JPH07102362B2 - Hot rolling method for steel - Google Patents

Hot rolling method for steel

Info

Publication number
JPH07102362B2
JPH07102362B2 JP63138035A JP13803588A JPH07102362B2 JP H07102362 B2 JPH07102362 B2 JP H07102362B2 JP 63138035 A JP63138035 A JP 63138035A JP 13803588 A JP13803588 A JP 13803588A JP H07102362 B2 JPH07102362 B2 JP H07102362B2
Authority
JP
Japan
Prior art keywords
temperature
rolling
hot rolling
cooling
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63138035A
Other languages
Japanese (ja)
Other versions
JPH01306002A (en
Inventor
和夫 新井
勝彦 森
誠二 高取
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63138035A priority Critical patent/JPH07102362B2/en
Publication of JPH01306002A publication Critical patent/JPH01306002A/en
Publication of JPH07102362B2 publication Critical patent/JPH07102362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鋼材の熱間圧延方法に係り、詳しくは、圧延ス
タンド毎に材料の断面形状が異なっても、この断面形状
の変化をとり込んで各スタンド群の冷却後の材料温度を
迅速かつ高精度に予測できる熱間圧延法に係る。
Description: TECHNICAL FIELD The present invention relates to a hot rolling method for steel products, and more specifically, even if the cross-sectional shape of the material differs for each rolling stand, this change in cross-sectional shape is taken into consideration. The present invention relates to a hot rolling method capable of quickly and highly accurately predicting a material temperature after cooling a group of stands.

従来の技術 一般に金属材料の圧延において、(1)材料寸法精度向
上や表面品質向上、(2)組織コントロール、(3)ミ
ル仕様決定のための所要動力、耐材料強度評価および
(4)制御圧延や制御冷却等の要求の上から、高精度な
材料温度の予測計算が不可欠である。なかでも、
(1)、(2)、(4)項については、計算時間が制約
されるオンラインでの計算も併せて要求され、その必要
性は熱間圧延工程においてより高い。また、平板よりも
材料断面形状が複雑な角・丸断面形状を取扱う棒鋼・線
材の孔型熱間圧延においてより厳密な計算が要求され、
従来技術について棒鋼等の孔型熱間圧延を例にあげて説
明すると、次の通りである。
Conventional technology Generally, in rolling metal materials, (1) improvement of material dimensional accuracy and surface quality, (2) microstructure control, (3) required power for determining mill specifications, material strength evaluation and (4) controlled rolling In order to meet the demands for cooling, controlled cooling, etc., highly accurate predictive calculation of material temperature is essential. Above all,
For the items (1), (2), and (4), online calculation whose calculation time is limited is also required, and the necessity is higher in the hot rolling process. In addition, more rigorous calculations are required for hole type hot rolling of steel bars and wire rods that handle square and round cross-sectional shapes that have more complicated material cross-sectional shapes than flat plates.
The prior art will be described below by taking hole hot rolling of steel bars and the like as an example.

従来、オフラインにおける設計計算では、計算時間が制
約されないこともあって、所謂差分[例えば、森高のほ
か、第74回圧延理論部会74−21(1983−3)]が適用さ
れている。この差分法は、材料断面を適宜細分割して、
それぞれの分域内で、熱伝導方程式をたて、相隣り合う
分域間の境界条件をそれぞれ等しいとして多数の代数方
程式を連立させて計算する方法であって、第1図に示す
如く、圧延工程の進行にともなって、材料断面形状が、
例えば、正方形、ひし形、円、だ円のように、くり返し
て変化する場合でも、この材料断面形状変化を厳密に取
扱うことができるため、高精度の材料温度計算が可能で
ある。
Conventionally, so-called difference [for example, Moritaka, 74th Rolling Theory Subcommittee 74-21 (1983-3)] has been applied in offline design calculation because the calculation time is not restricted. In this difference method, the material cross section is appropriately subdivided,
A method of making a heat conduction equation in each domain and calculating a number of simultaneous algebraic equations with the boundary conditions between adjacent domains being equal to each other, as shown in FIG. With the progress of
For example, even when the shape changes repeatedly such as a square, a rhombus, a circle, and an ellipse, the change in the material cross-sectional shape can be handled precisely, so that the material temperature can be calculated with high accuracy.

しかしながら、実際の圧延、とくに、オンラインに適用
すると、時間的制約から適用することが困難である。
However, when applied to actual rolling, especially online, it is difficult to apply due to time constraints.

すなわち、実際の圧延で差分法によって材料温度を予測
して圧延する場合、実際の圧延の場で測定した、例え
ば、加熱炉出口側の材料温度あるいは粗パス出側の材料
温度等の実測値を取込み、これを根拠にして粗パス以降
のプロセッサでの種々の冷媒による温度降下量を考慮し
て、粗パス以降の各圧延スタンドの入口側材料温度を予
測計算し、圧延荷重を見積り、各圧延スタンドの上下ワ
ークロールの間隔を決定し、逐次圧下が行なわれる。
That is, when predicting the material temperature by the difference method in actual rolling and rolling, the measured value in the actual rolling field, for example, the measured value of the material temperature on the outlet side of the heating furnace or the material temperature on the rough pass outlet side, etc. Taking this into account, the inlet side material temperature of each rolling stand after the rough pass is predicted and calculated by taking into account the temperature drop due to various refrigerants in the processor after the rough pass, and the rolling load is estimated and each rolling is estimated. The interval between the upper and lower work rolls of the stand is determined, and the rolling is sequentially performed.

しかし、このような材料温度の予測計算は、所謂オンラ
インにおいては後段圧延スタンドになればなるほど許さ
れる計算時間が少なくなり、その上、年々圧延速度アッ
プにより許される計算時間が少なくなる等の理由から、
オフラインで厳密計算として採用できても、オンライン
では適用が不可能である。
However, such a predictive calculation of the material temperature is so-called online, the calculation time allowed for the second-stage rolling stand becomes shorter, and moreover, the calculation time allowed for the rolling speed increase year by year decreases. ,
Even if it can be adopted as an exact calculation offline, it cannot be applied online.

そこで、オンラインにおける材料温度の予測計算は、差
分法に代って、例えば、等価断面積の真円断面に置換え
るという等価断面積円形換算法が便宜的処理[例えば、
野口ほか、第34回塑性加工連合会(1983−11)、169]
として採用されている。この方法は、圧延工程の進行に
ともなって材料断面形状が変化するのみに拘らず、これ
らを全て等価断面積の円形として取扱うため、高精度な
計算が不可能である。
Therefore, for the online calculation of the material temperature, for example, instead of the difference method, the equivalent cross-section circular conversion method of replacing the equivalent cross-section with a perfect circular section is a convenient process [eg,
Noguchi et al., 34th Plastic Working Federation (1983-11), 169]
Has been adopted as. This method treats all of them as circles having an equivalent cross-sectional area regardless of that the material cross-sectional shape changes as the rolling process progresses, and therefore high-precision calculation is impossible.

更に具体的に説明すると、オンライン計算の段階で、材
料断面形状の変化を取込んだ差分法に代って、等価断面
積円形換算法を採用したことにより、次の2つの問題点
が生じる。
More specifically, in the online calculation stage, the equivalent cross-sectional area circular conversion method is adopted instead of the difference method that takes in the change in the material cross-sectional shape, so that the following two problems occur.

(1)簡易式による誤差の発生、 (2)真円断面形状に換算する際の誤差の発生、すなわ
ち、(1)項についてみると、この簡易式であると、冷
却後の材料温度θn+1は、(1)式に示す如くあらわさ
れる。
(1) Occurrence of error by the simple formula, (2) Occurrence of error when converting into a perfect circular cross-sectional shape, that is, regarding the item (1), this simple formula shows that the material temperature θ n after cooling +1 is represented as shown in equation (1).

θn+1=f(θ、d、t) ……(1) ただし、θn+1:冷却後の平均材料温度 θn:冷却前の平均材料温度 d:材料外径 t:冷却時間 すなわち、冷却後の材料温度θn+1は、個々の設備(ラ
イン毎)の各冷媒毎に熱伝達率、圧延材質、冷媒温度、
材料断面形状を特定固定し、第1図に示す如く、θ
d、tの関数としてあらわし、直線近似した簡易式とし
てテーブル化して求められている。このため、一般性が
なく、適用範囲が非常に狭い範囲に限定され、固定した
条件から外れた場合には計算誤差がきわめて大きくな
る。
θ n + 1 = f (θ n , d, t) (1) where θ n + 1 : average material temperature after cooling θ n : average material temperature before cooling d: material outer diameter t: cooling time That is, the material temperature θ n + 1 after cooling is the heat transfer coefficient, rolling material, refrigerant temperature,
With the material cross-sectional shape fixed, as shown in FIG. 1, θ n ,
It is expressed as a function of d and t, and is obtained as a table as a simple expression that is approximated by a straight line. For this reason, it has no generality, the application range is limited to a very narrow range, and when it deviates from the fixed condition, the calculation error becomes extremely large.

また、(2)項についてみると、例えば、第2図に示す
ように、圧延過程で材料断面形状がひし形1のときで
も、それと等価断面積の円形2に換算するため、材料の
半径は元の形状の半径よりも大きく取扱うことになる。
このようなときには、肉厚が厚くなった所謂マス効果に
より、(a)降温量を過少に見積る、(b)平均/表面
温度差を過大に見積る、という根本的な欠陥が生じる。
Further, regarding the item (2), for example, as shown in FIG. 2, even when the material cross-sectional shape is a rhombus 1 in the rolling process, it is converted into a circle 2 having an equivalent cross-sectional area, so that the radius of the material is It will be handled larger than the radius of the shape.
In such a case, there are fundamental defects such as (a) underestimating the temperature decrease amount and (b) overestimating the average / surface temperature difference due to the so-called mass effect of increased wall thickness.

発明が解決しようとする課題 本発明は上記欠点の解決を目的とし、具体的には、所謂
差分法であると、圧延過程における材料断面形状の推移
を取込んで厳密に材料温度を計算できるが、計算時間が
かかってオンラインには適用が不可能なこと、これに対
し、円形換算法による簡易式はオンラインに適用できる
が、圧延工程中の材料断面変化を取込むことができない
こと等を解決することを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to solve the above-mentioned drawbacks. Specifically, the so-called difference method can accurately calculate the material temperature by taking in the transition of the material cross-sectional shape in the rolling process. However, it takes a long time to calculate and cannot be applied to online. On the other hand, the simple formula based on the circular conversion method can be applied to online, but it is not possible to take in changes in the material cross section during the rolling process. The purpose is to do.

課題を解決するための手段ならびにその作用 すなわち、本発明法は、角棒、丸棒等の鋼材の熱間圧延
時に、各スタンド毎に冷却後の材料温度を予測計算し、
この予測温度に基づいて、そのスタンドにおける圧延荷
重を推定して、上・下ワークロール間隔を設定する際
に、各スタンド毎に材料の形状を表現するパラメータを
m=材料表面積×代表外半径÷材料体積なる形式より求
めて、このパラメータmを冷却後の材料温度式n+1
f(、θ、d、t、α、a、λ、m)に与えてオ
ンラインで該材料温度を予測することを特徴とする。
Means for solving the problem and its action That is, the method of the present invention, during hot rolling of steel materials such as square bar, round bar, predictive calculation of the material temperature after cooling for each stand,
When the rolling load at the stand is estimated based on the predicted temperature and the upper and lower work roll intervals are set, the parameter expressing the shape of the material for each stand is m = material surface area × representative outer radius ÷ Obtained from the form of material volume, this parameter m is the material temperature formula after cooling n + 1 =
f ( n , θ L , d, t, α, a, λ, m) to predict the material temperature online.

ただし、n:冷却前平均材温、θL:冷媒温度、d:材料外
径、f:冷却時間、α:冷媒熱伝達率、a:温度伝播率、
λ:熱伝導率 従って、本発明法であると、製品の高精度寸法、高品質
等を実現できる鋼材の熱間圧延が可能である。
However, n : average material temperature before cooling, θ L : refrigerant temperature, d: material outer diameter, f: cooling time, α: refrigerant heat transfer coefficient, a: temperature transfer coefficient,
[lambda]: Thermal conductivity Therefore, according to the method of the present invention, it is possible to hot-roll a steel material capable of realizing high-precision dimensions, high quality and the like of products.

併せて、オンラインとオフラインで全く同一の数式によ
る熱間圧延の厳密な評価が可能となり、高精度な製品製
造のみならず、より正確なプロセス条件の設計により、
設備仕様決定、品質設計の信頼性を高められる。
At the same time, it is possible to perform a strict evaluation of hot rolling using the same formula online and offline, and not only high-precision product manufacturing but also more accurate process condition design
The reliability of equipment specification determination and quality design can be improved.

そこで、更に具体的に示すと次の通りである。Therefore, more concretely, it is as follows.

まず、第1図は棒鋼圧延ラインの一例のフローシートで
あって、符号1は加熱炉、4はポアリングリーラ、5は
粗圧延スタンド群、6は中間圧延スタンド群、7は仕上
圧延スタンド群、8はチルター、9はデスケーラ、10は
スタンド間の水冷帯、12は巻取温度計を示す。素材ビレ
ット2は加熱炉1で冷却後、各圧延スタンド群5、6、
7を経て所望の形状に成型され、棒鋼3はコイル状の製
品としてポアリングリーラ4に巻取られ、このときに、
各圧延スタンド群5、6、7においては材料温度を予測
し、この予測温度によって圧延条件を定め、素材ビレッ
ト2ははじめは正方形断面1aであるが、粗圧延でひし形
断面5a、中間圧延でだ円形断面6a,仕上圧延で小円形断
面7aに成型される。
First, FIG. 1 is a flow sheet of an example of a steel bar rolling line, wherein reference numeral 1 is a heating furnace, 4 is a pouring ring reel, 5 is a rough rolling stand group, 6 is an intermediate rolling stand group, and 7 is a finishing rolling stand group. , 8 is a tilter, 9 is a descaler, 10 is a water cooling zone between stands, and 12 is a winding thermometer. The material billet 2 is cooled in the heating furnace 1 and then each rolling stand group 5, 6,
After being molded into a desired shape through 7, the steel bar 3 is wound as a coiled product on the pore ring reeler 4, and at this time,
In each rolling stand group 5, 6, 7 the material temperature is predicted, and the rolling conditions are determined by this predicted temperature. The material billet 2 initially has a square cross section 1a, but rough rolling has a rhombus cross section 5a and intermediate rolling. A circular cross section 6a is formed into a small circular cross section 7a by finish rolling.

そこで、各圧延スタンド群5、6、7において、上記の
如く変化する材料の断面形状、例えば、正方形、ひし
形、だ円を以下の(1)に示すパラメータmとしてとら
え、このパラメータmを(2)式に与えて冷媒によって
冷却後の材料温度を予測する。
Therefore, in each of the rolling stand groups 5, 6, and 7, the cross-sectional shape of the material that changes as described above, for example, a square, a rhombus, or an ellipse is regarded as a parameter m shown in (1) below, and this parameter m is set to (2 ) To predict the material temperature after cooling with the refrigerant.

n+1=f(、θ、d、t、α、a、λ、m) …
…(2) ただし、n+1:冷却後の材料温度 θn:冷却前の材料温度 d:材料外径 t:冷却時間 α:冷媒熱伝達率 a:温度伝播率 λ:熱伝導率 すなわち、冷却後の材料温度は、熱伝導理論に基づい
て、非定常熱伝導の解析解として求めるが、これは以下
の(2′)式として与えられる。
n + 1 = f ( n , θ L , d, t, α, a, λ, m) ...
(2) where n + 1 : material temperature after cooling θ n : material temperature before cooling d: material outer diameter t: cooling time α: refrigerant heat transfer coefficient a: temperature transfer coefficient λ: heat transfer coefficient The material temperature after cooling is determined as an analytical solution for unsteady heat conduction based on the heat conduction theory, which is given by the following equation (2 ').

θn+1=f(θ、θ、d、t、α、λ、a、X) …
…(2′) ただし、θn+1、θn:冷却前後の材料温度 θL:冷媒の温度 d:材料の外径 α:冷媒熱伝達率 λ:熱伝導率 a:温度伝播率 X:パラメータ 更に、(2′)式中でパラメータXは無限長平板、無限
長円筒および球それぞれに異なった超幾何方程式の解と
して(3−a)、(3−b)、(3−c)の各式として
与えられる。
θ n + 1 = f (θ n , θ L , d, t, α, λ, a, X) ...
(2 ′) where θ n + 1 , θ n : Material temperature before and after cooling θ L : Temperature of refrigerant d: Outer diameter of material α: Heat transfer coefficient of refrigerant λ: Thermal conductivity a: Temperature transfer coefficient X: Parameter Further, in the equation (2 ′), the parameter X is the solution of the different hypergeometric equations for the infinite-length plate, the infinite-length cylinder and the sphere, respectively (3-a), (3-b), (3-c) Given as each formula.

しかし、これら(3−a)、(3−b)、(3−c)の
各式はこれまで代数的に解くことができない。このた
め、近似解として例えば、(4−a)、(4−b)、
(4−c)の各式に示す如く与えることもできる。
However, these expressions (3-a), (3-b), and (3-c) cannot be solved algebraically so far. Therefore, as an approximate solution, for example, (4-a), (4-b),
It can also be given as shown in each formula of (4-c).

しかし、この近似解を用いると、熱伝達率αあるいは材
料外径dが大きな場合には誤差が大きくなり、材料外径
が小さいかあるいは冷媒の冷却能力が小さい場合にのみ
適応できるのに過ぎず、材料外径の補正を加えて適用範
囲を拡げても自から限界がある。
However, when this approximate solution is used, the error becomes large when the heat transfer coefficient α or the material outer diameter d is large, and it can be applied only when the material outer diameter is small or the cooling capacity of the refrigerant is small. However, there is a limit in itself even if the range of application is expanded by adding the correction of the material outer diameter.

このところから、本発明者等は(3−a)、(3−
b)、(3−c)の各式を代数的にかつ平板、円筒、球
について統一的に表示できる解Xの表式を求める点につ
いて検討し、これにより厳密なかつ迅速な熱伝導計算が
可能な温度計算式を得ることを試みた。
From this point, the present inventors have found that (3-a) and (3-
Examine the point of finding the expression of the solution X that can be expressed algebraically and uniformly on the flat plate, cylinder, and sphere in b) and (3-c), which enables rigorous and rapid heat conduction calculation. I tried to obtain a different temperature calculation formula.

更に詳しく説明すると、材料の形状を形状係数mとして
とらえて、これを(1)式ならびに(5)式に示すパラ
メータmとする。
More specifically, the shape of the material is regarded as the shape factor m, and this is set as the parameter m shown in the equations (1) and (5).

S:材料の表面積 V:材料の体積 d:材料の外径 このようにとらえると、平板、円筒、球はそれぞれm=
1、2、3になり、(4−a)、(4−b)、(4−
c)の各式は(6)式で統一的に表現できる。
S: surface area of the material V: volume of the material d: outer diameter of the material
1, 2, 3 and (4-a), (4-b), (4-
Each expression in c) can be expressed in a unified manner by expression (6).

しかるに、ひし形、だ円形断面材では、それぞれ、 1<m<2となって、いずれも平板(m=1)と円筒
(m=2)の間の値を取り、とくに、だ円形の場合に
は、偏平の度合によって、任意の値となる。従って、
(3−a)、(3−b)、(3−c)の各式の解XをX
=f(m、d、α、λ)の関数形で統一したものとして
誘導すれば、任意の断面形状材料の厳密な温度計算が可
能になるとの発想に至った。
However, for rhombus and oval cross-section materials, 1 <m <2, and both take values between the flat plate (m = 1) and the cylinder (m = 2), and in particular, in the case of an ellipse, it becomes an arbitrary value depending on the degree of flatness. . Therefore,
The solution X of each equation of (3-a), (3-b), and (3-c) is X.
It was conceived that strict temperature calculation of a material having an arbitrary cross-sectional shape becomes possible by deriving it as a unified function form of = f (m, d, α, λ).

要するに、上記の如く、冷却後の材料温度を解析解とし
て求める場合、 (a)(3−a)、(3−b)、(3−c)の式の解X
の式を代数関数として誘導すれば、厳密で迅速な温度計
算が可能となること、 (b)この解Xが長径/短径で決定される形状係数mを
パラメータとして取込んだ形になっていれば、ひし形、
だ円形断面を厳密に取扱えること、 が必要であった。
In short, when the material temperature after cooling is obtained as an analytical solution as described above, the solution X of the equations (a), (3-a), (3-b), and (3-c) is used.
By deriving the equation (1) as an algebraic function, it becomes possible to calculate temperature precisely and promptly. (B) This solution X has a form factor m determined by the major axis / minor axis as a parameter. If so, a diamond,
Strict handling of elliptical cross sections was necessary.

そこで、これら2つの条件を具体化するために、本発明
においては次の通り構成し、任意断面形状材料の平均と
表面、加えて任意深さ位置温度を迅速かつ高精度に計算
させる。
Therefore, in order to embody these two conditions, the present invention is configured as follows, and the average and surface of the material having an arbitrary cross-section and the arbitrary depth position temperature are calculated quickly and with high accuracy.

(1)冷却後の材料平均温度式を形状係数mをパラメー
タとして(2)式の如く与えること、 (2)ひし形、だ円形の断面形状のときには、代表外径
決定式を与えること、 (3)材料深さ方向の温度分布式を与えること、 (4)材料深さ方向平均温度位置を決定する式を与える
こと、 (1)冷却後平均材料温度θn+1を(2)式として示す
こと、 一般に、非定常熱伝導の解析解は、第1表に示す如く、
M、P値を定めると、(7)式 で与えられ、材料任意深さ方向位置βにおける温度が第
1表の通り計算可能である。すなわち、(7)式はβ=
1.0を適用することで表面温度を計算することができ
る。しかし、平均温度は、平均温度位置の位置を特定
できないことから不可能であり、材質の平均的評価や圧
延荷重計算等、平均温度が必要となることが多いため、
このところが一つの問題点となる。
(1) give the material average temperature formula after cooling as the formula (2) with the shape factor m as a parameter, (2) give the representative outer diameter determining formula in the case of a rhombus or elliptical cross-sectional shape, (3) ) Give a temperature distribution formula in the material depth direction, (4) Give a formula for determining the average temperature position in the material depth direction, (1) Show the average material temperature θ n + 1 after cooling as the formula (2). Generally, the analytical solution of unsteady heat conduction is as shown in Table 1.
When M and P values are defined, formula (7) The temperature at the position β in the arbitrary depth direction of the material can be calculated as shown in Table 1. That is, the equation (7) is β =
The surface temperature can be calculated by applying 1.0. However, the average temperature is not possible because the position of the average temperature position cannot be specified, and since the average temperature is often required, such as the average evaluation of the material and the rolling load calculation,
This is one problem.

x:材料中心からの半径方向距離Ji(X):第I種i次ベ
ッセル関数 そこで、本発明者等は、(4)項に前記した如く、平均
温度位置表式を(8)式の如く、 =f(m、d、α、λ、θ) ……(8) 形状係数mをパラメータとする関数としてあらわした。
x: Radial distance from the material center Ji (X): I-th order i-th order Bessel function Then, as described above in the item (4), the present inventors define the average temperature position expression as the expression (8). , = F (m, d, α, λ, θ L ) (8) It is expressed as a function with the shape coefficient m as a parameter.

この結果、(8)式より求めたを(7)式のβのとこ
ろに代入すると、 ΣM・P=1.0 の関係が得られ、冷却後の材料平均温度式n+1
(9)式としてn+1 =(−θ)・e-KXtt ……(9) あらわされる。
As a result, by substituting the value obtained from Eq. (8) into β in Eq. (7), the relationship of ΣM · P = 1.0 is obtained, and the material average temperature formula n + 1 after cooling is given as Eq. (9). n + 1 = (n -θ L ) · e -KXt t ...... (9) represented.

また、(9)式において、関数kxは(10)式の通りあら
わされる。
Further, in the equation (9), the function kx is represented as the equation (10).

(10)式においてXはパラメータであり、このパラメー
タXは形状係数mと無次元数たるヌッセルト数N=α・
d/λとによって代表的関数として(11)式であらわされ
る。
In the equation (10), X is a parameter, and this parameter X is the shape factor m and the Nusselt number N = α, which is a dimensionless number.
It is represented by the equation (11) as a typical function by d / λ.

X=f(m、N)=f(m、α、d、λ) ……(11) 以上の通り、圧延プロセスにおいて、各スタンドの材料
の断面形状を形状係数mとしてとらえると、(9)、
(10)ならびに(11)式の如くあらわすことができ、こ
れら(9)、(10)ならびに(11)式を用いると、材料
の外半径d、熱伝導率λ、温度伝播率a、冷却前の材料
平均温度、冷媒の熱伝達率αと温度θおよび冷却
時間tを求め、これらの値を与えることにより冷却後の
材料温度n+1を瞬時にかつ正確に求めることができ、
なかでも、瞬時に求められるため、オンラインの適用が
可能となる。
X = f (m, N) = f (m, α, d, λ) (11) As described above, in the rolling process, if the sectional shape of the material of each stand is regarded as the shape factor m, (9) ,
It can be expressed as in the equations (10) and (11). Using these equations (9), (10) and (11), the outer radius d of the material, the thermal conductivity λ, the temperature propagation coefficient a, before cooling The material average temperature n 1 , the heat transfer coefficient α and the temperature θ L of the refrigerant, and the cooling time t are obtained, and by giving these values, the material temperature n + 1 after cooling can be instantly and accurately obtained.
Above all, it is possible to apply online because it is instantly requested.

(3)材料深さ方向の温度分布について、 上記のところと同様に、材料の断面形状を形状係数mと
してとらえると、任意深さ位置の材料温度θβと平均材
料温度との比φβは深さ位置係数βならびに形状形
数mの関数として、 φβ=f(β、m、d、α、λ、θ) ……(12a) の如く、誘導できる。
(3) Regarding the temperature distribution in the material depth direction, if the cross-sectional shape of the material is taken as the shape factor m, as in the above, the ratio φ β between the material temperature θ β at the arbitrary depth position and the average material temperature is As a function of the depth position coefficient β and the shape number m, φ β = f (β, m, d, α, λ, θ L ) (12a) can be derived.

従って、任意深さ位置の材料温度θβは(12)式によっ
て求められる。
Therefore, the material temperature θ β at the arbitrary depth position can be obtained by the equation (12).

θβ=φβ・ ……(12) また、(12)式においてβ=1.0の場合を求めると、表
面温度が求められる。
θ β = φ β ··· (12) Further, when β = 1.0 is calculated in the equation (12), the surface temperature can be calculated.

(2)ひし形等の代表外径を求めること、 ひし形やだ円形断面形状については、代表外径は例え
ば第3図(a)ならびに(b)に示す如く求められる。
例えば、第3図(a)に示すだ円や第3図(b)に示す
ひし形の場合は、同形な4半断面部、例えば の面積を2等分する線分▲▼の2倍とすると、形状
係数mが計算できる。
(2) Obtaining a representative outer diameter of a rhombus, etc. For a rhombus or an elliptical cross-sectional shape, a representative outer diameter is obtained, for example, as shown in FIGS. 3 (a) and 3 (b).
For example, in the case of the ellipse shown in FIG. 3 (a) and the rhombus shown in FIG. The shape factor m can be calculated by doubling the area of ∘ into the line segment ∇.

以上の通り、本発明の特徴の一つは、熱伝導理論に基づ
く一般解析解の方程式(3−a)、(3−b)、(3−
c)の解Xを統一的かつ代数的に導出し、かつこれを可
能にしたことにある。そこで、Xの代数解導出を更に具
体的に説明すると、次の通りである。
As described above, one of the features of the present invention is that the equations (3-a), (3-b), (3-
The solution X in c) is derived in a unified and algebraic manner and made possible. Therefore, the derivation of the algebraic solution of X will be described more specifically as follows.

(3−a)、(3−b)、(3−c)各式におけるその
三角関数、ベッセル関数Ji(X)は、一般的な級数表現
として(13−a)、(13−b)、(13−c)、(13−
d)式の如く与えられる。
The trigonometric function and the Bessel function Ji (X) in the equations (3-a), (3-b), and (3-c) are represented by general series expressions (13-a), (13-b), (13-c), (13-
It is given as in d).

これを(3−a)、(3−b)、(3−c)の各式に代
入すると、(14)式の如く統一的に表現できる。
By substituting this into the equations (3-a), (3-b), and (3-c), it can be expressed uniformly as in the equation (14).

だだし、(2k)!!=(2k)・(2(k−1))・(2
(k−2))・……・2、N=α・d/λ (14)式を(15)式 の如く誘導し、無限級数Φiの漸化式 を(15)式に適用すると、(16′)式が導くことができ
る。
However, (2k) !! = (2k) ・ (2 (k-1)) ・ (2
(K-2)) ······· 2, N = α · d / λ (14) Equation (15) And the recurrence formula of infinite series Φi When is applied to Eq. (15), Eq. (16 ') can be derived.

(16′)式において、Φl-1は無限級数項である
が、lが大きくなると1.0に近づき、数値計算による論
理的吟味の結果、l=6なる有限数においては、 の近似解が得られる。この近似解は僅か0.06%以下であ
り、実用上十分な精度であり、Nの代数解として、(1
6″)式が得られた。
In equation (16 '), Φ l-1 / Φ l is an infinite series term, but when l becomes large, it approaches 1.0, and as a result of logical examination by numerical calculation, for a finite number l = 6, An approximate solution of is obtained. This approximate solution is only 0.06% or less, and has sufficient accuracy for practical use. As an algebraic solution of N, (1
6 ″) was obtained.

(16″)式はmとXを代入することで直ちにNが高精度
に算出できるものであるが他方、(16″)式からXの表
式を誘導すればXの代数解導出という初期の目的が達成
される。
In the equation (16 ″), N can be immediately calculated with high precision by substituting m and X. On the other hand, if the expression of X is derived from the equation (16 ″), the initial algebraic solution of X is derived. The purpose is achieved.

解析処理上Y=X2と置換して(16″)式をYの2次方程
式の形にするため(17)式 の如く近似し、f(m、N)は級数演算による真の値を
回帰して与えた。(17)式の近似誤差は0.4%以下であ
り、実用上全く問題無い。(17)式の解Yは通常の2次
方程式の根として求められ、また、パラメータXは(1
8)式 X=f(m、N)=f(m、α、d、λ) ……(18) の如き、形状係数m、熱伝達率α、材料外径d、熱伝導
率λを関数とする代数解として得られた。
Equation (17) is used to replace equation (16 ″) with a quadratic equation of Y by substituting Y = X 2 for analysis processing. As described above, f (m, N) is given by regressing the true value by series operation. The approximation error of equation (17) is 0.4% or less, and there is no problem in practical use. The solution Y of equation (17) is obtained as the root of a normal quadratic equation, and the parameter X is (1
8) Formula X = f (m, N) = f (m, α, d, λ) (18) as a function of shape factor m, heat transfer coefficient α, material outer diameter d, and heat conductivity λ. Was obtained as an algebraic solution.

要するに、任意断面形状材の平均と表面の温度を高精度
かつ迅速に計算可能となすことにより、棒鋼熱間圧延で
の厳密なオンライン材温計算に基づいた高精度な圧延荷
重計算もできる。
In short, by making it possible to calculate the average and surface temperature of a material having an arbitrary cross-section with high accuracy and speed, it is possible to perform highly accurate rolling load calculation based on strict online material temperature calculation in hot rolling of steel bars.

実 施 例 まず、第1図において、加熱炉1で素材ビレット2を所
定の温度で所定時間保持し、この加熱された素材ビレッ
ト2は、角状ビレットの場合、チルター8により90゜回
転され、続いて、デスケーラ9でデスケーリングされ、
粗圧延スタンド群5に入る。そして、適宜スタンド間水
冷帯10による水冷及びデスケーラ9によるデスケーリン
グを受け、順次中間スタンド群6及び仕上スタンド群7
で圧延され、ポアリングリーラ4によりコイリングされ
る。圧延中スタンド出側に適宜設置されたライン温度計
11により復熱完了状態における材料表面温度が測定さ
れ、最終的にポアリングリーラ直前の温度計12により巻
取温度として測定記録される。円形断面の棒鋼製品を仕
上げる場合、通常、正方形の素材ビレットを用いて、粗
圧延スタンド群5では正方形→ひし形→正方形→ひし形
→正方形→ひし形→正方形のくり返し、中間圧延スタン
ド群6では正方形→六角形→円形→だ円形→円形→だ円
形→円形とだ円形→円形タイプへの変換を行なう。そし
て、仕上圧延スタンド群7では、円形→だ円形→円形→
だ円形→円形→だ円形→真円形とくり返される。これら
一連の断面形状変化において、ひし形とだ円形はその長
径/短径比が任意に設計されるので、所謂、形状係数が
種々の値を取るわけである。
Example First, as shown in FIG. 1, the material billet 2 is held in the heating furnace 1 at a predetermined temperature for a predetermined time. In the case of a square billet, the heated material billet 2 is rotated 90 ° by the tilter 8. Then, it is descaled by Descaler 9,
Enter the rough rolling stand group 5. Then, water cooling by the inter-stand water cooling zone 10 and descaling by the descaler 9 are appropriately performed, and the intermediate stand group 6 and the finishing stand group 7 are sequentially subjected.
And is coiled by the porer reel 4. Line thermometer installed on the exit side of the stand during rolling
The surface temperature of the material in the reheat complete state is measured by 11 and finally measured and recorded as the winding temperature by the thermometer 12 immediately before the porering reel. When finishing a steel bar product with a circular cross section, normally, using a square material billet, the rough rolling stand group 5 repeats square → rhombus → square → rhombus → square → rhombus → square, and the intermediate rolling stand group 6 square → 6 Convert from polygonal → circular → elliptical → circular → elliptical → circular and elliptical → circular type. Then, in the finishing rolling stand group 7, a circle → an ellipse → a circle →
Repeated as oval → circle → ellipse → perfect circle. In the series of changes in the cross-sectional shape, the rhombus and the ellipse are designed so that the major axis / minor axis ratio is arbitrarily designed, so that the so-called shape factor has various values.

そこで、第1図に示す熱延ラインにおいて、φ17−SCM4
35棒鋼ビレットを1150℃で加熱炉から抽出し、最低速レ
ベルの仕上速度8.4m/s(第6パス出側で0.51m/s)で圧
延し、このときに冷却後の材料温度を実測し、この測定
温度を従来技術ならびに本発明によって予測した予測温
度と対比して示したところ、第2表の通りであった。
Therefore, in the hot rolling line shown in Fig. 1, φ17-SCM4
35 steel bar billet was extracted from the heating furnace at 1150 ° C and rolled at the lowest level finishing speed of 8.4 m / s (0.51 m / s on the exit side of the sixth pass), and the material temperature after cooling was measured at this time. The measured temperature is shown in Table 2 in comparison with the predicted temperature predicted by the prior art and the present invention.

なお、これら材料温度はライン設置の放射温度計を用
い、第6、8、12、18スタンド出口と巻取直前で測定し
た。
The temperatures of these materials were measured by using a radiation thermometer installed on a line, immediately before the outlet of the sixth, eighth, twelfth and eighteenth stands and immediately before winding.

第2表において、従来技術では材料の断面形状を等価断
面積換算真円としており、高速圧延材の圧延実績に基づ
いて決定し、各スタンド毎の大気相当熱伝達率αを仕
上材料圧延速度レベルによって3段階に分け、本実施例
では最低速レベルとして予測計算したものである。この
場合、従来技術では、各予測計算温度が測定値よりも35
〜45℃高目であり、予測誤差が明らかな大きすぎた。
In Table 2, in the prior art, the cross-sectional shape of the material is the equivalent cross-sectional area converted to a perfect circle, which is determined based on the rolling results of the high-speed rolled material, and the atmospheric equivalent heat transfer rate α a of each stand is set as the finishing material rolling speed. It is divided into three stages according to the level, and in this embodiment, it is predicted and calculated as the lowest speed level. In this case, in the prior art, each predicted calculated temperature is 35% less than the measured value.
It was higher than ~ 45 ℃, and the prediction error was too large.

また、φ42−S50C棒鋼ビレットを1130℃で抽出して、最
も高速レベルの仕上速度5.51m/s(第6パス出口で1.42m
/st)で圧延した場合の測定温度と従来技術ならびに本
発明の各予測計算温度とを示すと、第3表の通りであっ
た。
In addition, φ42-S50C steel bar billet was extracted at 1130 ℃, and the finishing speed of 5.51m / s (1.42m at the exit of the 6th pass) at the highest speed level.
Table 3 shows the measured temperatures and the respective predicted calculation temperatures of the prior art and the present invention in the case of rolling at / st).

<発明の効果> 以上詳しく説明した通り、本発明法は、各スタンド群の
冷却後の材料温度を一般解析解用いて予測計算するが、
この際に、材料形状を材料表面積×代表外半径÷材料体
積より成る形状係数をパラメータとして代数的に導出す
る。このため、本発明は圧延過程における材料断面形状
の推移を取込むことができ、オンラインで厳密な材料温
度が計算でき、このようにして製品の高精度寸法、高品
質等を実現できる。
<Effects of the Invention> As described in detail above, the method of the present invention predicts and calculates the material temperature after cooling of each stand group using a general analytical solution.
At this time, the material shape is algebraically derived by using the shape coefficient of material surface area × representative outer radius / material volume as a parameter. Therefore, the present invention can take in the transition of the material cross-sectional shape in the rolling process, can calculate the exact material temperature online, and in this way, it is possible to realize high-accuracy dimensions and high quality of the product.

また、本発明法によって迅速かつ高精度に材料温度を予
測計算できるため、圧延荷重とトルクの予測精度が高く
なり、圧延機能力が正しく把握できる。更に、オンライ
ンでの高精度な寸法制御のためにダイナミックセットア
ップができ、また、圧延特性の正確な予測が可能となっ
て、該圧材本数減少による歩留り向上が得られる。
Further, since the material temperature can be predicted and calculated quickly and accurately by the method of the present invention, the rolling load and torque can be predicted with high accuracy, and the rolling functional force can be correctly grasped. Further, it is possible to perform dynamic setup for high-precision dimensional control online, and to accurately predict rolling characteristics, thereby improving yield by reducing the number of pressure members.

本発明は棒鋼・線材のみならず、板材・球・立方体にも
適用でき、かつ、熱間圧延に限らず、あらゆる材料温度
レベルにおいて適用できるものである。
INDUSTRIAL APPLICABILITY The present invention can be applied not only to steel bars and wire rods but also to plate materials, balls and cubes, and is applicable not only to hot rolling but also to any material temperature level.

【図面の簡単な説明】 第1図は本発明法を実施する装置の一列の全18スタンド
からなる棒鋼圧延ラインの説明図、第3図はひし形状実
断面とこれに等価断面積の換算真円を示した説明図、第
3図(a)ならびに(b)はそれぞれだ円形およびひし
形において代表直径を示す説明図である。 符号1……加熱炉 2……素材ビレット 3……コイル状棒鋼(BIG) 4……ポアリングリーラ 5……粗圧延スタンド群 6……中間圧延スタンド群 7……仕上圧延スタンド群 8……チルター 9……デスケーラ 10……スタンド間水冷帯 11……圧延機出側温度計 12……巻取温度計 13……ひし形断面実形状 14……換算真円形状
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a steel bar rolling line consisting of a total of 18 stands in one row of an apparatus for carrying out the method of the present invention, and FIG. 3 is an actual cross section of a rhombus shape and a conversion cross section of the equivalent cross sectional area. FIGS. 3 (a) and 3 (b) are explanatory diagrams showing circles, and FIG. 3 (a) and FIG. Reference numeral 1 ... heating furnace 2 ... material billet 3 ... coiled steel bar (BIG) 4 ... pore ring reeler 5 ... rough rolling stand group 6 ... intermediate rolling stand group 7 ... finishing rolling stand group 8 ... Tilter 9 …… Descaler 10 …… Water cooling zone between stands 11 …… Roller exit side thermometer 12 …… Rolling thermometer 13 …… Rhombus cross-section actual shape 14 …… Converted circular shape

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B21B 37/74 (56)参考文献 特開 昭62−45419(JP,A) 特公 昭51−25432(JP,B2) 特公 昭59−41805(JP,B2)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B21B 37/74 (56) References JP 62-45419 (JP, A) JPB 51- 25432 (JP, B2) JP-B-59-41805 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】角棒、丸棒等の鋼材の熱間圧延時に、各ス
タンド毎に冷却後の材料温度を予測計算し、この予測温
度に基づいて、そのスタンドにおける圧延荷重を推定し
て、上・下ワークロール間隔を設定する際に、各スタン
ド毎に材料の形状を表現するパラメータをm=材料表面
積×代表外半径÷材料体積なる形式より求めて、このパ
ラメータmを冷却後の材料温度式n+1=f(、θ
、d、t、α、a、λ、m)に与えてオンラインで該
材料温度を予測することを特徴とする鋼材の熱間圧延方
法。 ただし、n:冷却前平均材温、θL:冷媒温度、d:材料外
径、t:冷却時間、α:冷媒熱伝達率、a:温度伝播率、
λ:熱伝導率
1. When hot rolling a steel material such as a square bar or a round bar, the material temperature after cooling is predicted and calculated for each stand, and the rolling load at the stand is estimated based on the predicted temperature, When setting the interval between the upper and lower work rolls, the parameter expressing the shape of the material for each stand is obtained from the format m = material surface area × representative outer radius ÷ material volume, and this parameter m is the material temperature after cooling. Formula n + 1 = f ( n , θ
L , d, t, α, a, λ, m) to predict the material temperature online to provide a hot rolling method for steel products. However, n : average material temperature before cooling, θ L : refrigerant temperature, d: material outer diameter, t: cooling time, α: refrigerant heat transfer coefficient, a: temperature transfer coefficient,
λ: thermal conductivity
【請求項2】請求項1に示す方法で熱間圧延する際に、
予測計算した前記材料温度に見合って、ロールの圧下量
を調節することを特徴とする鋼材の熱間圧延方法。
2. When hot rolling by the method according to claim 1,
A method for hot rolling a steel material, characterized in that the amount of roll reduction is adjusted in accordance with the predicted and calculated material temperature.
【請求項3】請求項1に示す方法で熱間圧延する際に、
予測計算した前記材料温度に基づいて熱媒あるいは冷媒
の熱伝達率を高精度に見積りして、熱媒あるいは冷媒の
量を調節することを特徴とする鋼材の熱間圧延方法。
3. When hot rolling by the method according to claim 1,
A method for hot rolling a steel material, which comprises highly accurately estimating a heat transfer coefficient of a heat medium or a refrigerant on the basis of the predicted and calculated material temperature, and adjusting the amount of the heat medium or the refrigerant.
JP63138035A 1988-06-03 1988-06-03 Hot rolling method for steel Expired - Fee Related JPH07102362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138035A JPH07102362B2 (en) 1988-06-03 1988-06-03 Hot rolling method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138035A JPH07102362B2 (en) 1988-06-03 1988-06-03 Hot rolling method for steel

Publications (2)

Publication Number Publication Date
JPH01306002A JPH01306002A (en) 1989-12-11
JPH07102362B2 true JPH07102362B2 (en) 1995-11-08

Family

ID=15212516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138035A Expired - Fee Related JPH07102362B2 (en) 1988-06-03 1988-06-03 Hot rolling method for steel

Country Status (1)

Country Link
JP (1) JPH07102362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8935945B2 (en) 2008-11-19 2015-01-20 Toshiba Mitsubishi-Electic Industrial Systems Corporation Control system

Also Published As

Publication number Publication date
JPH01306002A (en) 1989-12-11

Similar Documents

Publication Publication Date Title
CN115121626B (en) Hot-rolled strip steel transient hot roll shape forecasting method based on error compensation
Kurpe et al. Improvement of process parameters calculation for coil rolling at the steckel mill
CN112387791B (en) Method and system for determining rolling temperature of cold-rolled strip steel
CN105013835A (en) Original roller seam setting method based on thermal crown in ultra-thin strip rolling conducted by cold continuous rolling unit
JPH07102362B2 (en) Hot rolling method for steel
Pietrzyk et al. A study of heat transfer during flat rolling
JPH06244B2 (en) Plate shape control device
JP2554414B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
RU2655398C2 (en) Method of rolled products production
Szota et al. Analysis of rolls wear during the ribbed bars multi-slit rolling process
JP7230880B2 (en) Rolling load prediction method, rolling method, method for manufacturing hot-rolled steel sheet, and method for generating rolling load prediction model
Szota et al. 3D FEM modelling and experimental verification of the rolls wear during the bar rolling process
JPH0671315A (en) Method for estimating rolling temperature of steel sheet in hot rolling
JPS5922604B2 (en) Finishing temperature predictive control rolling method for hot strips
Ding et al. Temperature control technology by finite difference scheme with thickness unequally partitioned method in gradient temperature rolling process
Shao et al. Influence of Strip Transverse Temperature Deviation in Hot Rolling Based on Two Dimension Alternating Difference
Harding Temperature and structural changes during hot rolling.
Raudensky et al. Heat transfer evaluation of impingement cooling in hot rolling of shaped steels
Vidoni et al. Profile strip casting with inline hot rolling: Numerical simulations for the process chain design
TWI787940B (en) Optimization method of furnace temperature setting values of heating furnace
Uppgard Predicting post-rolling flatness by statistical analysis
JP6874730B2 (en) Hot rolling line controller
Wright et al. Rolling of stainless steel in wide hot strip mills
JP2022056370A (en) Slab thickness prediction method, control method of edge reduction press device and method of producing slab thickness prediction model
JPS58119405A (en) Production of steel plate by direct rolling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees