JPH07102461A - Textile interior material and its processing - Google Patents

Textile interior material and its processing

Info

Publication number
JPH07102461A
JPH07102461A JP5273013A JP27301393A JPH07102461A JP H07102461 A JPH07102461 A JP H07102461A JP 5273013 A JP5273013 A JP 5273013A JP 27301393 A JP27301393 A JP 27301393A JP H07102461 A JPH07102461 A JP H07102461A
Authority
JP
Japan
Prior art keywords
fiber
melting point
interior material
heat
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5273013A
Other languages
Japanese (ja)
Inventor
Yoshigo Fukaya
善吾 深谷
Hidetaka Kato
英隆 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KUTSUSHIYON KK
Original Assignee
TOYO KUTSUSHIYON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KUTSUSHIYON KK filed Critical TOYO KUTSUSHIYON KK
Priority to JP5273013A priority Critical patent/JPH07102461A/en
Publication of JPH07102461A publication Critical patent/JPH07102461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finishing Walls (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide a textile interior material having easily adjustable shape, dimension, etc., high designing flexibility of color arrangement, pattern, etc., light weight, airpermeability and excellent mechanical strength, heat-resistance, sound-insulation, etc. CONSTITUTION:This textile interior material having a thickness of 5mm is produced by using (A) a hot-melt core-sheath conjugate fiber consisting of a high-melting polyester fiber (melting point: 250-280 deg.C) having a fineness of 2-15de and a fiber length of about 51 mm as a the core fiber and a polyester fiber having a melting point of 110-130 deg.C as the sheath fiber and (B) a polyester fiber having a melting point of 250 deg.C (the fineness is 13de and the fiber length is about 51mm) as a non-fusible fiber, uniformly blending both fibers at a weight ratio of 60/40, heating the blended fibers in a hot-air circulating thermostatic chamber at 140 deg.C for about 15 min, placing on a plate (room temperature) of a compression molding machine immediately after taking out of the chamber and pressing under a pressure of 200t/cm<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建材等として使用され
る繊維製内装材、及びその加工方法に関し、更に詳しく
言えば、形状、寸法等の調整が容易で、配色、図柄等の
自由度が高く、軽量で通気性があり、優れた機械的強
度、耐久性、及び断熱性、遮音性等を有する繊維製内装
材、及びその所要箇所を加熱して軟化、変形させ、加工
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber interior material used as a building material, etc., and its processing method. More specifically, it is easy to adjust the shape, dimensions, etc., and the degree of freedom in color arrangement, design, etc. Highly lightweight, breathable, breathable, and has excellent mechanical strength, durability, heat insulation, sound insulation, etc., and a method of heating and softening, deforming and processing the required parts .

【0002】[0002]

【従来の技術】建築物の内装壁、床材、天井材、又は建
具等の内装材としては、スギ、エゾマツ、ヒノキ、ツガ
等の木材、ベニヤ板、合板等の他、硬質塩化ビニル、繊
維強化プラスチック、ポリエチレン発泡体、及び硬質ポ
リウレタンフォーム等からなる合成木質材など各種の材
料が使用されている。建築物の内装材に対しては、適当
な重量、吸水性、及び曲げ強さ、衝撃強さ等の機械的強
度、断熱性、保温性等の熱的特性、並びに緩衝性、遮音
性など多くの特性が要求されるが、上記各材料はそれぞ
れの特長に応じて、その特性が生かされるような条件で
使用されている。
2. Description of the Related Art As interior materials for building interior walls, flooring materials, ceiling materials, fittings, etc., wood such as cedar, spruce pine, cypress, hemlock, plywood, etc., hard vinyl chloride, fiber reinforced Various materials such as synthetic wood materials such as plastic, polyethylene foam, and rigid polyurethane foam are used. For interior materials of buildings, appropriate weight, water absorption, mechanical strength such as bending strength and impact strength, thermal characteristics such as heat insulation and heat retention, and cushioning and sound insulation are many. However, each of the above materials is used under the condition that the characteristics can be utilized depending on the characteristics of each material.

【0003】上記の各内装材は、それぞれ以下のよう
に、 スギ、ヒノキ等の木材は軽量で、曲げ強さ、圧縮強
さ等に優れるものの、吸水量が大きく、耐久性もやや劣
り、また、断熱性、遮音性等も不足する、 ベニヤ板は軽量で加工性に優れるものの、機械的強
度、耐久性が劣り、上記木材同様、断熱性、遮音性等も
不足する、 合板は各種のものがあるが、一般に軽量で、機械的
強度も不足はないが、木材同様吸水性が大きく、耐久性
もやや劣る、 硬質塩化ビニルシートは、機械的強度に優れるもの
の、非常に重く、熱による変形(膨張)も大きい、ま
た、断熱性、遮音性等もやや不足する、 繊維強化プラスチックシートは、機械的強度は非常
に大きいが、上記塩化ビニルシートより更に重く、ま
た、強化材として多用されるガラス繊維は、作業環境上
大きな問題がある、 ポリエチレン発泡体、硬質ポリウレタンフォーム等
の発泡体は、軽量で断熱性、遮音性等にも優れるが、曲
げ強さ、衝撃強さ等の機械的強度が劣る、 など、それぞれ長所、欠点を有する。
In each of the above interior materials, wood such as cedar and cypress is light in weight and excellent in bending strength, compression strength, etc., but it has a large water absorption amount and is slightly inferior in durability. Lack of heat insulation and sound insulation.Veneer boards are lightweight and excellent in workability, but have poor mechanical strength and durability, and like wood, they also lack heat insulation and sound insulation.There are various types of plywood. However, they are generally light in weight and have sufficient mechanical strength, but they also have a high water absorbency and a little inferior durability like wood.The rigid vinyl chloride sheet has excellent mechanical strength, but is very heavy and deforms due to heat ( The fiber reinforced plastic sheet has a very large mechanical strength, but is heavier than the above vinyl chloride sheet, and is a glass that is often used as a reinforcing material. Fiber is There are major problems in the work environment. Polyethylene foam, rigid polyurethane foam, and other foams are lightweight and have excellent heat insulation and sound insulation properties, but poor mechanical strength such as bending strength and impact strength. , Each have advantages and disadvantages.

【0004】また、上記各内装材は、現場で加工しなが
ら施工していく場合は、施工に長期間を要するととも
に、高度な熟練を要し、そのような高度な技術を持つ人
の確保が容易ではなく、一方、工場等で予め施工箇所の
形状、寸法に合わせて加工された内装材を使用する場合
は、所要形状及び寸法の部材を所定数量、期日までに確
実に用意する必要があり、また、それらの部材は現場で
形状或いは寸法等を変更することは容易ではなく、施工
途中での細かい設計変更等への対応は困難な場合が多
い。
Further, when each of the above interior materials is constructed while being processed on site, it requires a long period of construction and requires a high degree of skill, so it is necessary to secure a person with such high technology. This is not easy, but on the other hand, when using interior materials that have been processed in advance in accordance with the shape and dimensions of the construction site in a factory, etc., it is necessary to ensure that the required number of materials with the required shape and dimensions are prepared by the specified quantity and deadline. Moreover, it is not easy to change the shape or size of these members on site, and it is often difficult to deal with small design changes during construction.

【0005】[0005]

【発明が解決しようとする課題】本発明は、機械的強度
及び耐久性に優れ、形状、寸法等の調整が容易で、断熱
性、遮音性等にも優れ、軽量で通気性があり、表面に塗
装、印刷、プリントなどを容易に行うことができ、好み
の配色、図柄とすることのできる繊維製内装材、及びそ
れを用い、施工現場、工場等において簡易な装置、手法
で所要形状並びに寸法に加工する方法を提供することを
課題とする。
DISCLOSURE OF THE INVENTION The present invention is excellent in mechanical strength and durability, is easy to adjust the shape and size, is excellent in heat insulating property, sound insulating property, is lightweight and breathable, and has a surface. The interior material made of fiber that can be easily painted, printed, printed, etc. and has a color scheme and pattern of your choice, and the required shape with a simple device and method at construction sites, factories, etc. It is an object to provide a method of processing into dimensions.

【0006】[0006]

【課題を解決するための手段】本第1発明の繊維製内装
材は、熱溶着性繊維と非熱溶着性繊維とを含む混合繊維
を、該熱溶着性繊維の少なくとも表面が軟化若しくは溶
融する温度以上に加熱しつつ、又は加熱直後に、50t
/cm2 以上に加圧して成形され、該熱溶着性繊維が熱
溶着されて形成される接合部を有する繊維溶着成形体か
らなることを特徴とする。第2発明は、上記熱溶着性繊
維は、低融点ポリエステル繊維、ポリエチレン繊維、ポ
リプロピレン繊維、ポリ塩化ビニル繊維、ナイロン繊
維、エチレン酢酸ビニル共重合体繊維、及び、高融点型
ポリエステル繊維からなる芯と該芯を被覆し且つ該高融
点型ポリエステル繊維の融点より30℃以上低い融点を
もつ熱可塑性樹脂からなる被覆部とから構成される接着
性芯鞘型繊維のうちの1種又は2種以上であることを特
徴とする。
The fiber interior material of the first aspect of the present invention softens or melts at least the surface of the mixed fiber containing the heat-welding fiber and the non-heat-welding fiber. While heating above the temperature or immediately after heating, 50t
It is characterized in that it is formed by pressurizing to a pressure of not less than / cm 2 and is formed of a fiber-welded molded article having a joint formed by heat-welding the heat-weldable fiber. In a second aspect of the invention, the heat fusible fiber is a core made of low melting point polyester fiber, polyethylene fiber, polypropylene fiber, polyvinyl chloride fiber, nylon fiber, ethylene vinyl acetate copolymer fiber, and high melting point type polyester fiber. One or more of adhesive core-sheath type fibers which are composed of a coating portion which covers the core and which is composed of a thermoplastic resin having a melting point lower than the melting point of the high melting point polyester fiber by 30 ° C. or more. It is characterized by being.

【0007】また、第3発明は、上記熱溶着性繊維は、
高融点型ポリエステル繊維からなる芯と、該芯を被覆
し、且つ、該高融点型ポリエステル繊維の融点より30
℃以上低い融点をもつ熱可塑性樹脂からなる被覆部と、
から構成される接着性芯鞘型繊維であり、上記非熱溶着
性繊維は、高融点型ポリエステル繊維であることを特徴
とし、第4発明の繊維製内装材は、高融点型ポリエステ
ル繊維からなる芯と、該芯を被覆し、且つ、該高融点型
ポリエステル繊維の融点より30℃以上低い融点をもつ
熱可塑性樹脂からなる被覆部と、から構成される接着性
芯鞘型繊維を、該被覆部の少なくとも表面が軟化若しく
は溶融する温度以上に加熱しつつ、又は加熱直後に、5
0t/cm2 以上に加圧して成形され、該被覆部が熱溶
着されて形成される接合部を有する繊維溶着成形体から
なることを特徴とする。
The third aspect of the present invention is that the heat-weldable fiber comprises:
A core made of high-melting point polyester fiber, and a core covering the core and having a melting point of 30 from the high-melting point polyester fiber.
A coating part made of a thermoplastic resin having a melting point lower than ℃,
The non-heat-welding fiber is an adhesive core-sheath type fiber, and the fiber interior material of the fourth invention is a high-melting point polyester fiber. An adhesive core-sheath fiber composed of a core and a coating part which covers the core and is made of a thermoplastic resin having a melting point lower than the melting point of the high melting point polyester fiber by 30 ° C. or more is provided. While heating above the temperature at which at least the surface of the part softens or melts, or immediately after heating, 5
It is characterized in that it is formed by pressurizing to 0 t / cm 2 or more and is formed of a fiber-welded molded article having a joint formed by heat-welding the covering portion.

【0008】更に、第5発明は、上記繊維溶着成形体を
構成する繊維の少なくとも一部が難燃性繊維であること
を特徴とし、第6発明は、上記難燃性繊維の割合は、上
記繊維溶着成形体を構成する繊維の合計量を100重量
%とした場合に、10〜100重量%であることを特徴
とする。第7発明は、熱溶着性繊維と非熱溶着性繊維と
を含む混合繊維を、該熱溶着性繊維の少なくとも表面が
軟化若しくは溶融する温度以上に加熱しつつ、又は加熱
直後に、加圧して成形され、該熱溶着性繊維が熱溶着さ
れて形成される接合部を有する繊維溶着成形体からな
り、密度が0.08〜0.9g/cm3 、目付量が10
0〜2000g/m2 であることを特徴とする。また、
第8発明は、上記の繊維製内装材の加工方法に関するも
のであり、繊維製内装材の所要箇所を加熱して軟化さ
せ、被施工面の形状に合わせて変形させて、加工するこ
とを特徴とする。
Further, the fifth invention is characterized in that at least a part of the fibers constituting the fiber-welded molded article is flame-retardant fiber, and the sixth invention is such that the ratio of the flame-retardant fiber is above. It is characterized in that it is 10 to 100% by weight when the total amount of fibers constituting the fiber-welded molded article is 100% by weight. The seventh invention is to press the mixed fiber containing the heat-weldable fiber and the non-heat-weldable fiber to a temperature at which at least the surface of the heat-weldable fiber is softened or melted or higher, or immediately after heating. It is formed of a fiber-welded molded article having a joint formed by heat-welding the heat-weldable fiber, having a density of 0.08 to 0.9 g / cm 3 and a basis weight of 10
It is characterized in that it is 0 to 2000 g / m 2 . Also,
An eighth aspect of the present invention relates to the above-described method for processing a fiber interior material, which is characterized in that a required portion of the fiber interior material is heated and softened, and the fiber interior material is deformed in accordance with the shape of the surface to be processed and processed. And

【0009】上記「熱溶着性繊維」(以下、溶着繊維と
いう)は、主に熱接着(溶着、融着)作用を有するもの
であり、低融点ポリエステル繊維、ポリエチレン繊維、
ポリプロピレン繊維、ポリ塩化ビニル繊維、ナイロン繊
維、及びエチレン酢酸ビニル共重合体繊維等のうちの1
種又は2種以上を用いることができる。これらは、融点
を越えて高温に加熱することにより溶融して元の繊維形
状を失い、互いに溶着して多数の接合部を形成する。こ
の溶着繊維からなる網状体中には、上記「非熱溶着性繊
維」(以下、非溶着繊維という)が絡み合って取り込ま
れており、このものを圧縮成形することにより上記「繊
維溶着成形体」が形成される。
The above-mentioned "heat-fusible fiber" (hereinafter referred to as "welding fiber") mainly has a heat-bonding (welding, fusing) effect, and includes low-melting point polyester fiber, polyethylene fiber,
1 of polypropylene fiber, polyvinyl chloride fiber, nylon fiber, ethylene vinyl acetate copolymer fiber, etc.
One kind or two or more kinds can be used. These melt by heating above the melting point to a high temperature, losing their original fiber shape and welding together to form multiple joints. The above-mentioned "non-heat-welding fiber" (hereinafter referred to as "non-welding fiber") is entangled and incorporated into the net-like body made of this welding fiber, and the above-mentioned "fiber-welding molded body" is obtained by compression molding this product. Is formed.

【0010】尚、元の繊維形状が失われるまで高温には
加熱せず、表面のみを軟化若しくは溶融させる場合は、
溶着繊維は繊維形状を保ったまま互いに接着又は溶着さ
れる。更に、溶着繊維は、「高融点型ポリエステル繊
維」からなる「芯」と、該芯を被覆し、且つ、該「高融
点型ポリエステル繊維の融点よりも30℃以上低い融点
をもつ熱可塑性樹脂」からなる「被覆部」と、から構成
される「接着性芯鞘型繊維」(以下、芯鞘型繊維とい
う)とすることもできる。この芯鞘型繊維の場合は、高
温にしても繊維形状が失われることがないため容積の減
少が少なく、また芯繊維が高融点型ポリエステルからな
るため耐熱性等の熱特性、及び機械特性等にも優れる。
尚、この芯鞘型繊維の芯は、中実体でもよいし、中空体
でもよい。中空体の場合は、より軽量であって、弾力性
に優れる。また、この芯として、ゴム弾性繊維を用いる
こともできる
When the original fiber shape is lost and the surface is not heated to a high temperature and only the surface is softened or melted,
The welded fibers are adhered or welded to each other while maintaining the fiber shape. Further, the welding fiber is a "core" made of "high melting point type polyester fiber" and a thermoplastic resin which covers the core and has a melting point lower than the melting point of the high melting point type polyester fiber by 30 ° C or more. It is also possible to make an "adhesive core-sheath fiber" (hereinafter referred to as a core-sheath fiber) composed of In the case of this core-sheath type fiber, the volume of the fiber is not reduced even if the temperature is high, and the volume is not decreased. Also, since the core fiber is made of high melting point type polyester, thermal characteristics such as heat resistance and mechanical characteristics, etc. Is also excellent.
The core of the core-sheath fiber may be a solid body or a hollow body. The hollow body is lighter in weight and has excellent elasticity. Also, rubber elastic fiber can be used as the core.

【0011】上記「非溶着繊維」は、上記溶着繊維の融
点よりも高温の融点をもつものであればよく、通常、1
50〜280℃の高融点のものが用いられる。それらの
繊維としては、ポリエチレンテレフタレート、ポリヘキ
サメチレンテレフタレート、ポリテトラメチレンテレフ
タレート等からなるポリエステル繊維、ナイロン66等
からなるナイロン繊維、その他の合成繊維、及び天然繊
維等を用いることができる。以上説明したように、溶着
繊維及び非溶着繊維としては、高融点型ポリエステル繊
維と低融点型ポリエステル繊維との組み合わせが、互い
の融着性、得られる内装材の機械的特性、及び両繊維の
融点差のバランス等から考え、最も好ましい。また、上
記ポリエステル繊維も含め、例示した溶着繊維及び非溶
着繊維は、ポリ塩化ビニル繊維を除いて、燃焼した際に
有毒ガスの発生がなく、建築物、とくに住居の内装材と
して好ましい。
The above-mentioned "non-welded fiber" may be one having a melting point higher than that of the above-mentioned welded fiber, and usually 1
A material having a high melting point of 50 to 280 ° C. is used. As these fibers, polyester fibers made of polyethylene terephthalate, polyhexamethylene terephthalate, polytetramethylene terephthalate, etc., nylon fibers made of nylon 66, other synthetic fibers, natural fibers, etc. can be used. As described above, as the welded fiber and the non-welded fiber, a combination of the high-melting point type polyester fiber and the low-melting point type polyester fiber, mutual fusion property, mechanical properties of the obtained interior material, and both fibers It is most preferable in consideration of the balance of melting point difference. Except for polyvinyl chloride fibers, the exemplified welded fibers and non-welded fibers including the above polyester fibers do not generate toxic gas when burned, and are preferable as interior materials for buildings, particularly houses.

【0012】溶着繊維と非溶着繊維との融点の差は20
℃程度以上であればよい。この差があまりに小さいと、
加熱溶融時、非溶着繊維も溶融し、柔軟性を欠いた剛性
の高い成形体となり、断熱性、遮音性等の劣ったものと
なるため好ましくない。また、それぞれの繊維の種類或
いは加熱温度等の成形条件によっては両者を互いに適当
に溶着、接着させることもでき、そうなれば両者は単に
物理的に絡み合っているばかりではなく、得られる内装
材の諸特性を更に幅広く調整することができるようにな
る。
The difference in melting point between the welded fiber and the non-welded fiber is 20
It may be about C or higher. If this difference is too small,
At the time of heating and melting, the non-welded fibers are also melted, resulting in a molded product with high rigidity lacking flexibility, which is inferior in heat insulating property and sound insulating property, which is not preferable. Further, depending on the type of each fiber or molding conditions such as heating temperature, the two can be appropriately welded and adhered to each other. In such a case, the two are not merely physically entangled, but also the interior material to be obtained. Various characteristics can be adjusted more widely.

【0013】上記溶着繊維と非溶着繊維の混合比率は、
通常、重量比で10:90〜90:10の範囲内にて適
宜選択する。これにより、希望の性能を有する繊維製内
装材を得ることができる。即ち、溶着繊維の配合割合を
多くすると繊維製内装材全体を通じて硬めのものが、一
方、それを少なくすると繊維製内装材全体を通じて柔ら
かめのものを得ることができる。この溶着繊維が10%
未満になると、溶着繊維間の熱溶着により形成される接
合部が少なくなって、繊維製内装材全体の強度が不十分
となり、一方、これが90%を超えると、接合部が過多
となり、製造した繊維製内装材が硬くなり過ぎ好ましく
ない。このように、本発明の繊維製内装材は、溶着繊維
と非溶着繊維の配合割合を変えた混合繊維を用いること
によっても、目的、用途に応じて、硬さ、機械的強度
等、その性質を適宜変えることができる。また、溶着繊
維、非溶着繊維の形状(カール、撚りの有無等)、太
さ、長さ等も目的、用途に応じて種々選択することがで
きる。
The mixing ratio of the above-mentioned welded fiber and non-welded fiber is
Usually, the weight ratio is appropriately selected within the range of 10:90 to 90:10. As a result, a fiber interior material having desired performance can be obtained. That is, if the blending ratio of the welded fiber is increased, a softer fiber is obtained throughout the fiber interior material, while if it is reduced, a softer fiber is obtained throughout the fiber interior material. This welding fiber is 10%
When the amount is less than the above, the number of joints formed by heat welding between the welded fibers is reduced, and the strength of the entire fiber interior material becomes insufficient. On the other hand, when it exceeds 90%, the number of joints becomes excessive and the manufactured The fiber interior material becomes too hard, which is not preferable. Thus, the fiber interior material of the present invention, even by using mixed fibers with different blending ratio of the welded fibers and the non-welded fibers, depending on the purpose and application, hardness, mechanical strength, etc., its properties Can be changed appropriately. Further, the shapes of the welded fibers and the non-welded fibers (whether curled, twisted, etc.), thickness, length, etc. can be variously selected according to the purpose and application.

【0014】以上、溶着繊維と非溶着繊維とを含む混合
繊維からなる繊維製内装材について説明したが、本発明
の繊維製内装材は、第4発明のように、第1発明等にお
いて溶着繊維の1種として用いられる芯鞘型繊維のみを
用いた繊維製内装材とすることもできる。この芯鞘型繊
維は、芯を形成する高融点繊維と、低融点の熱可塑性樹
脂により形成される被覆部とからなり、溶着繊維に相当
する被覆部と非溶着繊維に相当する芯繊維とが一体とな
った構成になっている。このような芯鞘型繊維を使用す
れば、溶着繊維と非溶着繊維との混合が不均一となっ
て、両繊維が偏在することに起因する、内装材の不均質
或いは性能低下といった問題が全くないため好ましい。
The fiber interior material made of a mixed fiber containing the welded fiber and the non-welded fiber has been described above. The fiber interior material of the present invention, like the fourth invention, is the welded fiber in the first invention. It is also possible to make a fiber interior material using only the core-sheath type fiber used as one of the above. This core-sheath type fiber is composed of a high melting point fiber forming a core and a coating portion formed of a low melting point thermoplastic resin, and a coating portion corresponding to a welding fiber and a core fiber corresponding to a non-welding fiber. It is an integrated structure. When such a core-sheath fiber is used, the mixture of the welded fiber and the non-welded fiber becomes non-uniform, and due to the uneven distribution of both fibers, there is no problem of non-uniformity of the interior material or deterioration of performance. It is preferable because it does not exist.

【0015】更に、上記繊維溶着成形体を構成する繊維
は、少なくともその一部が「難燃性繊維」であってもよ
い。難燃性繊維としては、溶着繊維及び/又は非溶着繊
維或いは芯鞘型繊維そのものが難燃性のものであっても
よいし、その他の難燃性繊維を配合したものであっても
よい。難燃性は、繊維製内装材の全体或いは必要箇所に
付与することができ、難燃性を必要とされる用途、例え
ば、住居用内装材、特に、台所等の内装材として問題な
く使用できる。上記難燃性繊維としては、繊維を形成す
る素材樹脂自体が難燃性樹脂であるもの、及び有機或い
は無機難燃剤を添加して難燃性を付与した樹脂からなる
繊維等を用いることができる。
Further, at least a part of the fibers constituting the fiber-welded molded article may be "flame-retardant fibers". As the flame-retardant fiber, the welded fiber and / or the non-welded fiber or the core-sheath fiber itself may be flame-retardant, or other flame-retardant fiber may be blended. The flame retardancy can be imparted to the entire or required place of the fiber interior material, and can be used without any problem as an application requiring flame retardancy, for example, an interior material for a house, especially as an interior material for a kitchen or the like. . As the flame-retardant fiber, it is possible to use one in which the material resin forming the fiber itself is a flame-retardant resin, and a fiber made of a resin to which flame retardancy is imparted by adding an organic or inorganic flame retardant. .

【0016】それ自体難燃性の樹脂としては、芳香族ナ
イロン樹脂、フェノール系樹脂、ビニリデン系樹脂、塩
化ビニル系樹脂、及び難燃処理が施されたアクリル系樹
脂等が挙げられる。また、上記有機難燃剤としては、ポ
リリン酸カルバメート、ポリリン酸エステル等のリン系
難燃剤、含ハロゲン酸エステル、含塩素ポリホスホネー
ト等のリン・ハロゲン系難燃剤、ハロゲン化無水フター
ル酸、塩素化パラフィン等のハロゲン系難燃剤、及びス
ルファミン酸グアニジン、チオ尿素メチロール化物等の
硫黄系難燃剤などが、また、無機難燃剤としては、リン
酸アンモニウム塩、硫酸アンモニウム塩等のアンモニウ
ム塩、塩化チタン、塩化ビスマス等の金属塩化物、及び
ケイ酸ナトリウム、ホウ酸ナトリウム等のアルカリ金属
塩などからなる難燃剤が挙げられる。難燃加工は、所要
量の上記難燃剤を予め混練添加した原料樹脂を用いて紡
糸する方法、及び上記難燃剤を適宜の溶剤に所要量溶解
した溶液中に繊維を浸漬し、取り出して乾燥した後、必
要に応じて熱処理する等の方法により実施される。
Examples of the flame-retardant resin itself include aromatic nylon resin, phenol resin, vinylidene resin, vinyl chloride resin, and flame-retarded acrylic resin. Examples of the organic flame retardant include phosphorus-based flame retardants such as polyphosphate carbamate and polyphosphate ester, halogen-containing ester, phosphorus-halogen flame-retardant such as chlorine-containing polyphosphonate, halogenated phthalic anhydride, and chlorinated paraffin. Halogen-based flame retardants such as guanidine sulfamate, and sulfur-based flame retardants such as thiourea methylol compounds, and inorganic flame retardants include ammonium phosphate salts, ammonium salts such as ammonium sulfate salts, titanium chloride, and bismuth chloride. Examples of the flame retardant include metal chlorides such as the above and alkali metal salts such as sodium silicate and sodium borate. Flame-retardant processing is a method of spinning using a raw material resin in which the required amount of the flame retardant has been kneaded and added, and immersing the fiber in a solution in which the required amount of the flame retardant is dissolved in an appropriate solvent, taken out and dried. After that, it is carried out by a method such as heat treatment if necessary.

【0017】上記難燃性繊維は、繊維溶着成形体を構成
する繊維の合計量を100重量%とした場合に、10〜
100重量%の範囲で使用される。難燃性繊維の割合が
10重量%未満では十分な難燃性が得られず好ましくな
い。また、上記のように全ての繊維が難燃性繊維であっ
ても、得られる内装材の性能上は何ら問題ないが、製品
コストの点からは好ましくなく、難燃性能とコストとの
両面から、難燃性繊維の割合は20〜60重量%の範囲
がより好ましい。
The above-mentioned flame-retardant fiber is 10 to 10 when the total amount of fibers constituting the fiber-welded article is 100% by weight.
Used in the range of 100% by weight. When the proportion of the flame-retardant fiber is less than 10% by weight, sufficient flame retardancy cannot be obtained, which is not preferable. Further, even if all the fibers are flame-retardant fibers as described above, there is no problem in terms of the performance of the obtained interior material, but it is not preferable from the viewpoint of product cost, from both aspects of flame-retardant performance and cost. The proportion of the flame-retardant fiber is more preferably in the range of 20 to 60% by weight.

【0018】以下に本発明の繊維製内装材の製造方法に
ついて説明する。本発明の繊維製内装材は、上記溶着繊
維と非溶着繊維との混合繊維、又は芯鞘型繊維(以下、
混合繊維等という)、及び必要に応じて難燃性繊維等
を、繊維用ブレンダーによって可能な限り均一に混合
し、カード機によりウェブに成形し、このウェブを複数
枚重ねて、溶着繊維、又は芯鞘型繊維の被覆部(以下、
溶着繊維等という)の少なくとも表面が軟化若しくは溶
融し、非溶着繊維、又は芯鞘型繊維の芯繊維は軟化、溶
融しないか僅かに溶融する温度範囲に加熱し、圧縮成形
することにより製造することができる。上記の方法によ
り得られる内装材は上記ウェブとほぼ同一の表面形状の
ものとなる。そのため、内装材の所要表面形状に従い、
同一の大きさのものを製造してもよいし、数倍の大きさ
のものを製造して裁断して使用してもよいし、数分の一
のものを製造して数枚を組み合わせて使用するようにし
てもよい。また、ウェブの厚さ、目付量等は特に制限さ
れないが、通常は厚さ数mm、目付量数十gのものが好
適であり、これを5〜10枚程度重ねて使用する。
The method for producing the fiber interior material of the present invention will be described below. The fiber interior material of the present invention is a mixed fiber of the above-mentioned welded fiber and non-welded fiber, or a core-sheath fiber (hereinafter,
Mixed fibers, etc.), and if necessary, flame-retardant fibers, etc., are mixed as uniformly as possible by a fiber blender, formed into a web by a card machine, and a plurality of the webs are stacked to form a welded fiber, or Core-sheath fiber coating (hereinafter,
At least the surface of (welded fiber, etc.) is softened or melted, and the non-welded fiber or the core fiber of the core-sheath type fiber is heated to a temperature range where it does not soften, does not melt or slightly melts, and is produced by compression molding. You can The interior material obtained by the above method has substantially the same surface shape as the above web. Therefore, according to the required surface shape of the interior material,
It may be manufactured in the same size, may be manufactured several times in size and cut and used, or may be manufactured in a fraction and manufactured by combining several sheets. It may be used. Further, the thickness of the web, the weight per unit area, etc. are not particularly limited, but it is usually preferable that the thickness is several mm and the weight per unit weight is several tens of g.

【0019】上記の圧縮成形は、圧縮成形機の加熱プレ
ート間に、室温の(加熱されていない)上記ウェブを挟
んで、所定厚さになるように加熱、加圧して成形しても
よいし、ウェブを所定温度に設定された温風循環式等の
槽内の温度分布が均一な恒温槽中で、予め溶着繊維等の
少なくとも表面が軟化若しくは溶融するまで加熱し、こ
の高温の混合繊維等を、圧縮成形機の室温或いは比較的
低温に加熱された又は冷却されたプレート間に挟んで加
圧して成形してもよい。これら何れの方法で製造するに
しても、前記のように複数枚重ねたウェブは全厚さが数
十mmにもなるため、これを一時に所定厚さにまで圧縮
した場合は、厚さ方向に均質な内装材が得られないこと
もある。そのような場合は、重ねられたウェブを、例え
ば、半分の厚さにまで圧縮し、その状態で暫く(数分
間)保持し、次いで、更にこれを圧縮して目的とする1
〜10mm、特に3〜5mm程度の厚さにする方法とす
ることもできる。また、このような段階的成形は、上記
の2段階に限られず、必要に応じて更に多段の成形とす
ることもできる。
The compression molding may be carried out by sandwiching the (unheated) web at room temperature between the heating plates of the compression molding machine and heating and pressurizing the web to a predetermined thickness. , The web is heated in a constant temperature bath with a uniform temperature distribution in a hot air circulation type set to a predetermined temperature until at least the surface of the welded fibers is softened or melted, and the high temperature mixed fibers, etc. May be sandwiched between plates heated or cooled to a room temperature or a relatively low temperature of a compression molding machine to press and mold. No matter which method is used for manufacturing, the total thickness of a web in which a plurality of layers are stacked as described above is several tens of millimeters. Therefore, when the web is compressed to a predetermined thickness at a time, the thickness direction In some cases, a homogeneous interior material cannot be obtained. In such a case, the overlapped webs are compressed to, for example, a half thickness, held in that state for a while (several minutes), and then further compressed to obtain the target 1
It is also possible to adopt a method in which the thickness is about 10 mm, especially about 3 to 5 mm. Further, such stepwise molding is not limited to the above-mentioned two steps, and may be multistage molding if necessary.

【0020】尚、上記の混合繊維等を予め加熱してから
圧縮する方法では、混合繊維等の全体が表層から中心部
まで均一に加熱された状態で加圧され圧縮されるため、
比較的厚手の内装材を製造する場合に適しており、溶着
繊維等が軟化若しくは溶融して形成される接合点が、得
られる内装材の全面、及び厚さ方向に表層から中心部ま
で均等に形成され、均質な内装材が得られるため好まし
い。一方、予熱されていないか、非常に短時間加熱され
ただけの混合繊維等を、加熱プレート間で圧縮成形する
方法では、たとえ圧縮成形機のプレートの温度を高温に
しても、混合繊維等の内部まで熱が十分伝わり難いた
め、比較的薄手の内装材を製造する場合に適しており、
特にこの場合は、上記のように多段階に加熱、圧縮する
方法が望ましい。また、成形は所定寸法の型を用いても
よいし、型は使用せず、圧縮成形機のプレート間距離の
設定によって所定厚さとした成形品の周縁を、切削し削
除する方法であってもよい。
In the method of heating the mixed fibers and the like in advance and then compressing them, the entire mixed fibers and the like are pressed and compressed while being uniformly heated from the surface layer to the central portion.
Suitable for manufacturing relatively thick interior materials, the joints formed by softening or melting of the welding fibers, etc. are uniform on the entire surface of the obtained interior material and from the surface layer to the center in the thickness direction. It is preferable because it is formed and a homogeneous interior material can be obtained. On the other hand, in the method of compression-molding mixed fibers that have not been preheated or that have been heated for a very short time between heating plates, even if the temperature of the plate of the compression molding machine is increased, the mixed fibers, etc. It is suitable for manufacturing relatively thin interior materials because it is difficult for heat to reach the inside.
Particularly in this case, the method of heating and compressing in multiple stages as described above is desirable. Further, the molding may be performed by using a mold having a predetermined size, or a method of cutting the peripheral edge of the molded product having a predetermined thickness by cutting the plate distance of the compression molding machine and cutting it without using the mold. Good.

【0021】上記製造方法において、混合繊維等を加熱
する温度は、溶着繊維等を形成する樹脂の融点より5〜
50℃、特に5〜20℃程度高い範囲の温度が好まし
い。この温度が低過ぎる場合は溶着繊維等が互いに十分
に、接着又は溶着せず、得られる内装材に少しの外力が
加わっても剥がれ、割れ等が生じ易く好ましくない。一
方、温度が高過ぎる場合は、繊維表面が熱劣化したり、
場合によっては、溶着繊維等が混合繊維等の中で流動し
て溶着、非溶着両繊維の偏在を生じたり、被覆部が溶融
流動して芯鞘型繊維の構造が維持されなかったりする恐
れがある。また、十分な数の接合部も形成されず、均質
な構造の内装材が得られないばかりか、強度も不十分な
ものとなるため好ましくない。
In the above manufacturing method, the temperature at which the mixed fibers and the like are heated is 5 to the melting point of the resin forming the welded fibers and the like.
A temperature in the range of 50 ° C., particularly 5 to 20 ° C. higher is preferable. If this temperature is too low, the welded fibers or the like do not sufficiently adhere or weld to each other, and even if a small external force is applied to the obtained interior material, peeling and cracking are likely to occur, which is not preferable. On the other hand, when the temperature is too high, the fiber surface is thermally deteriorated,
In some cases, the welded fibers may flow in the mixed fibers to cause uneven distribution of both welded and non-welded fibers, or the coating may melt and flow and the structure of the core-sheath fibers may not be maintained. is there. Further, a sufficient number of joints are not formed, an interior material having a uniform structure cannot be obtained, and the strength becomes insufficient, which is not preferable.

【0022】第1発明及び第4発明において、混合繊維
等を加圧する圧力は50t/cm2以上である。この圧
力未満では、十分な数の接合部が形成され難く、得られ
る内装材の強度等が不十分となる他、寸法精度も劣った
ものとなる。圧力の上限は、所望特性、所望寸法の内装
材が得られる限り、特に制限はされないが、通常100
t/cm2 、加熱温度が比較的低い場合或いは内装材が
大型である場合等は、400〜500t/cm2 程度ま
で加圧してもよい。尚、第7発明の繊維製内装材は、密
度が0.08〜0.9g/cm3 、目付量が100〜2
000g/m2 、特に好ましくは150〜1000g/
2 の範囲であり、密度、目付量がこの範囲であれば、
得られる内装材の剛性と通気性等とのバランスが良く、
機械的強度、断熱性、遮音性等の特性に優れたものとな
る。上記数値範囲の内装材は、圧縮成形の条件を適宜設
定することにより製造することができ、上記数値範囲の
内装材が得られる限り、加熱温度、圧力等は特に制限さ
れない。
In the first and fourth aspects of the invention, the pressure for pressing the mixed fiber or the like is 50 t / cm 2 or more. Below this pressure, it is difficult to form a sufficient number of joints, the strength of the obtained interior material is insufficient, and the dimensional accuracy is also poor. The upper limit of the pressure is not particularly limited as long as the interior material having desired characteristics and dimensions can be obtained, but is usually 100.
When the heating temperature is t / cm 2 , the heating temperature is relatively low, or the interior material is large, the pressure may be increased to about 400 to 500 t / cm 2 . The fiber interior material of the seventh invention has a density of 0.08 to 0.9 g / cm 3 and a basis weight of 100 to 2
000 g / m 2 , particularly preferably 150 to 1000 g /
in the range of m 2, density, basis weight Within this range,
Good balance between rigidity and breathability of the obtained interior material,
It has excellent properties such as mechanical strength, heat insulation and sound insulation. The interior material in the above numerical range can be produced by appropriately setting the conditions of compression molding, and the heating temperature, pressure, etc. are not particularly limited as long as the interior material in the above numerical range can be obtained.

【0023】次に、本発明の繊維製内装材を使用した加
工方法について説明する。本発明の繊維製内装材は、そ
の所要箇所を加熱して軟化させることにより、容易に4
5°或いは90°等任意角度に曲げることができ、ま
た、円筒状等の型に押し当てて加熱し、曲面とすること
も可能である。この加熱は、例えば、トーチランプ、熱
風ヒーター、遠赤外線ヒーター等を使用し、内装材表面
から数十cm離して、内装材表面が熱劣化しないように
注意しながら、数十秒間加熱することにより実施でき
る。そのため、施工現場において、被施工面の形状に沿
わせて容易に変形しつつ施工することができ、しかも大
掛かりな装置等も必要とせず、高度な加工技術も要さな
い。また、工場等で予め加工する場合も同様に加工し易
く、この場合は、所定の型に挿入して軟化する程度に加
熱し成形することもできる。しかも、それを施工現場で
必要に応じて、トーチランプ等で加熱することにより形
状、寸法等変更することも容易である。
Next, a processing method using the fiber interior material of the present invention will be described. The fiber interior material of the present invention can be easily heated by heating the required portion to soften it.
It can be bent at an arbitrary angle such as 5 ° or 90 °, and can be pressed against a mold such as a cylindrical shape and heated to form a curved surface. This heating is performed, for example, by using a torch lamp, a hot air heater, a far infrared heater, etc., and separating them from the surface of the interior material by several tens of centimeters, taking care not to deteriorate the interior material surface by heating for several tens of seconds. Can be implemented. Therefore, it can be easily deformed at the construction site while conforming to the shape of the surface to be constructed, and does not require a large-scale device or the like, and does not require sophisticated processing technology. Similarly, it is easy to perform processing in advance in a factory or the like, and in this case, it is possible to insert into a predetermined mold and heat to a degree such that it is softened. Moreover, it is easy to change the shape, dimensions, etc. by heating it with a torch lamp or the like at the construction site as required.

【0024】[0024]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1〜2 溶着繊維として芯鞘型繊維を用いた。芯繊維の繊度は2
〜15デニール、繊維長は約51mmのものを用いた。
この繊維の鞘部分としては融点110〜130℃のポリ
エステル繊維、芯部分としては融点(約250〜280
℃程度)が高いポリエステル繊維を用いた。そして、非
溶着繊維としては、融点が約250℃のポリエステル繊
維(繊度13デニール、繊維長約51mm)を用いた
(実施例1)。それらの繊維を重量比(非溶着繊維/溶
着繊維)で60/40になるように適度に配合し、繊維
用ブレンダーによって均一に混合した。その後、カード
機によってこの混合繊維を縦、横それぞれ約1m、厚さ
約5mm、目付量約30g/m2 のウェブとした。次い
で、このウェブを6枚重ね、140℃に設定された熱風
循環方式の恒温槽中にて約15分間加熱し、取り出して
直ちに140℃に設定された圧縮成形機のプレート上
の、内部空間容積が1m×1m×5mmのスペーサー中
に静置し、200t/cm2 の圧力で20秒間加圧し
た。その後、除圧して、成形品を型から取り出して放冷
し、厚さ5mmの内装材を得た。得られた内装材の目付
量は約175g/m2 、密度は約0.2g/cm3 であ
った。
EXAMPLES The present invention will be specifically described below with reference to examples. Examples 1-2 A core-sheath type fiber was used as the welding fiber. The fineness of the core fiber is 2
-15 denier and a fiber length of about 51 mm were used.
The sheath portion of this fiber is a polyester fiber having a melting point of 110 to 130 ° C., and the core portion is a melting point (about 250 to 280).
Polyester fiber having a high temperature (about ° C) was used. As the non-welded fiber, a polyester fiber having a melting point of about 250 ° C. (fineness: 13 denier, fiber length: about 51 mm) was used (Example 1). These fibers were appropriately blended so that the weight ratio (non-welded fiber / welded fiber) was 60/40, and uniformly mixed by a fiber blender. Thereafter, the mixed fiber was made into a web having a length of about 1 m, a width of about 5 mm, and a basis weight of about 30 g / m 2 using a card machine. Next, six webs were stacked and heated in a hot air circulation type thermostat set at 140 ° C for about 15 minutes, and immediately taken out, the internal space volume on the plate of the compression molding machine set at 140 ° C was set. Was placed in a spacer of 1 m × 1 m × 5 mm and pressed at a pressure of 200 t / cm 2 for 20 seconds. Then, the pressure was removed, the molded product was taken out of the mold, and allowed to cool to obtain an interior material having a thickness of 5 mm. The weight of the obtained interior material was about 175 g / m 2 , and the density was about 0.2 g / cm 3 .

【0025】本例では、使用した溶着繊維は高融点のポ
リエステル繊維を芯としており、加熱後においてもこの
繊維は殆ど原形状を維持しており、成形体の容積の減少
が少なく、製品寸法調整のための加工工程を要すること
もなく所定形状の内装材を製造できた。また得られた内
装材の機械的強度も十分であり、更に、溶着繊維及び非
溶着繊維ともにポリエステル繊維であるため、耐熱性、
耐久性、及び耐候性等にも優れている。尚、溶着繊維と
して、芯繊維がポリエステル製中空体(繊度5〜10デ
ニール、繊維長25〜60mm)であるものを用いて
(実施例2)、上記と同様にして(但し、ウェブの枚数
を5枚とした)内装材を製造したところ、軽量でやや弾
性が大きい他は上記実施例1の製品とほぼ同様の高品質
な内装材が得られた。この例では、得られた内装材の目
付量は約140g/m2 、密度は約0.17g/cm3
であった。
In this example, the welding fiber used is a high melting point polyester fiber as a core, and even after heating, this fiber keeps almost its original shape, and the volume of the molded body is reduced little, and the product size is adjusted. It was possible to manufacture an interior material having a predetermined shape without requiring a processing step for. Moreover, the mechanical strength of the obtained interior material is also sufficient, and further, since both the welding fiber and the non-welding fiber are polyester fibers, heat resistance,
It has excellent durability and weather resistance. As the welding fiber, a core fiber made of a polyester hollow body (fineness 5 to 10 denier, fiber length 25 to 60 mm) was used (Example 2) in the same manner as described above (however, the number of webs was changed). When five interior materials were manufactured, a high quality interior material similar to the product of Example 1 was obtained except that it was lightweight and had a relatively large elasticity. In this example, the obtained interior material has a basis weight of about 140 g / m 2 and a density of about 0.17 g / cm 3.
Met.

【0026】実施例3〜4 本各実施例では、実施例1で用いた溶着繊維、非溶着
繊維よりなる混合繊維に、更に難燃性繊維を加えた混合
繊維を用いたこと、恒温槽中での加熱時間を3分間と
したこと、圧縮成形機のプレート温度を室温としたこ
と、加圧時間を5分間としたこと以外は実施例1と同
様にして内装材を製造した。ここで、本各実施例では、
溶着繊維、非溶着繊維及び難燃性繊維の合計量を100
重量%とした場合に、20(実施例3)及び30(実施
例4)重量%の割合にて難燃性繊維〔融点が250℃の
ポリエステル繊維(繊度5デニール、繊維長51mm)
に、難燃剤として有機系のポリリン酸カルバメートを繊
維に対して5重量%添加した繊維〕を配合した混合繊維
を用いた。得られた内装材は、機械的強度他、外観等は
そのままに、難燃性の向上を図ることができ、住居、特
に台所等火気を使用する箇所の内装壁等にも使用できる
ものであった。尚、実施例3で得られた内装材の目付量
は約185g/m2 、密度は約0.23g/cm3 、実
施例4で得られた内装材の目付量は約180g/m2
密度は約0.21g/cm3 であった。
Examples 3 to 4 In each of the examples, mixed fibers obtained by adding flame-retardant fibers to the mixed fibers of the welded fibers and the non-welded fibers used in Example 1 were used. An interior material was produced in the same manner as in Example 1 except that the heating time in 3 minutes, the plate temperature of the compression molding machine was room temperature, and the pressing time was 5 minutes. Here, in each of the embodiments,
The total amount of welded fiber, non-welded fiber and flame retardant fiber is 100
Flame-retardant fibers [polyester fibers having a melting point of 250 ° C. (fineness: 5 denier, fiber length: 51 mm)] at a ratio of 20 (Example 3) and 30 (Example 4)% by weight when the weight% is set.
Was mixed with 5% by weight of an organic polycarbamate polycarboate as a flame retardant. The obtained interior material can be improved in flame retardancy while maintaining its appearance such as mechanical strength, and can also be used for an interior wall of a house, particularly a place where fire is used such as a kitchen. It was The weight of the interior material obtained in Example 3 was about 185 g / m 2 , the density was about 0.23 g / cm 3 , and the weight of the interior material obtained in Example 4 was about 180 g / m 2 .
The density was about 0.21 g / cm 3 .

【0027】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。例え
ば、本発明では、色の異なった繊維を、混合繊維中に均
一に配合或いは混合繊維表面に配置することにより内装
材表面に所望の模様を付すこともできる。また、表面に
塗装、印刷、プリントなどを施すことにより、好みの配
色、図柄の内装材とすることもでき、梨地模様などエン
ボシングの手法等により表面に凹凸による模様等を施し
た内装材とすることもできる。
The present invention is not limited to the specific examples described above, but various modifications may be made within the scope of the present invention depending on the purpose and application. For example, in the present invention, a desired pattern can be provided on the surface of the interior material by uniformly mixing the fibers having different colors in the mixed fibers or arranging the mixed fibers on the surface of the mixed fibers. Also, by applying painting, printing, or printing on the surface, it is possible to make an interior material with a desired color scheme and pattern, and an interior material with a pattern with unevenness etc. on the surface by embossing method such as satin pattern You can also

【0028】[0028]

【発明の効果】本発明の繊維製内装材は、混合した繊維
等を圧縮成形するという簡単な方法で製造することがで
き、得られる内装材は、形状、寸法等の調整が容易で、
配色、図柄等の自由度が高く、軽量で通気性もあり、機
械的強度、断熱性、及び遮音性等に優れる。また、タッ
カーが効き、ガラス繊維を使用した内装材を製造、加
工、及び施工する場合の作業環境上の問題もない。
INDUSTRIAL APPLICABILITY The fiber interior material of the present invention can be produced by a simple method of compression-molding mixed fibers and the like, and the obtained interior material is easy to adjust the shape, dimensions, etc.,
It has a high degree of freedom in color arrangement and patterns, is lightweight and breathable, and has excellent mechanical strength, heat insulation, and sound insulation. Further, the tacker is effective, and there is no problem in working environment when manufacturing, processing, and constructing an interior material using glass fiber.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱溶着性繊維と非熱溶着性繊維とを含む
混合繊維を、該熱溶着性繊維の少なくとも表面が軟化若
しくは溶融する温度以上に加熱しつつ、又は加熱直後
に、50t/cm2 以上に加圧して成形され、該熱溶着
性繊維が熱溶着されて形成される接合部を有する繊維溶
着成形体からなることを特徴とする繊維製内装材。
1. 50 t / cm while heating a mixed fiber containing a heat-welding fiber and a non-heat-welding fiber to a temperature at which at least the surface of the heat-welding fiber is softened or melted, or immediately after the heating. An interior material made of a fiber, which is formed by pressurizing to 2 or more and has a joint portion formed by heat-sealing the heat-welding fiber.
【請求項2】 上記熱溶着性繊維は、低融点ポリエステ
ル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリ
塩化ビニル繊維、ナイロン繊維、エチレン酢酸ビニル共
重合体繊維、及び、高融点型ポリエステル繊維からなる
芯と該芯を被覆し且つ該高融点型ポリエステル繊維の融
点より30℃以上低い融点をもつ熱可塑性樹脂からなる
被覆部とから構成される接着性芯鞘型繊維のうちの1種
又は2種以上である請求項1記載の繊維製内装材。
2. A core made of low melting point polyester fiber, polyethylene fiber, polypropylene fiber, polyvinyl chloride fiber, nylon fiber, ethylene vinyl acetate copolymer fiber, and high melting point type polyester fiber. One or more of adhesive core-sheath type fibers which are composed of a coating portion which covers the core and which is composed of a thermoplastic resin having a melting point lower than the melting point of the high melting point polyester fiber by 30 ° C. or more. The fiber interior material according to claim 1.
【請求項3】 上記熱溶着性繊維は、高融点型ポリエス
テル繊維からなる芯と、該芯を被覆し、且つ、該高融点
型ポリエステル繊維の融点より30℃以上低い融点をも
つ熱可塑性樹脂からなる被覆部と、から構成される接着
性芯鞘型繊維であり、上記非熱溶着性繊維は、高融点型
ポリエステル繊維である請求項1又は2記載の繊維製内
装材。
3. The heat-fusible fiber comprises a core made of a high melting point polyester fiber, a thermoplastic resin covering the core and having a melting point lower than the melting point of the high melting point polyester fiber by 30 ° C. or more. 3. The fiber interior material according to claim 1 or 2, which is an adhesive core-sheath type fiber composed of a covering portion and a non-heat-welding fiber which is a high melting point polyester fiber.
【請求項4】 高融点型ポリエステル繊維からなる芯
と、該芯を被覆し、且つ、該高融点型ポリエステル繊維
の融点より30℃以上低い融点をもつ熱可塑性樹脂から
なる被覆部と、から構成される接着性芯鞘型繊維を、該
被覆部の少なくとも表面が軟化若しくは溶融する温度以
上に加熱しつつ、又は加熱直後に、50t/cm2 以上
に加圧して成形され、該被覆部が熱溶着されて形成され
る接合部を有する繊維溶着成形体からなることを特徴と
する繊維製内装材。
4. A core made of high melting point polyester fiber, and a coating part covering the core and made of a thermoplastic resin having a melting point of 30 ° C. or more lower than the melting point of the high melting point polyester fiber. The adhesive core-sheath type fiber to be formed is molded while being heated to a temperature at which at least the surface of the covering portion is softened or melted or higher, or immediately after being heated to a pressure of 50 t / cm 2 or more, and the covering portion is heated. A fiber interior material, comprising a fiber fusion-molded article having a joint formed by welding.
【請求項5】 上記繊維溶着成形体を構成する繊維の少
なくとも一部が難燃性繊維である請求項1、2、3又は
4記載の繊維製内装材。
5. The fiber interior material according to claim 1, 2, 3 or 4, wherein at least a part of the fibers constituting the fiber fusion-molded article is a flame-retardant fiber.
【請求項6】 上記難燃性繊維の割合は、上記繊維溶着
成形体を構成する繊維の合計量を100重量%とした場
合に、10〜100重量%である請求項1、2、3、4
又は5記載の繊維製内装材。
6. The proportion of the flame-retardant fibers is 10 to 100% by weight, when the total amount of fibers constituting the fiber-welded molded article is 100% by weight. Four
Or the fiber interior material described in 5.
【請求項7】 熱溶着性繊維と非熱溶着性繊維とを含む
混合繊維を、該熱溶着性繊維の少なくとも表面が軟化若
しくは溶融する温度以上に加熱しつつ、又は加熱直後
に、加圧して成形され、該熱溶着性繊維が熱溶着されて
形成される接合部を有する繊維溶着成形体からなり、密
度が0.08〜0.9g/cm3 、目付量が100〜2
000g/m2 であることを特徴とする繊維製内装材。
7. A mixed fiber containing a heat-welding fiber and a non-heat-welding fiber is heated to a temperature at which at least the surface of the heat-welding fiber is softened or melted or higher, or is pressurized immediately after heating. It is formed of a fiber-welded molded body having a joint formed by heat-welding the heat-weldable fiber, and has a density of 0.08 to 0.9 g / cm 3 and a basis weight of 100 to 2
Fiber interior material characterized by being 000 g / m 2 .
【請求項8】 請求項1、2、3、4、5、6又は7記
載の繊維製内装材の所要箇所を加熱して軟化させ、被施
工面の形状に合わせて変形させて、加工することを特徴
とする上記繊維製内装材の加工方法。
8. A desired portion of the fiber interior material according to claim 1, 2, 3, 4, 5, 6 or 7 is heated to soften it, and is deformed in accordance with the shape of the surface to be worked and processed. A method for processing the above fiber interior material, which is characterized in that
JP5273013A 1993-10-04 1993-10-04 Textile interior material and its processing Pending JPH07102461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5273013A JPH07102461A (en) 1993-10-04 1993-10-04 Textile interior material and its processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5273013A JPH07102461A (en) 1993-10-04 1993-10-04 Textile interior material and its processing

Publications (1)

Publication Number Publication Date
JPH07102461A true JPH07102461A (en) 1995-04-18

Family

ID=17521945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5273013A Pending JPH07102461A (en) 1993-10-04 1993-10-04 Textile interior material and its processing

Country Status (1)

Country Link
JP (1) JPH07102461A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199161A (en) * 1999-01-11 2000-07-18 Kanebo Ltd Sound-absorbing nonwoven fabric and its production
JP2001334131A (en) * 2000-05-25 2001-12-04 Nok Corp Hollow fiber membrane, processing method of hollow fiber membrane, hollow fiber membrane module, use of hollow fiber membrane module and manufacturing method of hollow fiber membrane module
JP2002339217A (en) * 2001-05-09 2002-11-27 Kanebo Ltd Heat insulating material
KR100405773B1 (en) * 2000-01-11 2003-11-14 주식회사 동원테크 The method for manufacturing the material absorbing noises by using PET
JP5174980B1 (en) * 2012-06-12 2013-04-03 ニチアス株式会社 Soundproof cover for automobile and method for producing soundproof cover for automobile
JP2013204171A (en) * 2012-03-28 2013-10-07 Kuraray Co Ltd Heat shielding sheet for helmet
JP2014000710A (en) * 2012-06-18 2014-01-09 Teijin Ltd Composite fiber structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199161A (en) * 1999-01-11 2000-07-18 Kanebo Ltd Sound-absorbing nonwoven fabric and its production
KR100405773B1 (en) * 2000-01-11 2003-11-14 주식회사 동원테크 The method for manufacturing the material absorbing noises by using PET
JP2001334131A (en) * 2000-05-25 2001-12-04 Nok Corp Hollow fiber membrane, processing method of hollow fiber membrane, hollow fiber membrane module, use of hollow fiber membrane module and manufacturing method of hollow fiber membrane module
JP2002339217A (en) * 2001-05-09 2002-11-27 Kanebo Ltd Heat insulating material
JP2013204171A (en) * 2012-03-28 2013-10-07 Kuraray Co Ltd Heat shielding sheet for helmet
JP5174980B1 (en) * 2012-06-12 2013-04-03 ニチアス株式会社 Soundproof cover for automobile and method for producing soundproof cover for automobile
WO2013187081A1 (en) * 2012-06-12 2013-12-19 ニチアス株式会社 Soundproof cover for automobile and method for manufacturing soundproof cover for automobile
US20150133019A1 (en) * 2012-06-12 2015-05-14 Nichias Corporation Soundproof cover for automobile and method for manufacturing soundproof cover for automobile
JP2014000710A (en) * 2012-06-18 2014-01-09 Teijin Ltd Composite fiber structure

Similar Documents

Publication Publication Date Title
ES2330368T3 (en) COMPLEX PLATE RIGID TO FLEXION.
JPS58500488A (en) Moldable fiber mat, method for producing the same, and products molded from the fiber mat
US3503841A (en) Foamed polystyrene bonded to fiber filled polyvinyl chloride sheet
CN108473716A (en) The method of cover plate and manufacture cover plate
US20110318983A1 (en) Fire retardant panel compositions
JPH07102461A (en) Textile interior material and its processing
CN1726133B (en) Method for making flexible automobile interior material and sheet for the construction and its product made therefrom
US5981411A (en) Thermoformable material
JP4874592B2 (en) Spacer for floor base material and manufacturing method thereof
JP2720764B2 (en) Fiber cushion material having irregularities on the surface and method for producing the same
WO2004022438A1 (en) Method and system for producing pallet
WO2004000519A1 (en) Process for making a board product from scrap materials
JP2008303593A (en) Tatami mat forming member and thin tatami mat using the same
KR101451178B1 (en) Method for fabricating nonflammable carbon fiber hard panels
JP2620929B2 (en) Fiber cushion material and manufacturing method thereof
KR100720609B1 (en) production method of sound absorbing wallpaper using recycled fiber
JP2003239518A (en) Cushioning flooring material
JP2005527711A (en) Thermo glue scrim
JPH10193476A (en) Tatami mat base formed of waste floor matting and tatami mat using the same base
KR102143956B1 (en) Manufacturing method of cushion mat
JP2003183965A (en) Nonwoven fabric for reinforcing, laminate, inner trim material and method for producing reinforcing nonwoven fabric
JP2003310395A (en) Bed composed of spring structure resin molding, production process therefor and bed cushion composed of spring structure resin molding
KR20040060090A (en) manufacturing method of fiber-mat for interior materials
JP5934133B2 (en) Composite foam
JPH11342280A (en) Cushion body and manufacture of cushion body