JPH07102126B2 - Method for culturing microorganism by mixed medium of animal blood cell-derived peptide and amino acid - Google Patents

Method for culturing microorganism by mixed medium of animal blood cell-derived peptide and amino acid

Info

Publication number
JPH07102126B2
JPH07102126B2 JP3174528A JP17452891A JPH07102126B2 JP H07102126 B2 JPH07102126 B2 JP H07102126B2 JP 3174528 A JP3174528 A JP 3174528A JP 17452891 A JP17452891 A JP 17452891A JP H07102126 B2 JPH07102126 B2 JP H07102126B2
Authority
JP
Japan
Prior art keywords
hydrolyzate
acid
blood cell
blood
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3174528A
Other languages
Japanese (ja)
Other versions
JPH05184354A (en
Inventor
正寛 沼田
浩之 山田
忍 結城
豊郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoham Foods Inc
Original Assignee
Itoham Foods Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoham Foods Inc filed Critical Itoham Foods Inc
Priority to JP3174528A priority Critical patent/JPH07102126B2/en
Publication of JPH05184354A publication Critical patent/JPH05184354A/en
Publication of JPH07102126B2 publication Critical patent/JPH07102126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微生物の培養方法、特に
窒素源及び発育因子を含む培地素材を用いた微生物の培
養方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for culturing microorganisms, and more particularly to a method for culturing microorganisms using a medium material containing a nitrogen source and a growth factor.

【0002】[0002]

【従来の技術】一般に微生物を培養する場合には窒素源
が必要であり、この場合の窒素源としては、通常乳蛋
白,大豆蛋白,獣肉蛋白及びゼラチン等を酵素分解,酸
分解等の手段によって加水分解して得られた各種ペプト
ン類が用いられている。しかし、前記した諸原料は高価
であり、特にこれらを用いて微生物を工業的に大量培養
する場合、窒素源を含む培地のコスト高が問題となって
いた。一方、培地製造学的には、古くから血液の使用が
なされており、各種の培地へ利用されている。しかし、
その殆どの使用例が血液の特性として本来有する抗菌性
物質の除去,ビタミン的効果の付与及び菌の識別的効果
等を期待するものである。
2. Description of the Related Art Generally, a nitrogen source is required for culturing microorganisms. As the nitrogen source in this case, milk protein, soybean protein, animal meat protein, gelatin, etc. are usually decomposed by means such as enzymatic and acid decomposition Various peptones obtained by hydrolysis are used. However, the above-mentioned various raw materials are expensive, and especially when industrially culturing a large amount of microorganisms using them, the high cost of the medium containing a nitrogen source has been a problem. On the other hand, in terms of culture medium manufacturing, blood has been used for a long time and is used for various culture media. But,
Most of the uses are expected to remove the inherent antibacterial substances as blood characteristics, impart a vitamin-like effect, and discriminate against bacteria.

【0003】又、血液中には過剰な鉄分を含む血色素が
存在する上に、血液蛋白がそのままの状態で存在するこ
とによる菌の利用性の低さ等の理由から、大量に窒素源
あるいはペプトン源として使用するものではなかった。
更に、ごく一部には血液をペプシン及びトリプシン等で
加水分解し、前記した各種ペプトン類と同様に、栄養的
効果を目的とした血液の使用法があるが、この加水分解
液中には血色素及び未分解の蛋白が共存することから、
加熱滅菌処理ができず、その使用は予め加熱滅菌処理し
た他の培地成分に、冷却後無菌的に加水分解液を添加す
るという極めて煩雑な操作を必要とする。又、この加水
分解液は単に栄養補助的なものであって、これが広範囲
の微生物に対して主な窒素源、あるいはペプトン源とな
る可能性については、未だ検討がなされていないのが現
状である。
In addition, blood pigment containing excess iron is present in blood, and due to the low availability of bacteria due to the presence of blood protein as it is, a large amount of nitrogen source or peptone is used. It was not meant to be used as a source.
Furthermore, in a small part, blood is hydrolyzed with pepsin and trypsin, and like the various peptones described above, there is a method of using blood for the nutritional effect. And since undegraded protein coexists,
It cannot be sterilized by heat, and its use requires an extremely complicated operation of aseptically adding a hydrolyzed solution to other medium components that have been sterilized by heat in advance after cooling. Further, this hydrolyzed liquid is merely a nutritional supplement, and the possibility that it may be the main nitrogen source or peptone source for a wide range of microorganisms has not yet been examined. .

【0004】ここで、血液成分を培地素材として利用す
る際の諸問題に対する一解決策として、例えば特開昭59
-159772 号公報が提案されている。この公報には、屠畜
廃液中の血液等を加水分解して得られた分解液を主な窒
素源、もしくは炭素源として、サッカロミセス菌に属す
る酵母を培養することが開示されている。しかし、その
内容は血液もしくは血漿又は血清を原料としており、こ
れは主として血液中の血漿部にその効果を求めているも
のであって、現在、利用度が最も低い血球部に対しての
ものではない。又、その対象微生物はサッカロミセス属
だけであり、広く一般の微生物の窒素源となりうる血液
等の詳細な加水分解方法についての言及はない。更に血
液の脱色工程がなく、従ってその用途は非常に限られた
ものとなっている。
Here, as one solution to various problems in using blood components as a medium material, for example, Japanese Patent Laid-Open No. 59-59
-159772 publication is proposed. This publication discloses culturing yeast belonging to Saccharomyces bacterium by using a decomposition solution obtained by hydrolyzing blood or the like in slaughter liquid as a main nitrogen source or a carbon source. However, its content is derived from blood or plasma or serum, which mainly seeks its effect on the plasma part of blood, and is not currently applied to the blood cell part, which has the lowest utilization. Absent. Further, the target microorganism is only the genus Saccharomyces, and there is no mention of a detailed hydrolysis method for blood or the like, which can be a nitrogen source of widely-used microorganisms. In addition, there is no blood bleaching process, so its use is very limited.

【0005】一方、英国特許GB2018 121A には、血球部
の加水分解方法が記載されている。しかし、これは食品
素材として比較的高分子ペプチドを得るための分解方法
の記載であって、微生物培養用培地素材については記載
がなされていない。加えて、発明者らによる特公平1-15
277 号公報には、除鉄後加水分解した血球分の培地素材
としての利用方法が開示されているが、本発明は特にグ
ラム陰性菌に対しての効果を示すものであって、広範囲
な微生物の発育を支持するまでには至らなかった。本発
明は上記事情に鑑みてなされたものであり、広範囲な微
生物の培養に際して安価な培地素材を提供すると共に、
未利用資源である血球分の有効利用を可能とする微生物
の培養方法を提供することを目的としている。
On the other hand, British Patent GB2018 121A describes a method for hydrolyzing blood cells. However, this is a description of a decomposition method for obtaining a relatively high-molecular peptide as a food material, and no description is given of a microorganism culture medium material. In addition, Japanese Patent Publication No. 1-15 by the inventors
Japanese Patent No. 277 discloses a method of using as a medium material of blood cells hydrolyzed after iron removal, but the present invention particularly shows an effect against Gram-negative bacteria, Did not support the development of. The present invention has been made in view of the above circumstances, and provides an inexpensive medium material for culturing a wide range of microorganisms,
It is an object of the present invention to provide a method for culturing a microorganism that enables effective use of blood cells, which is an unused resource.

【0006】[0006]

【課題を解決するための手段】本発明は血液中の血球部
を溶血し、加水分解後除鉄するかあるいは除鉄後に加水
分解した分解物を培地素材とするもので、窒素源ばかり
でなく、それ以外の栄養素と発育因子を含む酵素加水分
解物と窒素源としての補完効果を有する酸加水分解物を
混合すれば、広範な微生物の増殖に適した培地素材化が
可能であるという知見に基づきなされたものである。
Means for Solving the Problems The present invention is to hemolyze a blood cell part in blood and remove iron after hydrolysis or use a decomposed product hydrolyzed after iron removal as a medium material. , It was found that it is possible to make a medium material suitable for the growth of a wide range of microorganisms by mixing an enzyme hydrolyzate containing other nutrients and growth factors with an acid hydrolyzate having a complementary effect as a nitrogen source. It was made based on.

【0007】本発明で使用される血球は、牛,豚等の動
物の血液を、例えば常法通り血液凝固防止剤を添加した
後、遠心分離して得たものである。なお、血球を溶血さ
せる方法としては、血球1重量部に対して同重量部ない
し3重量部の水を混合させて行なう。ここで、加水量が
これ以上少ないと溶血が不十分となり、又、これ以上多
いと加水分解物の回収が困難となる。又、溶血した血球
の加水分解は、通常、蛋白質を加水分解する方法が利用
できる。例えば、酵素で加水分解する場合には、その条
件として適宜使用する酵素の至適条件を選択することが
可能であるが、得られる加水分解物については、その分
子量を5,000 以下とする必要がある。ここで、分子量が
5,000 を越える分解方法を採用した場合には、血球中の
鉄分の除去が不十分となって、最終分解物は赤褐色に着
色するばかりか、その収率も低下することとなる。又、
高分子故に微生物に対する資化性も低下する。
The blood cells used in the present invention are obtained by centrifuging blood of animals such as cows and pigs, after adding an anticoagulant in the usual manner. As a method of hemolyzing blood cells, 1 part by weight of blood cells is mixed with the same or 3 parts by weight of water. Here, if the amount of water added is smaller than this, hemolysis becomes insufficient, and if it is larger than this, recovery of the hydrolyzate becomes difficult. For the hydrolysis of hemolyzed blood cells, a method of hydrolyzing a protein can usually be used. For example, when hydrolyzing with an enzyme, it is possible to select the optimum conditions of the enzyme to be used as appropriate as the condition, but the molecular weight of the resulting hydrolyzate must be 5,000 or less. . Where the molecular weight is
If a decomposition method exceeding 5,000 is adopted, the iron content in the blood cells will be insufficiently removed, and the final decomposed product will not only be colored reddish brown but also its yield will be reduced. or,
Since it is a polymer, its ability to assimilate microorganisms is also reduced.

【0008】溶血した血球の加水分解に使用される酵素
の種類は、通常の蛋白質分解酵素であれば良いが、血球
に対する分解力が強く、又、鉄分の除去具合及び分子量
5,000 以下の分解物を得るための収率が高いこと等を考
慮すると、ペプシン及び微生物系アルカリ酵素が特に好
適である。反応終了後の分解液は、酵素の失活後通常の
固液分離手段で血球蛋白加水分解物を含む上澄部と、未
分解の蛋白及び血色素を含む沈澱部とに分ければ良い。
この場合、例えば遠心分離による操作が適しており、8,
000rpm−20分間程度で十分である。又、鉄分除去をより
完全なものとするために、上澄部を活性炭処理しても良
い。この場合の活性炭の添加量は、上澄部に対して1〜
2%が望ましい。そして、固液分離後の上澄部は、その
まま分解液の状態でも培地中の窒素源として使用できる
が、保存性及び使い易さの点で、これをスプレードライ
等の処理により粉末化すれば更に望ましい。
The type of enzyme used for the hydrolysis of hemolyzed blood cells may be any ordinary proteolytic enzyme, but it has a strong decomposing power for blood cells, and the degree of removal of iron and the molecular weight thereof.
Considering the high yield for obtaining a decomposition product of 5,000 or less, pepsin and microbial alkaline enzyme are particularly preferable. After the reaction is completed, the decomposed solution may be divided into a supernatant containing the blood cell protein hydrolyzate and a precipitate containing the undegraded protein and hemoglobin by the usual solid-liquid separation method after deactivating the enzyme.
In this case, for example, the operation by centrifugation is suitable,
000 rpm-20 minutes is enough. Further, in order to complete the removal of iron, the supernatant may be treated with activated carbon. In this case, the amount of activated carbon added is 1 to the supernatant.
2% is desirable. And, the supernatant portion after solid-liquid separation can be used as a nitrogen source in the medium in the state of the decomposition solution as it is, but in terms of storability and ease of use, if this is powdered by a treatment such as spray drying. More desirable.

【0009】一方、酸で加水分解する場合には塩酸や硫
酸などの酸が用いられるが、血球分の蛋白質が殆どアミ
ノ酸にまで分解されることが必要である。分解後の除鉄
操作は酵素分解の項でも言及した通りであるが、これら
の順序は例えば除鉄後に加水分解しても差し支えない。
血球から調製したグロビン蛋白質を用いた加水分解がこ
の例である。以上の方法で得られた血球分の酵素加水分
解物と酸加水分解物は適宜混合して用いられるが、混合
割合は微生物の種類によって異なる。以下に実施例で更
に詳細説明する。
On the other hand, in the case of hydrolyzing with an acid, an acid such as hydrochloric acid or sulfuric acid is used, but it is necessary that most blood cell proteins be decomposed into amino acids. The iron removal operation after decomposition is the same as that described in the section of enzymatic decomposition, but these sequences may be hydrolyzed after iron removal, for example.
An example of this is hydrolysis using globin protein prepared from blood cells. The enzyme hydrolyzate and the acid hydrolyzate of the blood cells obtained by the above method are appropriately mixed and used, but the mixing ratio varies depending on the type of microorganism. The present invention will be described below in more detail.

【0010】[0010]

【実施例】実施例1酵素加水分解物の調製 豚の血球分1lに対して3lの水を加えて溶血させた
後、pHを8.5 に調整した。更に、アルカリプロテアーゼ
14gを加えて55℃で2時間加水分解した。分解終了後、
80℃-30 分間加熱して酵素を失活させ、その遠心上澄
(8,000rpm−20分間)を活性炭処理後スプレードライし
た。本操作により乾燥粉末210 gを得、これを酵素加水
分解物Aとした。同様に、酸性プロテアーゼ4.5 gを用
いて(pH 5.5,50℃−2時間反応)乾燥粉末180 gを
得、これを酵素加水分解物Bとした。又、豚血球から塩
酸−アセトン法により調製した1%グロビン溶液(除鉄
操作を含む)1lに対して、1gのペプシンを加えて酵
素分解(pH 2.0,35℃−3時間)を行なった。中和後、
更に1gのアクチナーゼを加えて酵素分解を行ない、最
終的に8gの乾燥粉末を得、これを酵素分解物Cとし
た。
Example 1 Preparation of Enzymatic Hydrolyzate After adding 3 l of water to 1 l of porcine blood cell fraction to hemolyze, the pH was adjusted to 8.5. Furthermore, alkaline protease
14 g was added and hydrolyzed at 55 ° C. for 2 hours. After disassembly,
The enzyme was inactivated by heating at 80 ° C. for 30 minutes, and the centrifugal supernatant (8,000 rpm-20 minutes) was treated with activated carbon and spray-dried. By this operation, 210 g of dry powder was obtained, which was designated as enzymatic hydrolyzate A. Similarly, 180 g of dry powder was obtained using 4.5 g of acidic protease (pH 5.5, reaction at 50 ° C. for 2 hours), and this was designated as enzymatic hydrolyzate B. In addition, 1 g of pepsin was added to 1 liter of a 1% globin solution (including iron removal operation) prepared from pig blood cells by the hydrochloric acid-acetone method to carry out enzymatic decomposition (pH 2.0, 35 ° C.-3 hours). After neutralization,
Further, 1 g of actinase was added for enzymatic decomposition to finally obtain 8 g of dry powder, which was designated as enzymatic decomposed product C.

【0011】実施例2酸化水分解物の調製 25%豚血球溶液1lに終濃度が6Nとなるように塩酸を
加え、110 ℃で48時間減圧分解した。分解後、脱色,脱
塩酸,減圧濃縮の操作を行ない、窒素濃度4.5%の分解
液150 mlを得、これを酸加水分解物とした。
Example 2 Preparation of Oxidized Hydrolyzate Hydrochloric acid was added to 1 liter of a 25% pig blood cell solution so that the final concentration was 6 N, and the mixture was decomposed under reduced pressure at 110 ° C. for 48 hours. After the decomposition, decolorization, dehydrochlorination, and concentration under reduced pressure were performed to obtain 150 ml of a decomposition solution having a nitrogen concentration of 4.5%, which was used as an acid hydrolyzate.

【0012】実施例3調整した分解物の単独応用例 以上の各分解物0.39%(窒素換算),グリセリン1%,
食塩2.4 %(pH 0.7)からなる培地を調製し、培養試験
を行なった。被検菌はエスシェリシア コリ(Escheric
hia coli IFO 3301 ),バチルス ズブチリス(Bacill
us subtilis IFO 3336)及びラクトバチルス プランタ
ルム(Lactobacillus plantarum IFO 3070)で、ラクト
バチルスの場合には、前記した培地のグリセリンをブド
ウ糖1%に変更した。図1〜図3に30℃で振とう培養し
た被検菌の生育曲線を示す。なお、図1は酵素加水分解
物A〜C及び酸加水分解物を夫々用いたエスシェリア
コリの生育曲線図、図2及び図3は同方法によるバチル
ス ズブチリス及びラクトバチルスプランタルムの生育
曲線である。図から明らかなように、生育状態は被検菌
あるいは用いた分解物によって大きく異なった。即ち、
酵素加水分解物Aはエスシェリシア及びバチルスの生育
に対しては良好な促進効果を示すもののラクトバチルス
には認められず、又、酸素加水分解物B及びCならびに
酸加水分解物は被検菌の生育には総じて抑制的であっ
た。
Example 3 Single application example of the prepared decomposed product 0.39% of each decomposed product (nitrogen conversion), 1% of glycerin,
A medium consisting of 2.4% sodium chloride (pH 0.7) was prepared and a culture test was conducted. The test bacteria are Eschericia coli.
hia coli IFO 3301), Bacillus subtilis (Bacill)
us subtilis IFO 3336) and Lactobacillus plantarum IFO 3070), in the case of Lactobacillus, the glycerin in the medium was changed to 1% glucose. 1 to 3 show growth curves of test bacteria that were shake-cultured at 30 ° C. In addition, FIG. 1 shows Escherichia using the enzyme hydrolysates A to C and the acid hydrolyzate, respectively.
2 and 3 are growth curves of Bacillus subtilis and Lactobacillus plantarum by the same method. As is clear from the figure, the growth state varied greatly depending on the test bacteria or the degradation products used. That is,
The enzyme hydrolyzate A has a good promoting effect on the growth of Escherichia coli and Bacillus, but it is not found in Lactobacillus, and the oxygen hydrolysates B and C and the acid hydrolyzate are growth of the test bacteria. Was generally suppressive.

【0013】実施例4酵素加水分解物B及び酸加水分解物の混合によるエスシ
ェリシアの生育促進効果 実施例3で用いた培地の各分解物を酵素加水分解物Bと
酸加水分解物の割合が100 :0,75:25,50:50,25:
75,0:100になるように夫々調製し、以下同様にエスシ
ェリシアの培養試験を行なった。結果は図4に示した
が、被検菌は酵素加水分解物Bと酸加水分解物を75:25
〜25:75の範囲で混合することによって良好な生育を示
した。本結果から、エスシェリシアに対する酵素加水分
解物Bの生育促進作用と酸加水分解物の窒素源として補
完効果が窺われる。
Example 4 Esci by mixing enzyme hydrolyzate B and acid hydrolyzate
Growth-promoting effect of Elysia The ratio of enzyme hydrolyzate B to acid hydrolyzate in each of the decomposed products of the medium used in Example 3 was 100: 0,75: 25,50: 50,25:
Each was adjusted to 75, 0: 100, and the culture test of Escherichia was conducted in the same manner. The results are shown in Fig. 4, and the test bacteria showed that the enzyme hydrolyzate B and the acid hydrolyzate were 75:25.
Good growth was shown by mixing in the range of ~ 25: 75. From this result, the growth promoting action of the enzymatic hydrolyzate B on Escherichia and the complementary effect as a nitrogen source of the acid hydrolyzate are shown.

【0014】実施例5酵素加水分解物C及び酸加水分解物の混合によるバチル
スの生育促進効果 実施例4と同様に酵素加水分解物Cと酸加水分解物の混
合培地を調製し、バチルスの培養試験を行なった。結果
は図5に示したが、被検菌は酵素加水分解物Cと酸加水
分解物を75:25〜25:75の範囲で混合することによって
良好な生育を示した。本結果から、バチルスに対する酵
素加水分解物Cの生育促進作用と酸加水分解物の窒素源
として補完効果が窺われる。
Example 5 Batyl by Mixing Enzymatic Hydrolyzate C and Acid Hydrolyzate
Growth-promoting effect of sucrose A mixed medium of enzyme hydrolyzate C and acid hydrolyzate was prepared in the same manner as in Example 4, and a Bacillus culture test was conducted. The results are shown in Fig. 5, and the test bacteria showed good growth by mixing the enzyme hydrolyzate C and the acid hydrolyzate in the range of 75:25 to 25:75. From this result, the growth promoting action of the enzyme hydrolyzate C on Bacillus and the complementary effect of the acid hydrolyzate as a nitrogen source are shown.

【0015】実施例6酵素加水分解物C及び酸加水分解物の混合によるラクト
バチルスの生育促進効果 実施例5と同様に酵素加水分解物Cと酸加水分解物の混
合培地を調製し、ラクトバチルスの培養試験を行なっ
た。結果は図6に示したが、被検菌は酵素加水分解物C
と酸加水分解物を75:25〜25:75の範囲で混合すること
によって良好な生育を示した。本結果から、ラクトバチ
ルスに対する酵素加水分解物Cの生育促進作用と酸加水
分解物の窒素源として補完効果が窺われる。
Example 6 Lacto by mixing enzyme hydrolyzate C and acid hydrolyzate
Growth promoting effect of Bacillus A mixed medium of enzymatic hydrolyzate C and acid hydrolyzate was prepared in the same manner as in Example 5, and a lactobacillus culture test was conducted. The results are shown in FIG. 6, and the test bacteria were enzyme hydrolyzate C.
Good growth was demonstrated by mixing the acid hydrolyzate with the acid hydrolyzate in the range of 75:25 to 25:75. From this result, the growth promoting action of the enzymatic hydrolyzate C on Lactobacillus and the complementary effect as a nitrogen source of the acid hydrolyzate are shown.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば血
液中の血球部を酵素及び酸加水分解し、両者を混合する
ことによって、広範囲な微生物の培養に際して極めて有
効な培地素材を提供することができる。従来、同目的で
用いられているペプトン原料に比べ、血球が非常に安価
であることは言うまでもない。
As described above, according to the present invention, a blood cell portion in blood is enzymatically and acid hydrolyzed, and both are mixed to provide a very effective medium material for culturing a wide range of microorganisms. be able to. Needless to say, blood cells are much cheaper than the peptone raw material conventionally used for the same purpose.

【図面の簡単な説明】[Brief description of drawings]

【図1】酵素加水分解物A〜C及び酸加水分解物を夫々
用いたエスシェリシア コリの生育曲線図。
FIG. 1 is a growth curve diagram of Escherichia coli using enzyme hydrolysates A to C and acid hydrolysates, respectively.

【図2】図1と同様のバチルス ズブチリスの生育曲線
図。
FIG. 2 is a growth curve diagram of Bacillus subtilis similar to FIG.

【図3】図1と同様のラクトバチルス プランタルムの
生育曲線図。
FIG. 3 is a growth curve diagram of Lactobacillus plantarum similar to FIG.

【図4】酵素加水分解物Bと酸加水分解物を種々の割合
で混合した場合のエスシェリシア コリの生育曲線図。
FIG. 4 is a growth curve diagram of Escherichia coli when the enzyme hydrolyzate B and the acid hydrolyzate are mixed at various ratios.

【図5】酵素加水分解物Cと酸加水分解物を種々の割合
で混合した場合のバチルス ズブチリスの生育曲線図。
FIG. 5 is a growth curve diagram of Bacillus subtilis when enzyme hydrolyzate C and acid hydrolyzate are mixed at various ratios.

【図6】図5と同様のラクトバチルス プランタルムの
生育曲線図。
FIG. 6 is a growth curve diagram of Lactobacillus plantarum similar to FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 豊郎 茨城県北相馬郡守谷町久保ケ丘1−2 伊 藤ハム株式会社 中央研究所内 (56)参考文献 特公 平1−15277(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toyo Nakamura Inventor 1-2 Kubogaoka, Moriya-cho, Kitasoma-gun, Ibaraki Itoham Co., Ltd. Central Research Laboratory (56) Reference Japanese Patent Publication 1-15277 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 動物血液中の血球分を原料とし、これを
酵素及び酸にて夫々別々に加水分解後に除鉄あるいは除
鉄後に加水分解して酵素加水分解物と酸加水分解物とを
夫々得、前記各加水分解物を適宜混合して培地素材とし
ことを特徴とする動物血球由来ペプチドとアミノ酸と
の混合培地による微生物の培養方法。
1. A blood cell component in animal blood is used as a raw material, which is used as a raw material.
Separately hydrolyze with an enzyme and an acid , respectively, and then remove iron or iron and then hydrolyze them to obtain an enzymatic hydrolyzate and an acid hydrolyzate.
Obtained respectively, and mix each of the above hydrolysates as appropriate to make a medium material
A method for culturing a microorganism in a mixed medium of an animal blood cell-derived peptide and an amino acid, which is characterized in that
【請求項2】 酵素加水分解物と酸加水分解物とは、7
5:25〜25:75の範囲で混合することを特徴とす
る請求項1記載の動物血球由来ペプチドとアミノ酸との
混合培地による微生物の培養方法。
2. The enzymatic hydrolyzate and the acid hydrolyzate are 7
The method for culturing a microorganism in a mixed medium of an animal blood cell-derived peptide and an amino acid according to claim 1 , wherein the mixing is performed in the range of 5:25 to 25:75 .
JP3174528A 1991-06-19 1991-06-19 Method for culturing microorganism by mixed medium of animal blood cell-derived peptide and amino acid Expired - Lifetime JPH07102126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174528A JPH07102126B2 (en) 1991-06-19 1991-06-19 Method for culturing microorganism by mixed medium of animal blood cell-derived peptide and amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174528A JPH07102126B2 (en) 1991-06-19 1991-06-19 Method for culturing microorganism by mixed medium of animal blood cell-derived peptide and amino acid

Publications (2)

Publication Number Publication Date
JPH05184354A JPH05184354A (en) 1993-07-27
JPH07102126B2 true JPH07102126B2 (en) 1995-11-08

Family

ID=15980108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174528A Expired - Lifetime JPH07102126B2 (en) 1991-06-19 1991-06-19 Method for culturing microorganism by mixed medium of animal blood cell-derived peptide and amino acid

Country Status (1)

Country Link
JP (1) JPH07102126B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415277A (en) * 1987-07-06 1989-01-19 Sanoyas Corp Arc spot welding method and its working tool

Also Published As

Publication number Publication date
JPH05184354A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
Ellaiah et al. A review on microbial alkaline proteases
Kumar et al. Microbial alkaline proteases: from a bioindustrial viewpoint
Oh et al. Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes
US4910145A (en) Separation process
US3852479A (en) Process for producing a protein hydrolysate
Triki-Ellouz et al. Biosynthesis of protease by Pseudomonas aeruginosa MN7 grown on fish substrate
US5192677A (en) Alkali and heat stable protease from thermomonospora fusca
Venugopal Production of fish protein hydrolyzates by microorganisms
KR950013948B1 (en) Method of removing bitter taste from hydrolysed protein
US6544791B2 (en) Nitrogenous composition resulting from the hydrolysis of maize gluten and a process for the preparation thereof
Watanabe et al. Purification and properties of β-galactosidase from Penicillium citrinum
Faith et al. Production and applications of enzymes
US6372452B1 (en) Process for obtaining plant peptones with a high hydrolysis degree and applications thereof
JPH07102126B2 (en) Method for culturing microorganism by mixed medium of animal blood cell-derived peptide and amino acid
Ovissipour et al. Use of hydrolysates from Yellowfin tuna Thunnus albacares fisheries by-product as a nitrogen source for bacteria growth media
JP2631202B2 (en) Peptide production method
JP4167736B2 (en) Method for producing glutamic acid and method using protein hydrolyzate in this method
JPH0115277B2 (en)
JPH03123484A (en) Enzymatic agent for production of peptide and peptide-production process
JPH025829A (en) Method for removing bitterness from protein hydrolysate and obtained product
JP3819454B2 (en) Novel proline dipeptidase and method for hydrolyzing proteins and peptides using the proline dipeptidase
JP2005269925A (en) Method for producing water-insoluble silver-containing whey protein hydrolysate
JP3820617B2 (en) ε-Poly-L-lysine-degrading enzyme and method for producing ε-poly-L-lysine with low polymerization degree using the same
Healy et al. Biotreatment of marine crustacean and chicken egg shell waste
JPS62224245A (en) Production of easily soluble hydrolyzed milk protein free from unagreeable taste

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 16