CPU32は図6に示
す処理を実行する。すなわち、CPU32はA/Dコン
バータ31から所定のタイミングで受光素子5の両端電
流データを読み出し(n1)、予め記憶されている定数
A〜Cを用いて距離データDの演算を行う(n2)。更
に、距離データDの二乗値を演算し(n3)、この距離
データの二乗値D2 に受光素子5の両端出力の加算値
(i1 +i2 )を乗算し(n4)、これに両端出力の加
算値(i1 +i2 )のM倍を加算し(n5)、この値を
D/Aコンバータ33を介してアナログ信号として出力
する(n6)。
FIG. 5 is a block diagram showing a case where the output signal of the light receiving element is corrected using a digital circuit.
Each of the outputs i 1 and i 2 at both ends of the light receiving element 5 is an amplifier 1
1 and 12 are binarized via the A / D converter 31 and input to the CPU 32. The CPU 32 executes the processing shown in FIG. That is, the CPU 32 reads the current data across the light receiving element 5 from the A / D converter 31 at a predetermined timing (n1), and calculates the distance data D using the constants A to C stored in advance (n2). Furthermore, calculates the square value of the distance data D (n3), the sum of both ends output of the light receiving element 5 to the square value D 2 of the distance data (i 1 + i 2) multiplied by (n4), which across the output M times the addition value (i 1 + i 2 ) of ( 1 ) is added (n5), and this value is output as an analog signal via the D / A converter 33 (n6).

【0028】図7は、受光素子5の受光信号に基づいて
投光素子2の投光量を変えることにより、受光信号の距
離依存性を除去する場合の構成を示すブロック図であ
る。CPU32には誤差増幅回路34を介して投光素子
2を構成するレーザダイオードLDの駆動回路35が接
続されている。この構成においてCPU32は図8に示
すように、A/Dコンバータ31から受光素子5の両端
電流のディジタルデータを読み出し(n11)、距離デ
ータDの算出および距離データの二乗値の演算を行う
(n12,n13)。CPU32はこの距離データの二
乗値D2 を基準値V0 と比較し、その誤差を誤差増幅回
路34に出力する(n15)。この後一定時間後に再び
A/Dコンバータ31から両端信号のディジタルデータ
を読み出し(n16)、両端出力の加算値(i1
2 )を受光素子5における受光量に応じた出力データ
CWとして演算し、これを出力する(n17,n1
8)。以上のようにして、投光素子2からの投光量を調
整した後における受光素子5の受光信号に基づいて受光
量を決定する。
FIG. 7 is a block diagram showing a configuration in which the distance dependency of the light receiving signal is removed by changing the light projecting amount of the light projecting element 2 based on the light receiving signal of the light receiving element 5. A drive circuit 35 for a laser diode LD that constitutes the light projecting element 2 is connected to the CPU 32 via an error amplification circuit 34. In this configuration, as shown in FIG. 8, the CPU 32 reads the digital data of the current across the light receiving element 5 from the A / D converter 31 (n11) and calculates the distance data D and the square value of the distance data (n12). , N13). The CPU 32 compares the squared value D 2 of the distance data with the reference value V 0 and outputs the error to the error amplification circuit 34 (n15). Then, after a fixed time, digital data of both end signals is read again from the A / D converter 31 (n16), and the added value (i 1 +
i 2 ) is calculated as output data CW according to the amount of light received by the light receiving element 5, and this is output (n17, n1).
8). As described above, the light receiving amount is determined based on the light receiving signal of the light receiving element 5 after adjusting the light emitting amount from the light emitting element 2.

【0029】以上のように、ディジタル回路を用いても
図2および図4に示した構成と同様の効果を得ることが
できる。
As described above, even if a digital circuit is used, the same effect as that of the configuration shown in FIGS. 2 and 4 can be obtained.

【0030】なお、図9に示すように、図2に示す受光
素子5をPSDに代えて2個のフォトダイオード51
a,51bによって構成することもできる。これは、図
4、図5および図7においても同様であり、PSDを用
いた場合に比較してこの発明の光電センサを安価に構成
することができる。
As shown in FIG. 9, two photodiodes 51 are used instead of the light receiving element 5 shown in FIG.
It can also be configured by a and 51b. This also applies to FIGS. 4, 5 and 7, and the photoelectric sensor of the present invention can be constructed at a lower cost than in the case of using a PSD.

【0031】[0031]

【発明の効果】請求項1に記載した発明によれば、受光
素子の受光信号に基づいて検出対象までの距離を表す距
離信号を求め、距離信号を用いて受光信号の距離依存性
を除去することができるため、検出対象の反射率のみに
基づく受光信号を得ることができ、検出対象までの距離
を厳格に規定する必要がなく、検出対象の反射面の変形
等によっても誤動作を生じることがない。
According to the first aspect of the invention, the distance signal representing the distance to the detection object is obtained based on the light receiving signal of the light receiving element, and the distance dependency of the light receiving signal is removed by using the distance signal. Since it is possible to obtain a received light signal based only on the reflectance of the detection target, it is not necessary to strictly define the distance to the detection target, and malfunction may occur due to deformation of the reflection surface of the detection target. Absent.

【0032】請求項2に記載した発明によれば、受光素
子から出力された受光信号に基づく距離信号の二乗値を
受光信号に乗算し、受光信号の定数倍をそれに加算する
ことにより、任意の位置にある検出対象からの受光信号
を光電センサから一定の距離に位置する検出対象から反
射された光の受光信号レベルに補正することができる。
According to the second aspect of the present invention, the light receiving signal is multiplied by the square value of the distance signal based on the light receiving signal output from the light receiving element, and a constant multiple of the light receiving signal is added to it to obtain an arbitrary value. The light reception signal from the detection target at the position can be corrected to the light reception signal level of the light reflected from the detection target located at a certain distance from the photoelectric sensor.

【0033】請求項3に記載した発明によれば、受光素
子から出力された受光信号に基づく距離信号が一定にな
るように投光素子の投光量をフィードバック制御するこ
とができ、光電センサから検出対象までの距離が変化し
た場合にも、この変化に応じた投光量の光を検出対象に
照射することにより、検出対象までの距離によらない受
光信号を得ることができる。
According to the third aspect of the invention, the light projection amount of the light projecting element can be feedback-controlled so that the distance signal based on the light receiving signal output from the light receiving element becomes constant, and it is detected from the photoelectric sensor. Even when the distance to the target changes, a light reception signal that does not depend on the distance to the detection target can be obtained by irradiating the detection target with light having a light projection amount corresponding to the change.

【0034】請求項4に記載した発明によれば、受光素
子として半導体位置検出素子を用いることにより、検出
精度を高くすることができる。
According to the fourth aspect of the invention, the detection accuracy can be increased by using the semiconductor position detecting element as the light receiving element.

【0035】請求項5に記載した発明によれば、受光素
子として比較的安価なフォトダイオードを用いることが
でき、この発明の光電センサを安価に構成できる利点が
ある。
According to the invention described in claim 5, a relatively inexpensive photodiode can be used as the light receiving element, and there is an advantage that the photoelectric sensor of the invention can be constructed at a low cost.

【0036】請求項6および請求項7に記載した発明に
よれば、受光信号の距離依存性を除去するための補正を
ディジタル回路によって実行することができる。
According to the invention described in claims 6 and 7, the correction for removing the distance dependency of the received light signal can be executed by the digital circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例である光電センサの構成を示
す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a photoelectric sensor that is an embodiment of the present invention.

【図2】請求項2に記載した発明に係る光電センサの要
部の構成を示す回路図である。
FIG. 2 is a circuit diagram showing a configuration of a main part of a photoelectric sensor according to a second aspect of the invention.

【図3】この発明の実施例に係る光電センサの受光信号
レベルと検出対象までの距離との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a received light signal level of a photoelectric sensor according to an embodiment of the present invention and a distance to a detection target.

【図4】請求項3に記載した発明の実施例に係る光電セ
ンサの要部の構成を示す回路図である。
FIG. 4 is a circuit diagram showing a configuration of a main part of a photoelectric sensor according to an embodiment of the invention described in claim 3.

【図5】請求項4に記載した発明の実施例に係る受光信
号レベルの補正方法が適用される光電センサの構成を示
すブロック図である。
FIG. 5 is a block diagram showing a configuration of a photoelectric sensor to which a method of correcting a received light signal level according to the embodiment of the invention described in claim 4 is applied.

【図6】同光電センサの制御部における処理手順を示す
フローチャートである。
FIG. 6 is a flowchart showing a processing procedure in a control unit of the photoelectric sensor.

【図7】請求項5に記載した発明の受光信号レベルの補
正方法が適用される光電センサの制御部の構成を示すブ
ロック図である。
FIG. 7 is a block diagram showing a configuration of a control unit of a photoelectric sensor to which a method for correcting a light reception signal level according to the invention described in claim 5 is applied.

【図8】同制御部の処理手順を示すフローチャートであ
る。
FIG. 8 is a flowchart showing a processing procedure of the control unit.

【図9】この発明の別の実施例に係る光電センサの要部
の構成を示す回路図である。
FIG. 9 is a circuit diagram showing a configuration of a main part of a photoelectric sensor according to another embodiment of the present invention.

【図10】従来の光電センサにおける受光信号レベルと
検出対象までの距離との関係を示す図である。
FIG. 10 is a diagram showing a relationship between a light reception signal level and a distance to a detection target in a conventional photoelectric sensor.

【符号の説明】[Explanation of symbols]

1−光電センサ 2−投光素子 4−レンズ 5−受光素子 1-Photoelectric sensor 2-Emitting element 4-Lens 5-Light receiving element

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】検出対象に対して光を照射する投光素子
と、投光素子から照射された光の検出対象における反射
光を受光レンズを介して受光して受光レベルに応じた信
号を出力する受光素子と、受光素子から出力された受光
信号を検出対象の検出信号に変換する信号変換手段と、
を備えた光電センサにおいて、 前記受光素子が、検出対象からの反射光の入射角に応じ
た受光信号を出力する光電素子であって、受光素子から
出力された受光信号を距離信号に変換する距離信号変換
手段と、距離信号変換手段の出力を二乗する演算手段
と、演算手段の演算結果に基づいて受光信号の距離依存
性を除去する距離依存性除去手段と、を設けたことを特
徴とする光電センサ。
1. A light projecting element for irradiating a detection target with light, and light reflected by the detection target of light emitted from the light projecting element is received through a light receiving lens and a signal corresponding to a light receiving level is output. A light receiving element, and signal conversion means for converting a light receiving signal output from the light receiving element into a detection signal of a detection target,
In the photoelectric sensor provided with, the light receiving element is a photoelectric element that outputs a light receiving signal according to the incident angle of the reflected light from the detection target, the distance to convert the light receiving signal output from the light receiving element into a distance signal The present invention is characterized in that a signal conversion means, a calculation means for squaring the output of the distance signal conversion means, and a distance dependence removing means for removing the distance dependence of the received light signal based on the calculation result of the calculation means are provided. Photoelectric sensor.
【請求項2】前記距離依存性除去手段が、前記演算手段
の出力を受光信号に乗算する乗算手段およびその乗算結
果に受光信号の定数倍を加算する加算手段である請求項
1に記載の光電センサ。
2. The photoelectric conversion device according to claim 1, wherein the distance dependence removing means is a multiplying means for multiplying the light receiving signal by the output of the computing means and an adding means for adding a constant multiple of the light receiving signal to the multiplication result. Sensor.
【請求項3】前記距離依存性除去手段が、前記演算手段
の出力が所定距離に対応する距離信号の二乗値からある
定数を減じた値に一致するように投光素子の投光量を調
整する投光量調整手段である請求項1に記載の光電セン
サ。
3. The distance dependence removing means adjusts the light projecting amount of the light projecting element so that the output of the computing means coincides with a value obtained by subtracting a constant from the square value of the distance signal corresponding to the predetermined distance. The photoelectric sensor according to claim 1, which is a light emission amount adjusting means.
【請求項4】前記受光素子が半導体位置検出素子である
請求項1、2または3に記載の光電センサ。
4. The photoelectric sensor according to claim 1, wherein the light receiving element is a semiconductor position detecting element.
【請求項5】前記受光素子が、少なくとも2個のフォト
ダイオードによって構成された請求項1、2または3に
記載の光電センサ。
5. The photoelectric sensor according to claim 1, wherein the light receiving element is composed of at least two photodiodes.
【請求項6】投光素子から照射した光の検出対象におけ
る反射光の入射角に応じて受光素子から出力される受光
信号に基づいて受光レンズから検出対象までの距離を測
定し、この測定結果を二乗演算して受光素子の受光信号
に乗算した後に、前記受光信号の定数倍を加算すること
を特徴とする光電センサの受光信号レベルの補正方法。
6. The distance from the light receiving lens to the detection target is measured based on a light receiving signal output from the light receiving device according to the incident angle of the reflected light on the detection target of the light emitted from the light projecting element, and this measurement result Is squared and multiplied by the received light signal of the light receiving element, and then a constant multiple of the received light signal is added, and the received light signal level of the photoelectric sensor is corrected.
【請求項7】投光素子から照射した光の検出対象におけ
る反射光の入射角に応じて受光素子から出力される受光
信号に基づいて受光レンズから検出対象までの距離を測
定し、この測定結果を二乗演算した後に一定値と比較
し、この比較において両者が一致するように投光素子の
投光量を調整することを特徴とする光電センサの受光信
号レベルの補正方法。
7. The distance from the light receiving lens to the detection target is measured based on the light reception signal output from the light reception device according to the incident angle of the reflected light on the detection target of the light emitted from the light projecting element, and this measurement result Is squared and then compared with a constant value, and the light projection amount of the light projection element is adjusted so that the two match in this comparison.
JP24815293A 1993-10-04 1993-10-04 Photoelectric sensor and method for correcting received light signal level Expired - Fee Related JP2968423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24815293A JP2968423B2 (en) 1993-10-04 1993-10-04 Photoelectric sensor and method for correcting received light signal level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24815293A JP2968423B2 (en) 1993-10-04 1993-10-04 Photoelectric sensor and method for correcting received light signal level

Publications (2)

Publication Number Publication Date
JPH07103755A true JPH07103755A (en) 1995-04-18
JP2968423B2 JP2968423B2 (en) 1999-10-25

Family

ID=17173998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24815293A Expired - Fee Related JP2968423B2 (en) 1993-10-04 1993-10-04 Photoelectric sensor and method for correcting received light signal level

Country Status (1)

Country Link
JP (1) JP2968423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057529A (en) * 2005-08-24 2007-03-08 Xerox Corp Compensation for target distance fluctuation in spectrophotometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057529A (en) * 2005-08-24 2007-03-08 Xerox Corp Compensation for target distance fluctuation in spectrophotometer

Also Published As

Publication number Publication date
JP2968423B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
USRE35652E (en) Object distance detecting apparatus
JPH0714970Y2 (en) Automatic focus adjustment device
US6326606B2 (en) Method and apparatus for checking shape
JP2968423B2 (en) Photoelectric sensor and method for correcting received light signal level
CN116482701A (en) Measuring device and measuring method
JP2002071310A (en) Optical displacement measuring device and method therefor
JPS58151511A (en) Distance detecting device
JP3439521B2 (en) Photoelectric sensor
JP2816257B2 (en) Non-contact displacement measuring device
JP3445324B2 (en) Photoelectric sensor
US9405220B2 (en) Optical sensor, image forming device, and method for correcting toner concentration
JPH0642917A (en) Apparatus for measuring displacement of rail
JP2942593B2 (en) Subject distance detection device
JPH0480566B2 (en)
JP2743038B2 (en) Underwater distance measuring device using laser light
JPS59111588A (en) Maintenance of photosensor accuracy
JP2970250B2 (en) Distance measuring device
JP2004125651A (en) Optical range finder
JPS6095318A (en) Optical distance measuring device
JP3127010B2 (en) Distance measuring device
JPH05272969A (en) Range finder
JP2592055Y2 (en) Photoelectric sensor
JP3236095B2 (en) Distance measuring device
JP2002341238A (en) Adjusting device for auto-focusing device
JPH0575461A (en) Signal processing unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees