JP2004125651A - Optical range finder - Google Patents

Optical range finder Download PDF

Info

Publication number
JP2004125651A
JP2004125651A JP2002290963A JP2002290963A JP2004125651A JP 2004125651 A JP2004125651 A JP 2004125651A JP 2002290963 A JP2002290963 A JP 2002290963A JP 2002290963 A JP2002290963 A JP 2002290963A JP 2004125651 A JP2004125651 A JP 2004125651A
Authority
JP
Japan
Prior art keywords
data
light
reflectance
light receiving
electric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002290963A
Other languages
Japanese (ja)
Inventor
Yoshitaka Shimoyamada
下山田 好孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2002290963A priority Critical patent/JP2004125651A/en
Publication of JP2004125651A publication Critical patent/JP2004125651A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical range finder for removing an effect of the brightness of an object. <P>SOLUTION: This optical range finder is equipped with a light projecting part including a light emitting element 1 for projecting a light beam to the object existing in an optical axis direction, a light receiving part including light receiving elements for receiving the light beam returning from the object to output a corresponding electric signal, and a computing part 11 for calculating a distance to the object based on the electric signal. The receiving part has at least two light receiving elements S1 and s2 and is switchable between a consolidation mode and a separation mode. The two light receiving elements output a single electric signal corresponding to the total amount of individually received light in the consolidation mode, while they output a plurality of electric signals corresponding to the amount of individually received light in the separation mode. The computing part 11 first finds reflectivity data expressing the surface reflectivity of the object based on an electric signal outputted in the consolidation mode, then finds distance data expressing a distance to the object based on an electric signal outputted in the separation mode, and further corrects the distance data based on the reflectivity data. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はカメラの被写体の距離を光学的に測定する光学式測距装置に関する。より詳しくは、被写体の反射率に依存しない測距方式に関する。
【0002】
【従来の技術】
図5は、光学式測距装置を組み込んだカメラの一例を示す模式的な斜視図である。図示する様に、カメラ5はボディ6とレンズ鏡筒7とを備えている。ボディ6の前面側に投光部1と受光部2とからなる光学式測距装置が取り付けられている。この光学式測距装置は、カメラ5の被写体の光軸方向距離を測定するものであって、測定結果は自動焦点調節などに利用される。
【0003】
【特許文献1】
特許第3187621号
【0004】
図6は、光学式測距装置の一例を示す模式図である。この装置はいわゆるアクティブ三角測距方式に基づいている。図はその基本原理を示すものであり、1は例えば赤外光を発生する投光部、3は投光レンズ、T1,T2は被写体、4は受光レンズ、2は二分割された受光素子S1,S2を有する受光部を各々示す。投光部1の出力光は投光レンズ3で被写体T1又はT2に向けて照射され、被写体T1又はT2で反射された光は受光レンズ4を介して受光部2に入射する。この時、被写体T1,T2までの距離に対応して受光部2に対する入射角が変動するので、受光部2を構成する各々の受光素子S1,S2に対する入射光量の成分比が変動する。そこで、各々の受光素子S1,S2に対する入射光量を比較演算することにより、被写体T1又はT2までの距離を判別することができる。
【0005】
【発明が解決しようとする課題】
アクティブ三角測距方式の装置は、演算方式によって、一対の受光素子の出力比を演算する比演算方式と各受光素子の出力差を演算する差演算方式とに大別される。比演算方式は被写体反射率に関する因子が比演算の過程で分子と分母間である程度相殺されるので、被写体反射率の影響をそれ程受けることなく、多段階の距離判別を行なうことが可能である。それでも、被写体の反射率が大きく異なる場合、測距結果に悪影響を及ぼし、誤差の原因ともなるので、解決すべき課題となっている。一方、差演算方式は比演算方式に比べ回路構成が簡潔である反面、差演算の結果中には被写体反射率に関する因子が残存するので、これが大きな誤差要因となっており、解決すべき課題である。アクティブ三角測距方式は被写体に光束を投光しその反射光を受光して測距を行なう。受光量は被写体反射率に依存している。従って、アクティブ三角測距方式は原理的に被写体反射率に対する依存性を有しており、これを除くことが緊急の解決課題である。
【0006】
【課題を解決するための手段】
上述した従来の技術の課題に鑑み、本発明は比較的簡単な回路構成で被写体反射率の影響を除去可能な光学式測距装置を提供することを目的とする。係る目的を達成するために以下の手段を講じた。即ち本発明は、光軸方向にある対象物に対して光束を投光する発光素子を含む投光部と、該対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む受光部と、該電気信号に基づいて該対象物までの距離を算出する演算部とを備えた光学式測距装置であって、前記受光部は二個以上複数の受光素子を有し、合体モードと分離モードで切り換え可能であり、合体モードの時該複数の受光素子は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力する。前記演算部は、先ず合体モードで出力される電気信号に基づいて該対象物の表面反射率を表わす反射率データを求め、次に分離モードで出力される電気信号に基づいて該対象物までの距離を表わす距離データを求め、さらに該反射率データに基づいて該距離データを補正して対象物の反射率に依存する誤差を除去することを特徴とする。具体的には、前記演算部は、あらかじめ反射率が既知の基準対象物からサンプリングされた参照反射率データを記憶しており、該参照反射率データに基づいて合体モード時に得られた該電気信号を処理し、もって該対象物の実際の表面反射率を表わす反射率データを算出する。また、前記演算部は、分離モードで出力される少くとも二個の電気信号の差を取った差データ及び和を取った和データを求め、該反射率データで該差データ及び和データを補正し、さらに補正された差データ及び和データの比を取って該距離データを求める。
【0007】
本発明によれば、あらかじめ赤外投光に対する反射率が既知の基準対象物に対し、例えば二分割された受光素子を並列(又は直列)に接続し、見かけ上一つの受光素子として反射光量を測定し、その光量値を装置内に記憶しておく。この処理は光学式測距装置の工場出荷段階前に行なう。赤外光に対する反射率が未知の対象物に対して実際に測距を行なう場合、二分割された受光素子をまず一つの受光素子となる様に接続して、赤外反射光量を測定する。工場出荷段階前に記憶された基準対象物の反射光量値と、実際に測定した対象物の受光量を比較する。これにより、対象物の実際の反射率を推定する。次に二分割した受光素子で測距動作を行ない、例えば各受光素子から出力された電気信号の差演算を行なって対象物までの距離データを得る。この段階で得られた距離データは対象物の反射率の影響が含まれている。そこで、先に推定した対象物の反射率データに基づき、差演算で得られた距離データを補正する。この結果対象物の反射率の影響が除かれた距離データを得ることが可能である。
【0008】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を詳細に説明する。図1は本発明に係る光学式測距装置の実施形態を示す回路図である。本光学式測距装置は投光部と受光部と演算部とで構成されている。投光部は赤外発光ダイオードからなる発光素子1を含んでおり、光軸方向にある対象物に対して光束を投光する。受光部は対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む。本実施形態では、二分割されたシリコンフォトダイオード(SPD)からなる一対の受光素子S1,S2を用いている。但し本発明はこれに限られるものではなく、SPDに代えて多分割型のポジションセンシティブディテクタ(PSD)を用いてもよい。演算部は受光部から出力された電気信号に基づいて対象物までの距離を算出する。演算部はハードウェア的な演算を行なう回路部分とソフトウェア的な演算を行なう中央演算処理装置(CPU)とを含んでいる。対象物までの距離の算出に必要な加減算などは回路上で行ない、補正演算はCPUで行なう。但し本発明はこれに限られるものではなく、全てソフトウェア上で演算を実行してもよい。
【0009】
上述した様に受光部は二個以上複数の受光素子S1,S2を有し、スイッチSWにより合体モードと分離モードで切り換え可能である。合体モードの時、一対の受光素子S1,S2は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力する様になっている。合体モードと分離モードの切り換えはスイッチ回路SWを介してCPU11により制御される。
【0010】
引続き図1を参照して本光学式測距装置の回路部分の構成並びに動作を詳細に説明する。尚、理解を容易にする為以下の説明は分離モードを前提としている。受光素子S1は抵抗20及びベース/コレクタ間が短絡されたトランジスタ21の直列回路に接続されており、受光素子S1に光が入射すると、この直列回路には入射光量に対応した光電流I1が流れる。トランジスタ21はベースを共有するトランジスタ22とカレントミラー回路を構成しており、トランジスタ22にはトランジスタ21に流れる電流と等しい電流I1が流れる。
【0011】
受光素子S2は抵抗23及びベース/コレクタ間が短絡されたトランジスタ24の直列回路に接続されており、受光素子S2に光が入射すると、この直列回路には入射光量に応じた光電流I2が流れる。トランジスタ24はベースを共有するトランジスタ25とカレントミラー回路を構成しており、トランジスタ25とトランジスタ26の直列回路にはトランジスタ24に流れる電流と等しい電流I2が流れる。尚、トランジスタ26のベース/コレクタ間にはトランジスタ27が接続されているが、このトランジスタ27は、PNP構成のトランジスタ26の場合は、そのベース電流が実質的に無視できない値であるので、トランジスタ26のベース電流分を補償する為に設けられたものである。そして、トランジスタ26はトランジスタ28とカレントミラー回路を構成しており、トランジスタ28にも同一の電流I2が流れる。
【0012】
トランジスタ22に流れる電流I1はオペアンプ29の逆相入力点に減算電流として流れ、トランジスタ28に流れる電流I2はオペアンプ29の同じく逆相入力点に加算電流として流れる。オペアンプ29の逆相入力点に流れる電流は全てオペアンプ29の帰還抵抗30を流れるので、帰還抵抗30に流れる電流をIaと定義した場合、Ia=I2−I1で表わされる。又、オペアンプ29の正相入力点には電源31から基準電圧Vrefが印加されているので、抵抗30の抵抗値をR30と定義し、オペアンプ29の出力電圧をVaと定義した場合、オペアンプ29の出力電圧Vaは、
Va=Vref−R30×Ia=Vref−R30×(I2−I1)
で与えられる。
【0013】
このオペアンプ29の出力電圧Vaは光電流中の定常光成分(発光ダイオードの発光とは無関係に被写界光に依存して流れる光電流成分)を除去する為のコンデンサ32で除去された後に、オペアンプ33の逆相入力抵抗34に加えられる。オペアンプ33の正相入力点には電源31から基準電圧Vrefが印加されており、オペアンプ33の両入力間のイマジナルショートによってオペアンプ33の逆相入力レベルもVrefと考えられるので、抵抗34の両端に発生する電圧V34は
V34={Vref−R30×(I2−I1)}−Vref
=R30×(I1−I2)で示され、
抵抗R34に流れる電流I34は、
I34=R30×(I1−I2)/R34で示される。
【0014】
電流I34は全て抵抗35を介して流れるが、オペアンプ33の基準電圧はVrefであるので、オペアンプ33の出力電圧Vbは、
Vb=Vref−R35×R30×(I1−I2)/R34
=Vref−k×(I1−I2)で示される値になる。
但し、k=R35×R30/R34である。
【0015】
この様にしてオペアンプ33から出力された電圧Vbはサンプル/ホールド回路(S/H)37でサンプルホールドされ、CPU11に内蔵されたアナログデジタルコンバータ(A/D)に供給される。この様にして、分離モードでは一対の受光素子S1,S2の受光量の差に応じたデータが取り込まれ、CPU11側に送られる。
【0016】
これに対し、合体モードでは一対の受光素子S1,S2に流れる光電流I1,I2がいずれもオペアンプ29の逆相入力点に加算電流として流れる。この加算電流はオペアンプ29及びオペアンプ33で増幅された後、S/H37でサンプルホールドされ、CPU11のA/Dに送られる。従って、合体モードでは受光素子S1,S2によって受光された受光量の加算値(合計値)に応じたデータがCPU11に取り込まれる。
【0017】
図2を参照して、図1に示した光学式測距装置の測距動作を詳細に説明する。まずステップS1でスイッチSWを合体モード側に投入する。続いてステップS2で発光素子1を駆動し、対象物に向けて光束を投光する。ステップS3でS /H37から反射光量値を取り込み、所定のメモリに記録する。この反射光量値は各受光素子S1,S2の受光量の合計に応じた電気信号(I1+I2)に比例した値となっている。尚、本実施形態では、CPU11はあらかじめ反射率が既知の基準対象物からサンプリングされた参照反射率データを記憶しており、この参照反射率データに基づいて、合体モード時に得られた電気信号を処理し、もって対象物の実際の表面反射率を表わす反射率データを算出している。例えば、表面反射率が36%で1mの距離に置かれた基準対象物から合体モード時に得られる電気信号を基準とし、これに基づいて実際の対象物の表面反射率を推定している。
【0018】
次にステップS4で、スイッチSWを分離モード側に投入する。続いてステップS5で発光素子1を駆動する。ステップS6で測距結果を取り込み、距離データとしてCPU内に格納する。前述した様に、分離モードの時受光素子S1,S2の個々の受光量に応じた複数の電気信号が出力され、更に回路部で両者の差分が得られる。ここでCPUは差分演算方式を採用する時には、この差分データをそのまま距離データとして格納する。比演算方式を採用する場合には、この差分データに加え加算データも求めておき、両者の比を取って距離データとする。尚、加算データは合体モードで得られる。この後ステップS7で、距離データを反射率データにより補正し、対象物の表面反射率の影響を除いた真の距離データを求める。
【0019】
図3は図1及び図2を参照して説明した測距方式におけるデータの流れを模式的に表わしたブロック図である。図示する様に、一対の受光素子S1,S2はそれぞれ受光量に応じた電気信号A,Bを出力する。スイッチ回路SWは電気信号A,Bを切り換えて差算回路及び加算回路(20−30)に供給する。差算回路はA−Bを演算し、加算回路はA+Bを求める。尚、この差算回路及び加算回路は図1の回路要素20−30に対応している。A−B及びA+Bは増幅回路33−35で増幅された後、S/H37でサンプルホールドされる。サンプルホールドされたA−B及びA+Bの値はA/D11aを介してCPU11に取り込まれる。
【0020】
CPUは例えば比演算方式で測距データK=(A−B)/(A+B)を算出する。その際、あらかじめ推定した対象物の反射率データrにより、補正を加える。例えば、
K=(A−B)/(A+B)
=r(a−b)/r(a+b)
=(a−b)/(a+b)
として距離データKを求める。反射率rがキャンセルされ、対象物の反射率によらない精度のよい距離データKが得られる。なお、差演算方式の場合には、元の差分データA−Bにかえて補正後の差分データa−bにより距離を求めれば良い。
【0021】
図4は、図3に示した実施例の変形を示す模式的なブロック図である。この実施例は、一対の受光素子S1,S2に直接差算回路及び加算回路が接続されている。これらの演算回路の後段にスイッチ回路SWが接続されている。このスイッチ回路により差算信号及び加算信号を選択し、増幅回路、S/H、A/Dを介しCPUに取り込む。
【0022】
【発明の効果】
以上説明した様に、本発明によれば、あらかじめ赤外光に対する反射率が既知の対象物に対し、二分割された受光素子を並列もしくは直列接続し、見かけ上一つのセンサとして反射光量を測定し、その光量値をCPUのメモリに記憶する。これは、光学式測距装置の工場出荷段階で行なう。赤外光に対して未知の反射率を有する対象物に対し測距を行なう場合、一対の受光素子をまず一つのセンサとなる様に接続して反射光量を測定し、先に記憶された基準値データと比較し当該対象物の反射率を推定する。次に二分割した受光素子で得られた電気信号を差演算して距離データを求める。これには対象物の反射率の影響が含まれているので、これを除去する為先に推定した反射率に基づき、距離データを補正する。係る構成により、回路規模を大きくすることなく、表面反射率に依存しない光学測距装置を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る光学式測距装置の実施形態を示す回路図である。
【図2】図1に示した光学式測距装置の動作説明に供するフローチャートである。
【図3】図1に示した光学式測距装置の動作説明に供するブロック図である。
【図4】図3に示した実施例の変形を示すブロック図である。
【図5】光学式測距装置を内蔵したカメラの一例を示す斜視図である。
【図6】光学式測距の原理を示す模式図である。
【符号の説明】
1・・・投光部、2・・・受光部、11・・・CPU、S1・・・受光素子、S2・・・受光素子、SW・・・スイッチ回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical distance measuring device for optically measuring the distance of a subject of a camera. More specifically, the present invention relates to a distance measurement method that does not depend on the reflectance of a subject.
[0002]
[Prior art]
FIG. 5 is a schematic perspective view showing an example of a camera incorporating the optical distance measuring device. As shown, the camera 5 includes a body 6 and a lens barrel 7. An optical distance measuring device including a light projecting unit 1 and a light receiving unit 2 is mounted on the front side of the body 6. This optical distance measuring device measures the distance of the subject of the camera 5 in the optical axis direction, and the measurement result is used for automatic focus adjustment and the like.
[0003]
[Patent Document 1]
Patent No. 3187621 [0004]
FIG. 6 is a schematic diagram showing an example of the optical distance measuring device. This device is based on a so-called active triangulation method. The figure shows the basic principle, wherein 1 is a light projecting unit that generates, for example, infrared light, 3 is a light projecting lens, T1 and T2 are objects, 4 is a light receiving lens, and 2 is a light receiving element S1 divided into two. , S2 are shown. The output light of the light projecting unit 1 is irradiated by the light projecting lens 3 toward the subject T1 or T2, and the light reflected by the subject T1 or T2 enters the light receiving unit 2 via the light receiving lens 4. At this time, since the incident angle with respect to the light receiving unit 2 varies in accordance with the distance to the subjects T1 and T2, the component ratio of the amount of incident light with respect to each of the light receiving elements S1 and S2 constituting the light receiving unit 2 varies. Thus, the distance to the subject T1 or T2 can be determined by comparing and calculating the amount of incident light on each of the light receiving elements S1 and S2.
[0005]
[Problems to be solved by the invention]
Devices of the active triangulation system are roughly classified into a ratio calculation method for calculating an output ratio of a pair of light receiving elements and a difference calculation method for calculating an output difference between the respective light receiving elements. In the ratio calculation method, since a factor relating to the object reflectance is offset to some extent between the numerator and the denominator in the process of the ratio calculation, it is possible to perform multi-step distance determination without being greatly affected by the object reflectance. Nevertheless, if the reflectivity of the subject is significantly different, it adversely affects the distance measurement result and causes an error, which is a problem to be solved. On the other hand, the difference operation method has a simpler circuit configuration than the ratio operation method.On the other hand, a factor relating to the object reflectance remains in the result of the difference operation, and this is a major error factor. is there. In the active triangulation method, a light beam is projected onto a subject, the reflected light is received, and distance measurement is performed. The amount of received light depends on the reflectance of the subject. Therefore, the active triangulation method has a dependency on the reflectance of the object in principle, and eliminating this is an urgent solution.
[0006]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the related art, an object of the present invention is to provide an optical distance measuring apparatus that can remove the influence of the reflectance of a subject with a relatively simple circuit configuration. The following measures have been taken to achieve this objective. That is, the present invention provides a light projecting unit including a light emitting element for projecting a light beam on an object in an optical axis direction, and a light receiving element for receiving a light beam returning from the object and outputting a corresponding electric signal. An optical distance measuring device comprising a light receiving unit including: a calculating unit that calculates a distance to the object based on the electric signal, wherein the light receiving unit has two or more light receiving elements. It is possible to switch between the combined mode and the separated mode. In the combined mode, the plurality of light receiving elements output a single electric signal according to the sum of the individual received light amounts, and according to the individual received light amount in the separated mode. Output a plurality of electrical signals. The calculation unit first obtains reflectance data representing the surface reflectance of the object based on the electric signal output in the coalescing mode, and then calculates the reflectance data up to the object based on the electric signal output in the separation mode. It is characterized in that distance data representing a distance is obtained, and the distance data is corrected based on the reflectance data to remove an error depending on the reflectance of the object. Specifically, the arithmetic unit stores reference reflectance data sampled from a reference object whose reflectance is known in advance, and the electric signal obtained in the uniting mode based on the reference reflectance data. To calculate reflectance data indicating the actual surface reflectance of the object. Further, the arithmetic unit obtains difference data obtained by taking a difference between at least two electric signals output in the separation mode and sum data obtained by taking a sum, and corrects the difference data and the sum data with the reflectance data. Then, the distance data is obtained by taking the ratio of the corrected difference data and the sum data.
[0007]
According to the present invention, for example, a light receiving element divided into two is connected in parallel (or in series) to a reference object whose reflectance for infrared light projection is known in advance, and the reflected light amount is apparently set as one light receiving element. Measurement is performed, and the light amount value is stored in the apparatus. This process is performed before the optical ranging device is shipped from the factory. When actually performing distance measurement on an object whose reflectance with respect to infrared light is unknown, first, the two divided light receiving elements are connected so as to be one light receiving element, and the amount of infrared reflected light is measured. The amount of reflected light of the reference object stored before the factory shipment stage is compared with the actually measured amount of received light of the object. Thereby, the actual reflectance of the object is estimated. Next, a distance measuring operation is performed with the light receiving elements divided into two, and, for example, a difference calculation of electric signals output from each light receiving element is performed to obtain distance data to the object. The distance data obtained at this stage includes the influence of the reflectance of the object. Therefore, the distance data obtained by the difference calculation is corrected based on the reflectance data of the object estimated earlier. As a result, it is possible to obtain distance data in which the influence of the reflectance of the target object has been eliminated.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of an optical distance measuring apparatus according to the present invention. This optical distance measuring device includes a light projecting unit, a light receiving unit, and a calculation unit. The light projecting unit includes a light emitting element 1 composed of an infrared light emitting diode, and emits a light beam to an object in an optical axis direction. The light receiving unit includes a light receiving element that receives a light flux returning from the object and outputs a corresponding electric signal. In the present embodiment, a pair of light receiving elements S1 and S2 composed of a silicon photodiode (SPD) divided into two parts is used. However, the present invention is not limited to this, and a multi-division type position sensitive detector (PSD) may be used instead of the SPD. The calculation unit calculates a distance to the object based on the electric signal output from the light receiving unit. The arithmetic unit includes a circuit part for performing a hardware operation and a central processing unit (CPU) for performing a software operation. The addition and subtraction necessary for calculating the distance to the object are performed on a circuit, and the correction calculation is performed by the CPU. However, the present invention is not limited to this, and all the operations may be executed on software.
[0009]
As described above, the light receiving section has two or more light receiving elements S1 and S2, and can be switched between the combined mode and the separated mode by the switch SW. In the combination mode, the pair of light receiving elements S1 and S2 output a single electric signal corresponding to the sum of the individual light reception amounts, and output a plurality of electric signals corresponding to the individual light reception amounts in the separation mode. It has become. Switching between the combination mode and the separation mode is controlled by the CPU 11 via the switch circuit SW.
[0010]
Next, the configuration and operation of the circuit portion of the optical distance measuring apparatus will be described in detail with reference to FIG. The following description is based on the separation mode for easy understanding. The light receiving element S1 is connected to a series circuit of a resistor 20 and a transistor 21 whose base and collector are short-circuited. When light enters the light receiving element S1, a photocurrent I1 corresponding to the amount of incident light flows through the series circuit. . The transistor 21 forms a current mirror circuit with the transistor 22 sharing the base, and a current I1 equal to the current flowing through the transistor 21 flows through the transistor 22.
[0011]
The light receiving element S2 is connected to a series circuit of a resistor 23 and a transistor 24 whose base and collector are short-circuited. When light enters the light receiving element S2, a photocurrent I2 according to the amount of incident light flows through this series circuit. . The transistor 24 forms a current mirror circuit with the transistor 25 sharing the base, and a current I2 equal to the current flowing through the transistor 24 flows through the series circuit of the transistor 25 and the transistor 26. A transistor 27 is connected between the base and the collector of the transistor 26. In the case of the PNP transistor 26, the transistor 27 has a base current that cannot be substantially ignored. Is provided for compensating for the base current. The transistor 26 forms a current mirror circuit with the transistor 28, and the same current I2 flows through the transistor 28.
[0012]
The current I1 flowing through the transistor 22 flows as a subtraction current at the negative-phase input point of the operational amplifier 29, and the current I2 flowing through the transistor 28 flows at the same negative-phase input point of the operational amplifier 29 as an addition current. Since all the current flowing to the negative-phase input point of the operational amplifier 29 flows through the feedback resistor 30 of the operational amplifier 29, when the current flowing through the feedback resistor 30 is defined as Ia, it is expressed by Ia = I2-I1. Since the reference voltage Vref is applied from the power supply 31 to the positive-phase input point of the operational amplifier 29, when the resistance value of the resistor 30 is defined as R30 and the output voltage of the operational amplifier 29 is defined as Va, The output voltage Va is
Va = Vref−R30 × Ia = Vref−R30 × (I2-I1)
Given by
[0013]
After the output voltage Va of the operational amplifier 29 is removed by the capacitor 32 for removing the steady light component (the photocurrent component flowing depending on the field light irrespective of the light emission of the light emitting diode) in the photocurrent, It is applied to the negative-phase input resistance 34 of the operational amplifier 33. The reference voltage Vref is applied from the power supply 31 to the positive-phase input point of the operational amplifier 33, and the negative-phase input level of the operational amplifier 33 is also considered to be Vref due to an imaginary short between both inputs of the operational amplifier 33. The generated voltage V34 is V34 = {Vref−R30 × (I2-I1)} − Vref
= R30 × (I1-I2),
The current I34 flowing through the resistor R34 is
I34 = R30 × (I1-I2) / R34.
[0014]
All the current I34 flows through the resistor 35, but since the reference voltage of the operational amplifier 33 is Vref, the output voltage Vb of the operational amplifier 33 is
Vb = Vref-R35 * R30 * (I1-I2) / R34
= Vref−k × (I1−I2).
However, k = R35 × R30 / R34.
[0015]
The voltage Vb output from the operational amplifier 33 in this manner is sampled and held by the sample / hold circuit (S / H) 37 and supplied to an analog-to-digital converter (A / D) built in the CPU 11. In this manner, in the separation mode, data corresponding to the difference between the amounts of light received by the pair of light receiving elements S1 and S2 is captured and sent to the CPU 11 side.
[0016]
On the other hand, in the combined mode, the photocurrents I1 and I2 flowing through the pair of light receiving elements S1 and S2 both flow as addition currents at the negative-phase input points of the operational amplifier 29. This added current is amplified by the operational amplifier 29 and the operational amplifier 33, sampled and held by the S / H 37, and sent to the A / D of the CPU 11. Therefore, in the uniting mode, the CPU 11 takes in data corresponding to the added value (total value) of the amounts of light received by the light receiving elements S1 and S2.
[0017]
With reference to FIG. 2, the distance measuring operation of the optical distance measuring apparatus shown in FIG. 1 will be described in detail. First, in step S1, the switch SW is turned on to the united mode side. Subsequently, in step S2, the light emitting element 1 is driven to emit a light beam toward the object. In step S3, the reflected light amount value is fetched from the S / H 37 and recorded in a predetermined memory. This reflected light amount value is a value proportional to the electric signal (I1 + I2) corresponding to the sum of the light receiving amounts of the light receiving elements S1 and S2. In the present embodiment, the CPU 11 stores reference reflectance data sampled from a reference object whose reflectance is known in advance, and based on the reference reflectance data, converts the electric signal obtained in the uniting mode. Then, the reflectance data representing the actual surface reflectance of the object is calculated. For example, the surface reflectance of an actual object is estimated based on an electric signal obtained in the uniting mode from a reference object placed at a distance of 1 m with a surface reflectance of 36%.
[0018]
Next, in step S4, the switch SW is turned on to the separation mode side. Subsequently, the light emitting element 1 is driven in step S5. In step S6, the distance measurement result is fetched and stored as distance data in the CPU. As described above, in the separation mode, a plurality of electric signals corresponding to the respective light receiving amounts of the light receiving elements S1 and S2 are output, and a difference between them is obtained in the circuit section. Here, when the CPU adopts the difference calculation method, the CPU stores the difference data as it is as distance data. When the ratio calculation method is adopted, addition data is also obtained in addition to the difference data, and the ratio between the two is used as distance data. Note that the addition data is obtained in the united mode. Thereafter, in step S7, the distance data is corrected using the reflectance data, and true distance data excluding the influence of the surface reflectance of the object is obtained.
[0019]
FIG. 3 is a block diagram schematically showing a data flow in the distance measurement method described with reference to FIGS. As shown, the pair of light receiving elements S1 and S2 output electric signals A and B according to the amount of received light, respectively. The switch circuit SW switches the electric signals A and B and supplies the electric signals to the difference circuit and the adder circuit (20-30). The difference circuit calculates AB, and the adder circuit calculates A + B. The difference circuit and the addition circuit correspond to the circuit elements 20 to 30 in FIG. AB and A + B are amplified by the amplifier circuits 33-35, and then sampled and held by the S / H 37. The sampled and held values of AB and A + B are taken into the CPU 11 via the A / D 11a.
[0020]
The CPU calculates the distance measurement data K = (A−B) / (A + B) by, for example, a ratio calculation method. At this time, a correction is made based on the reflectance data r of the object estimated in advance. For example,
K = (AB) / (A + B)
= R (ab) / r (a + b)
= (Ab) / (a + b)
Is obtained as distance data K. The reflectance r is canceled, and accurate distance data K independent of the reflectance of the object is obtained. In the case of the difference calculation method, the distance may be obtained from the corrected difference data ab instead of the original difference data AB.
[0021]
FIG. 4 is a schematic block diagram showing a modification of the embodiment shown in FIG. In this embodiment, a difference circuit and an addition circuit are directly connected to a pair of light receiving elements S1 and S2. A switch circuit SW is connected to a stage subsequent to these arithmetic circuits. The difference signal and the addition signal are selected by the switch circuit, and are taken into the CPU via the amplifier circuit, S / H, and A / D.
[0022]
【The invention's effect】
As described above, according to the present invention, a light-receiving element divided into two is connected in parallel or in series to an object whose reflectance for infrared light is known in advance, and the reflected light amount is measured as an apparently single sensor. Then, the light amount value is stored in the memory of the CPU. This is performed at the factory shipment stage of the optical distance measuring device. When performing distance measurement on an object having an unknown reflectance with respect to infrared light, a pair of light receiving elements are first connected so as to form one sensor, and the amount of reflected light is measured. The reflectance of the object is estimated by comparing with the value data. Next, distance data is obtained by calculating the difference between the electric signals obtained by the two divided light receiving elements. Since this includes the influence of the reflectance of the object, the distance data is corrected based on the previously estimated reflectance to remove the influence. With such a configuration, an optical distance measuring device that does not depend on the surface reflectance can be obtained without increasing the circuit scale.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of an optical distance measuring apparatus according to the present invention.
FIG. 2 is a flowchart for explaining the operation of the optical distance measuring apparatus shown in FIG. 1;
FIG. 3 is a block diagram for explaining the operation of the optical distance measuring apparatus shown in FIG. 1;
FIG. 4 is a block diagram showing a modification of the embodiment shown in FIG.
FIG. 5 is a perspective view showing an example of a camera incorporating an optical distance measuring device.
FIG. 6 is a schematic diagram showing the principle of optical distance measurement.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light projection part, 2 ... Light receiving part, 11 ... CPU, S1 ... Light receiving element, S2 ... Light receiving element, SW ... Switch circuit

Claims (3)

光軸方向にある対象物に対して光束を投光する発光素子を含む投光部と、
該対象物から戻って来る光束を受光して対応する電気信号を出力する受光素子を含む受光部と、
該電気信号に基づいて該対象物までの距離を算出する演算部とを備えた光学式測距装置であって、
前記受光部は二個以上複数の受光素子を有し、合体モードと分離モードで切り換え可能であり、合体モードの時該複数の受光素子は個々の受光量の合計に応じた単一の電気信号を出力し、分離モードの時個々の受光量に応じた複数の電気信号を出力し、
前記演算部は、先ず合体モードで出力される電気信号に基づいて該対象物の表面反射率を表わす反射率データを求め、次に分離モードで出力される電気信号に基づいて該対象物までの距離を表わす距離データを求め、さらに該反射率データに基づいて該距離データを補正して対象物の反射率に依存する誤差を除去することを特徴とする光学式測距装置。
A light emitting unit including a light emitting element that emits a light beam to an object in an optical axis direction,
A light receiving unit including a light receiving element for receiving a light flux returning from the object and outputting a corresponding electric signal,
An arithmetic unit that calculates a distance to the object based on the electric signal,
The light receiving unit has two or more light receiving elements, and can be switched between a combined mode and a separated mode. In the combined mode, the plurality of light receiving elements are a single electric signal corresponding to the sum of the respective received light amounts. And outputs a plurality of electric signals according to the amount of received light in the separation mode,
The calculation unit first obtains reflectance data representing the surface reflectance of the object based on the electric signal output in the combined mode, and then calculates the reflectance data up to the object based on the electric signal output in the separation mode. An optical distance measuring apparatus, wherein distance data representing a distance is obtained, and the distance data is corrected based on the reflectance data to remove an error depending on the reflectance of an object.
前記演算部は、あらかじめ反射率が既知の基準対象物からサンプリングされた参照反射率データを記憶しており、該参照反射率データに基づいて合体モード時に得られた該電気信号を処理し、もって該対象物の実際の表面反射率を表わす反射率データを算出することを特徴とする請求項1記載の光学式測距装置。The arithmetic unit stores reference reflectance data sampled from a reference object whose reflectance is known in advance, processes the electric signal obtained in the united mode based on the reference reflectance data, and 2. The optical distance measuring apparatus according to claim 1, wherein reflectance data representing an actual surface reflectance of the object is calculated. 前記演算部は、分離モードで出力される少くとも二個の電気信号の差を取った差データ及び和を取った和データを求め、該反射率データで該差データ及び和データを補正し、さらに補正された差データ及び和データの比を取って該距離データを求めることを特徴とする請求項1記載の光学式測距装置。The arithmetic unit obtains difference data obtained by taking a difference between at least two electric signals output in the separation mode and sum data obtained by taking a sum, and corrects the difference data and the sum data with the reflectance data. 2. The optical distance measuring apparatus according to claim 1, wherein the distance data is obtained by taking a ratio of the corrected difference data and the sum data.
JP2002290963A 2002-10-03 2002-10-03 Optical range finder Pending JP2004125651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290963A JP2004125651A (en) 2002-10-03 2002-10-03 Optical range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290963A JP2004125651A (en) 2002-10-03 2002-10-03 Optical range finder

Publications (1)

Publication Number Publication Date
JP2004125651A true JP2004125651A (en) 2004-04-22

Family

ID=32282684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290963A Pending JP2004125651A (en) 2002-10-03 2002-10-03 Optical range finder

Country Status (1)

Country Link
JP (1) JP2004125651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033096A (en) * 2005-07-25 2007-02-08 Keyence Corp Trigonometrical range-finding type photoelectric sensor
JP2009014360A (en) * 2007-06-29 2009-01-22 Sunx Ltd Reflection type photoelectric sensor
WO2021154037A1 (en) * 2020-01-31 2021-08-05 주식회사 유진로봇 3d lidar-based target object recognition method, device, and moving body using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033096A (en) * 2005-07-25 2007-02-08 Keyence Corp Trigonometrical range-finding type photoelectric sensor
JP2009014360A (en) * 2007-06-29 2009-01-22 Sunx Ltd Reflection type photoelectric sensor
WO2021154037A1 (en) * 2020-01-31 2021-08-05 주식회사 유진로봇 3d lidar-based target object recognition method, device, and moving body using same
KR20210098187A (en) * 2020-01-31 2021-08-10 주식회사 유진로봇 Method and Apparatus for Object Recognition Based on 3D Lidar and Moving Object Using the Same
KR102343445B1 (en) * 2020-01-31 2021-12-27 주식회사 유진로봇 Method and Apparatus for Object Recognition Based on 3D Lidar and Moving Object Using the Same

Similar Documents

Publication Publication Date Title
JP5310680B2 (en) Displacement sensor
JPH07174549A (en) Distance-measuring apparatus
JPH049609A (en) Range finder
JP2004125651A (en) Optical range finder
JP2007155356A (en) Range finder and distance measuring method
JPH0313565B2 (en)
JP2000284337A (en) Deflection detecting device and blurring correction camera
JP2638607B2 (en) Distance measuring device
JP2004245780A (en) Ranging device
JP3142960B2 (en) Distance measuring device
JP2942593B2 (en) Subject distance detection device
JP3694018B2 (en) Ranging device
JP3796083B2 (en) Ranging device
JPH0462412A (en) Subject distance detector
JP3187621B2 (en) Active triangulation
JP2002341238A (en) Adjusting device for auto-focusing device
JP3140454B2 (en) Moving object ranging device
JP3236095B2 (en) Distance measuring device
JP3077998B2 (en) Moving speed detector
JP2731159B2 (en) Camera multipoint ranging device
JP3041028B2 (en) Object motion detection device
JPH11281882A (en) Range finding device
JPH0575461A (en) Signal processing unit
JPH0511173A (en) Range finder
JP2002098525A (en) Range finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050930

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A02