JPH07100915B2 - A device that continuously measures the moisture content of paper - Google Patents
A device that continuously measures the moisture content of paperInfo
- Publication number
- JPH07100915B2 JPH07100915B2 JP3296335A JP29633591A JPH07100915B2 JP H07100915 B2 JPH07100915 B2 JP H07100915B2 JP 3296335 A JP3296335 A JP 3296335A JP 29633591 A JP29633591 A JP 29633591A JP H07100915 B2 JPH07100915 B2 JP H07100915B2
- Authority
- JP
- Japan
- Prior art keywords
- dryer
- paper
- equation
- moisture content
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Paper (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は抄紙機の操業管理におい
て最も重要な管理項目の一つであるドライヤ入口の紙の
水分を、演算によって運転中連続的に求める方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of continuously calculating the water content of paper at the entrance of a dryer, which is one of the most important control items in the operation control of a paper machine, during operation.
【0002】[0002]
【従来の技術】図1は抄紙機における多筒式ドライヤの
概要図である。乾燥のエネルギー源として蒸気を使用す
る。図示のようにこの蒸気を効率よく使用する為、ドラ
イヤ筒を数本ずつ同一蒸気圧力群として蒸気ヘッダーを
共通化し、全ドライヤ筒を数群に分割(図1は4群分割
の例)したドレネージシステムを構成するのが一般的で
ある。そして最終ドライヤ出口の紙の水分率は紙幅方向
にスキャンする測定装置(例えばB/M計)で測定する
ことが出来る。同様にドライヤ入口の紙の水分率も紙幅
方向にスキャンする測定装置(例えばB/M計)で測定
することも可能であり、測定器メーカーから製造・販売
されている。2. Description of the Related Art FIG. 1 is a schematic view of a multi-cylinder dryer in a paper machine. Use steam as a source of energy for drying. In order to use this steam efficiently as shown in the figure, several dryer cylinders are used as the same steam pressure group to share a common steam header, and all dryer cylinders are divided into several groups (Fig. 1 is an example of 4 groups). It is common to configure a rage system. Then, the moisture content of the paper at the final dryer outlet can be measured by a measuring device (for example, B / M meter) that scans in the paper width direction. Similarly, the moisture content of the paper at the dryer entrance can also be measured by a measuring device (for example, B / M meter) that scans in the paper width direction, and is manufactured and sold by a measuring instrument maker.
【0003】しかしながら、ドライヤの入口付近は測定
装置にとって、その環境条件は必ずしも満足されるよう
な状況下ではなく、特に最近、抄紙機の高速化、広幅化
に伴って測定センサーを搭載しているヘッドの走査用フ
レームの設置条件がますます厳しくなって来ているのが
実情ある。例えば高速化によるプレス出口での断紙を防
止するため、プレス部(脱水装置)とドライヤ入口部の
間隔は非常に狭く、フレーム設置スペースのない抄紙機
もある。また、ドライヤの輻射熱も高く、しかも脱水部
であるので湿度も極端に高く、とても電子機器を設置で
きるような環境ではない。仮に設置出来てもそのメンテ
ナンス性は極めて悪く、水分率計測機器の信頼性を長期
間にわたって、高度に維持することは非常に難しく、ド
ライヤ入口の紙の水分率を連続的に且つ安定に測定する
手段方法の提供が望まれている。However, in the vicinity of the entrance of the dryer, the measuring apparatus is not always in a condition where the environmental conditions are satisfied, and in particular, recently, a measuring sensor is mounted as the paper machine becomes faster and wider. In reality, the installation conditions for the head scanning frame are becoming more and more severe. For example, in order to prevent paper breakage at the press exit due to speedup, the space between the press part (dehydration device) and the dryer entrance part is very narrow, and there is a paper machine without a frame installation space. Also, the radiant heat of the dryer is high, and since it is a dehydration unit, the humidity is extremely high, and it is not an environment where electronic equipment can be installed. Even if it can be installed, its maintainability is extremely poor, and it is very difficult to maintain the reliability of the moisture content measuring device at a high level for a long period of time, and the moisture content of the paper at the dryer inlet is measured continuously and stably. It is desired to provide a method.
【0004】[0004]
【発明が解決しようとする問題点】殊に、抄紙機が高速
化および広幅化し、更に紙の品質要求が厳しくなるにつ
れ、ドライヤにおける乾燥条件をきめ細かく管理するた
めドライヤ入口の紙の水分率を知る必要性は従来にも増
して高くなって来ている。しかしながら測定機器の設置
環境条件は益々悪くなる一方で、この問題に有効に対応
できない実情にある。本発明はこの問題を効果的に解決
する方法を提供する。以下本発明について説明する。In particular, as the speed and width of paper machines have become wider and the quality requirements for paper have become more stringent, the moisture content of the paper at the dryer entrance has to be known in order to precisely control the drying conditions in the dryer. The need is higher than ever. However, while the environmental conditions under which the measuring instruments are installed are getting worse, it is not possible to effectively deal with this problem. The present invention provides a way to effectively solve this problem. The present invention will be described below.
【0005】[0005]
【問題点を解決するための手段】この発明は上記問題点
を解決する手段として、ドライヤ出口において紙の坪量
と水分を検出する手段と、ドライヤ出口において紙の走
行スピードを検出する手段とを備えると共に、ドライヤ
の蒸気圧力を検出する手段を備える。更に予じめ設定さ
れたドライヤの総括熱伝達係数を用い上記ドライヤ出口
の紙走行スピード、坪量、水分と上記ドライヤの蒸気圧
力とからドライヤの蒸発水分量を求めこの蒸発水分量に
上記ドライヤ出口の紙の水分を和しドライヤ入口の紙の
水分率を演算する演算装置を備え、抄紙機におけるドラ
イヤ入口の紙の水分率を連続的に測定する装置を提供す
るものである。As means for solving the above problems, the present invention comprises means for detecting the basis weight and moisture of paper at the dryer outlet, and means for detecting the traveling speed of paper at the dryer outlet. And a means for detecting the vapor pressure of the dryer. Further, using the preset overall heat transfer coefficient of the dryer, the evaporative water content of the dryer is obtained from the paper traveling speed at the dryer outlet, the basis weight, the water content and the steam pressure of the dryer, and the evaporative water content is calculated as the evaporative water content. The present invention provides an apparatus for continuously measuring the moisture content of the paper at the dryer inlet in a paper machine, which is provided with a computing device for summing the moisture content of the paper and computing the moisture content of the paper at the dryer inlet.
【作用】この発明は上記の通り、ドライヤ出口における
紙の坪量と水分、同紙のスピードに関するデータを利用
し、更にこのデータとドライヤの蒸気圧力とからドライ
ヤの蒸発水分量を求め、この蒸発水分量に上記ドライヤ
出口の紙の水分量を和することによってドライヤ入口に
おける水分率を連続的に把握することができる装置であ
る。この発明によればドライヤ入口の紙の巾方向にスキ
ャンして水分率を測定する装置(例えばB/M計)を排
し、ドライヤ出口における情報と協働してドライヤ入口
における紙の水分率を適正に測定することができる。従
ってドライヤ入口に水分率測定装置を設置しスキャンす
るスペースを確保することが困難となって来ている問題
を解消すると共に、ドライヤの熱や湿度、紙カス等が外
乱要因となって測定の信頼を損なう問題も解消でき、ひ
いてはドライヤ入口に何らの装置の設置も要しないの
で、その保守管理作業も排除でき、システムの合理化・
省力化と、信頼性向上と、コスト削減を併せて達成でき
る。As described above, the present invention utilizes the data on the basis weight and moisture of the paper at the dryer outlet and the data on the speed of the paper. Further, the vaporized water content of the dryer is obtained from this data and the vapor pressure of the dryer. This is a device that can continuously grasp the moisture content at the dryer inlet by adding the moisture content of the paper at the dryer outlet to the amount. According to the present invention, a device (for example, a B / M meter) that scans the width of the paper at the dryer inlet to measure the moisture content is eliminated, and the moisture content of the paper at the dryer inlet is determined in cooperation with the information at the dryer outlet. It can be measured properly. Therefore, it solves the problem that it becomes difficult to secure a space for scanning by installing a moisture content measuring device at the entrance of the dryer, and the heat, humidity, paper dust, etc. of the dryer become disturbance factors and the reliability of the measurement is improved. It also eliminates the problem of damage to the dryer, and since it does not require installation of any device at the dryer inlet, maintenance work can be eliminated and the system can be streamlined.
Laborsaving, reliability improvement, and cost reduction can be achieved at the same time.
【実施例】水分率計算の方法 1.熱移動と総括熱伝達係数(U) 熱の移動速度または熱の変化速度を考える場合には、こ
れを一般にdQ/dΘとして(Qは熱量、Θは時間)、
これが推進力ΔFに比例し、且つ移動の方向に直角な面
積、すなわち接触(直接および間接)面積Aに比例する
ものと考え、その比例定数Kを熱伝達係数と呼んで、変
化速度そのものの代わりにこれらの係数に注目するのが
一般に用いられている方法である。すなわち、[Example] Method of calculating moisture content 1. Heat transfer and overall heat transfer coefficient (U) When considering the heat transfer rate or heat change rate, this is generally expressed as dQ / dΘ (Q is the heat quantity, Θ is time),
It is considered that this is proportional to the propulsive force ΔF and is proportional to the area orthogonal to the direction of movement, that is, the contact (direct and indirect) area A, and the proportional constant K is called the heat transfer coefficient, instead of the rate of change itself. It is a commonly used method to pay attention to these coefficients. That is,
【0006】[0006]
【数1】 であり、この数式1を速度式と言う。[Equation 1] Equation 1 is called a velocity equation.
【0007】ここでΔFは平衡状態に達してしまえば、
ΔFはゼロとなる。dQ/dΘは単位時間に変化または
移動する熱量であるから移動の速度であるが、これを微
分形式で示したのは、時間的にΔFが次第に減少するに
つれて速度も変化すると言う、非定常の場合にも適用で
きる為であって、定常状態すなわち時間的にQが変化し
なければdQ/dΘ=Q/Θとおいて差し支えない。こ
の場合にはΔFもまた時間的に変化しない。数式1はい
わばKの定義式で、便利上このように定義したKの値を
それぞれの場合について諸因子との関係をなるべく一般
の場合に適用できるような形で求めておき、この値を使
用して装置の大きさを代表するAを求めようとするので
ある。When ΔF reaches the equilibrium state,
ΔF becomes zero. dQ / dΘ is the speed of movement because it is the amount of heat that changes or moves per unit time, but the differential form shows that the speed also changes as ΔF gradually decreases. This is also applicable to the case, and dQ / dΘ = Q / Θ may be set as long as the steady state, that is, Q does not change with time. In this case, ΔF also does not change with time. Equation 1 is, so to speak, a definitional expression of K. For convenience, the value of K defined in this way is obtained in such a way that the relationship with various factors in each case can be applied to the general case as much as possible, and this value is used. Then, it tries to obtain A which represents the size of the apparatus.
【0008】このように本来は、この熱伝達係数は装置
の大きさを求めるために使用する係数であり、後述の総
括熱伝達係数も全く同様の目的で使用する。ところが、
実際のKの値は移動速度が推進力に無関係に一定値を示
してくれる場合ばかりではない。それは移動速度が通過
する物体(例えば紙、ドライヤ筒等)によっては推進力
の一乗に正比例するとは限らないからで、実験値に拠ら
なければならない。さて図2は、紙がドライヤ筒に接触
して乾燥が行われ、熱的に平衡状態にあるドライヤ部分
の断面図で、この図はt1 なる高温蒸気から凝縮蒸気ド
レンとドライヤ筒そして紙を通してt4 なる水蒸気に熱
量qが単位時間に流れている時の温度分布を示し、この
ことは実験的に確かめられている。As described above, originally, the heat transfer coefficient is a coefficient used for determining the size of the apparatus, and the overall heat transfer coefficient described later is also used for the same purpose. However,
The actual value of K is not limited to the case where the moving speed shows a constant value regardless of the driving force. It depends on the experimental value because the moving speed is not always directly proportional to the first power of the propulsive force depending on the passing object (for example, paper, dryer cylinder, etc.). Now, Fig. 2 is a cross-sectional view of the dryer part in which the paper comes into contact with the dryer cylinder and is dried, and is in a thermal equilibrium state. This figure shows the t4 from the high temperature steam through the condensation steam drain, the dryer cylinder and the paper to the t4 Shows the temperature distribution when the calorific value q is flowing in the following steam per unit time, and this has been confirmed experimentally.
【0009】ドライヤ筒の内側では、熱がドライヤ筒に
移動することによって、蒸気は蒸発潜熱を失い、凝縮ド
レンとなり回転するドライヤの内面に円心力の作用によ
ってリムが形成され、蒸気とその凝縮ドレンの境界温度
t1 は蒸気の飽和温度に等しくなると見なしてよい。凝
縮ドレンの中では温度降下(t1-t2)が起こる。Inside the dryer cylinder, heat is transferred to the dryer cylinder, so that the steam loses latent heat of vaporization and becomes a condensation drain, so that a rim is formed on the inner surface of the rotating dryer by the action of the circular force, and the steam and its condensation drain are formed. It can be considered that the boundary temperature t1 of is equal to the saturation temperature of the steam. A temperature drop (t1-t2) occurs in the condensate drain.
【0010】一方、ドライヤ筒の外側は紙と接触し、ド
ライヤ筒を通して供給された熱量から紙の中の水分が気
化熱を吸収して気化し水蒸気となって大気に移動する。
紙の内部では熱が奪われて、温度降下(t3-t4)が起こ
り、紙と水蒸気の境界の温度は紙の水蒸気圧力と大気の
水蒸気分圧が等しくなる時の温度t4 で平衡に達すると
見なしてよい。ここで、図2のドライヤ筒における熱の
移動に関して数式1を次のように表す。On the other hand, the outside of the dryer cylinder comes into contact with the paper, and the moisture in the paper absorbs the heat of vaporization due to the amount of heat supplied through the dryer cylinder and is vaporized to become water vapor and move to the atmosphere.
When heat is taken inside the paper, a temperature drop (t3-t4) occurs, and when the temperature of the boundary between the paper and water vapor reaches equilibrium at temperature t4 when the water vapor pressure of the paper and the water vapor partial pressure of the atmosphere become equal. You can regard it. Here, regarding the heat transfer in the dryer cylinder of FIG. 2, Expression 1 is expressed as follows.
【0011】[0011]
【数2】 (h1,h2,h3はそれぞれの層における熱移動の熱
伝達係数である。) または[Equation 2] (H1, h2, h3 are heat transfer coefficients of heat transfer in each layer.) Or
【0012】[0012]
【数3】 ドライヤ筒内の凝縮蒸気ドレンとドライヤ筒の肉厚そし
て紙の厚さの合計値がドライヤの半径に比較して十分に
小さいので、熱量の移動する方向に直角な面積 [Equation 3] Since the sum of the condensed vapor drain inside the dryer cylinder, the wall thickness of the dryer cylinder and the paper thickness is sufficiently smaller than the radius of the dryer, the area perpendicular to the direction of heat transfer
【0013】[0013]
【数4】 数式4を数式3に式に代入すると、[Equation 4] Substituting equation 4 into equation 3,
【0014】[0014]
【数5】 一方数式2において、実際にt2,t3,を求めるのは困難
であるので、比較的容易に知ることが出来るt1 とt4
を推進力として、数式1は次のように書ける。[Equation 5] On the other hand, since it is difficult to actually calculate t2 and t3 in the formula 2, t1 and t4 which can be relatively easily known.
Equation 1 can be written as follows, where is the driving force.
【0015】[0015]
【数6】 数式5、6より明らかなように、下式が成り立つ。[Equation 6] As is clear from the formulas 5 and 6, the following formula is established.
【0016】[0016]
【数7】 ここで、h1は凝縮蒸気のドレンのリムの厚さからの影響
を最も受け易いことが実験的に明らかになっているが、
凝縮蒸気のドレンの排出状態が時間的に変化がなけれ
ば、ほぼ一定値と扱って差し支えなく、実際の抄紙機の
運転において正常に連続運転されている時はドライヤ筒
の凝縮蒸気のドレンの排出状態は時間的に変化がなく、
h1は、ほぼ一定と見なしてもよい。[Equation 7] Here, it has been experimentally revealed that h1 is most affected by the thickness of the drain rim of the condensed vapor,
If the state of drainage of the condensed vapor drain does not change with time, it can be treated as an almost constant value, and the drainage of the condensed vapor drain of the dryer cylinder can be handled during normal continuous operation in the actual paper machine operation. The state does not change over time,
h1 may be considered to be approximately constant.
【0017】h2は、ドライヤ筒本体の材質の熱伝導率と
熱の移動方向への厚さによって定まり、抄紙機の運転状
態によってではなく、ドライヤの形状と材質によって決
まる。h3は紙を構成する原材料(例えばパルプ等)の種
類や物性そして紙の機械的構造(繊維の配列の仕方等)
によって定まり、実操業に於いては、抄造する紙の銘柄
が決まれば操業条件(原材料の配合条件や運転条件等)
が決まり、ほぼ一定値となる。すなわち、乾燥条件に大
幅な変更がない限り総括熱伝達係数(U)は紙の原材料
や操業条件によって定まる一定値として扱うことが出来
る。 2.ドライヤにおける熱収支 乾燥のプロセスは、先ず紙の中の水分が外部から供給さ
れた熱により水分の温度が上昇し、その温度における蒸
発潜熱(H)を吸収し、吸収した熱量に見会った分だけ
気化する。そして気化した水蒸気圧が大気の水蒸気分圧
より高くなると水蒸気は大気に拡散する。この現象を乾
燥と呼称し、外部からの熱の供給が続く限り、且つ紙の
水分がなくなるまで継続する。H2 is determined by the thermal conductivity of the material of the dryer cylinder body and the thickness in the heat transfer direction, not by the operating state of the paper machine, but by the shape and material of the dryer. h3 is the type and physical properties of the raw materials (such as pulp) that make up the paper, and the mechanical structure of the paper (how the fibers are arranged, etc.)
In actual operation, if the brand of paper to be made is decided, the operating conditions (blending conditions of raw materials, operating conditions, etc.)
Is decided and becomes a constant value. That is, unless the drying conditions are significantly changed, the overall heat transfer coefficient (U) can be treated as a constant value determined by the raw materials of paper and operating conditions. 2. Heat balance in the dryer In the drying process, the temperature of the water inside the paper rises due to the heat supplied from the outside, absorbs the latent heat of vaporization (H) at that temperature, and finds the amount of heat absorbed. Only vaporize. When the vaporized water vapor pressure becomes higher than the atmospheric water vapor partial pressure, the water vapor diffuses into the atmosphere. This phenomenon is referred to as drying, and is continued as long as external heat is supplied and until the paper is drained.
【0018】蒸発潜熱(H)とは熱力学的な物性値で温
度の関数であり、一般的には蒸気表からその値を知る。
従って、蒸発する水分が連続に供給されている場合(例
えば抄紙機で紙が連続してドライヤを通過する、いわゆ
る抄紙機で紙を製造している状態)は蒸気から供給され
る熱量に見会った分だけ乾燥が行われ、ドライヤ内では
蒸気量と蒸発水分量は熱的に平衡状態に達する。図2に
おいて、蒸発水分量(w)が紙から蒸発して平衡状態に
あるとすると、蒸発熱量(qw )は蒸発水分量(w)に
比例し、比例定数は蒸発潜熱(H)に等しく、次式によ
って表す。Latent heat of vaporization (H) is a thermodynamic property value that is a function of temperature, and its value is generally known from a vapor table.
Therefore, when the water that evaporates is supplied continuously (for example, the paper is continuously passed through the dryer in the paper machine, that is, the paper is manufactured in the so-called paper machine), the amount of heat supplied from the steam is observed. The amount of vapor is dried by the amount of the amount of vapor, and the amount of vapor and the amount of evaporated water in the dryer reach a thermal equilibrium state. In FIG. 2, assuming that the amount of evaporated water (w) evaporates from the paper and is in an equilibrium state, the amount of heat of evaporation (qw) is proportional to the amount of evaporated water (w), and the proportional constant is equal to the latent heat of evaporation (H), It is expressed by the following formula.
【0019】[0019]
【数8】 ところがドライヤに供給される蒸気の熱量全てが水分の
蒸発に使用されるのではなく、ドライヤから紙以外への
放熱による熱移動も同時に起こっているのが一般のドラ
イヤである。この放熱量(紙の乾燥に寄与しない熱量)
を熱損失量(qr )として取り扱うと、蒸気から供給さ
れ紙の方向に流れる熱量(q)と水蒸気が大気に移動す
る為の蒸発熱量(qw )と熱損失量(qr )との間には
エネルギー不滅の法則から[Equation 8] However, in the general dryer, not all the heat quantity of the steam supplied to the dryer is used for the evaporation of the water, but the heat transfer from the dryer to other than the paper is also occurring at the same time. This heat dissipation (heat that does not contribute to paper drying)
Is treated as a heat loss amount (qr), there is a difference between the heat amount (q) supplied from the steam and flowing in the direction of the paper and the evaporation heat amount (qw) and the heat loss amount (qr) for moving the steam to the atmosphere. From the law of energy immortality
【0020】[0020]
【数9】 が成立する.数式6、8、9より明らかなように、下式
が成立する。[Equation 9] Holds. As is clear from the equations 6, 8 and 9, the following equation is established.
【0021】[0021]
【数10】 この数式10を一般にドライヤにおける熱収支の式と言
う。[Equation 10] This equation 10 is generally called a heat balance equation in a dryer.
【0022】総括熱伝達係数(U)を計算する場合は数
式10を変形してTo calculate the overall heat transfer coefficient (U), the equation 10 is modified.
【0023】[0023]
【数11】 またはqr =0の場合は[Equation 11] Or if qr = 0
【0024】[0024]
【数12】 となる。t4、t1、Wは実測できるので、数式11、12
にデータを代入してUを計算する。既存のドライヤの効
率や紙の乾燥の度合いを調査したり、またその結果をド
ライヤ装置の設計に反映したりする時に、この総括熱伝
達係数(U)は本来使用される。[Equation 12] Becomes Since t4, t1 and W can be measured,
Substitute the data into and calculate U. This overall heat transfer coefficient (U) is originally used when investigating the efficiency of existing dryers and the degree of paper drying, and reflecting the results in the design of dryer equipment.
【0025】3.実際の抄紙機における熱収支 これまでは単一のドライヤ筒の基本的な熱収支について
説明してきたが、実際の抄紙機における熱収支について
次に説明する。3. Heat balance in an actual paper machine So far, the basic heat balance of a single dryer cylinder has been explained. Next, the heat balance in an actual paper machine will be explained.
【0026】説明に入る前に使用する各変数を下記の通
り定義する。定義の中で表記されている「i番目」とは
ドライヤ全体をn分割(n群と呼称する)したドライヤ
装置の入口から数えてi番目と言う意味である。同様に
「j番目」とは一つの群の中のドライヤ筒を群の入口か
ら紙の流れる方向に数えてj番目と言う意味である。 Each variable used before the description is defined as follows. The "i-th" described in the definition means the i-th number counted from the entrance of the dryer device in which the entire dryer is divided into n (referred to as n group). Similarly, "j-th" means that the dryer cylinder in one group is counted as j-th from the entrance of the group in the paper flow direction.
【0027】本発明の特徴は総括熱伝達係数(U)を既
知(紙の原材料の種類や抄紙機の運転条件によってのみ
定まる一定値として扱う)とするところにあるので、先
ず総括熱伝達係数(U)を決めなければならない。Since the characteristic of the present invention is that the overall heat transfer coefficient (U) is known (treated as a constant value determined only by the type of raw material of paper and the operating conditions of the paper machine), the overall heat transfer coefficient (U U) must be decided.
【0028】そしてこの総括熱伝達係数(U)を一定値
として水分率を演算するのであるから、当該目的の水分
率を演算する時と同じ運転条件の時の総括熱伝達係数
(実測のU値と言う)を求めて、この値を既知として使
用する。実際は数点の実測のU値を求め、その平均値を
既知の総括熱伝達係数(U)として用いる。次にこの実
測のU値を計算する方法を説明する。ここでは計算式が
一般の抄紙機に適用出来るようにドライヤがn群に分割
されているものと仮定し、計算の順を追って説明する。
図3は水分率(Me%)の紙が或る通過速度(SPD)
にてドライヤ装置を通過中に、蒸気から熱量(q)の供
給 を受けて蒸発水分量(W)が蒸発され、ドライヤ出
口で水分率(Mo%)、坪量(BW)の紙となって連続
に系外に出ている図である。図中のqr は熱損失量を表
す。Since the water content is calculated with this total heat transfer coefficient (U) being a constant value, the total heat transfer coefficient (actually measured U value) under the same operating conditions as when the target water content is calculated. , And use this value as a known value. Actually, several measured U values are obtained, and the average value is used as a known overall heat transfer coefficient (U). Next, a method of calculating the actually measured U value will be described. Here, it is assumed that the dryer is divided into n groups so that the calculation formula can be applied to a general paper machine, and the calculation order will be described.
Figure 3 shows a paper with moisture content (Me%) at a certain passing speed (SPD)
While passing through the dryer, the amount of evaporated water (W) is evaporated by the supply of heat (q) from the steam, and the moisture content (Mo%) and basis weight (BW) at the dryer outlet become paper. It is the figure which has gone out of the system continuously. Qr in the figure represents the amount of heat loss.
【0029】(3.1)紙の固形分の計算(BDW) ドライヤ出口の坪量(BW)と水分率(Mo )は計測器
等によって知ることができるので絶乾坪量(BD)は次
の式から計算できる。(3.1) Calculation of solid content of paper (BDW) Since the basis weight (BW) and moisture content (Mo) at the dryer outlet can be known by a measuring instrument, the absolute dry basis weight (BD) is It can be calculated from the formula.
【0030】[0030]
【数13】 ここでBDとは単位面積当たりの固形分重量で絶乾坪量
と呼称する。よって紙幅1m当たりの固形分重量(BD
W)は[Equation 13] Here, BD is referred to as absolute dry basis weight in terms of solid content weight per unit area. Therefore, the weight of solid content per 1 m of paper width (BD
W) is
【0031】[0031]
【数14】 hr)の単位を合わせる為の換算係数である。 (3.2)紙の蒸発水分量(W) ドライヤ出口の水分率(Mo % )は坪量と同様に計測
器等によって知ることは可能であるが、ドライヤの入口
については紙をサンプリングしてJISに基ずく方法
(実際に紙を乾燥させて計量し、水分率を求める方法)
で求める以外にない。この水分率をMe ( % )とおく
と、[Equation 14] hr) is a conversion factor for matching units. (3.2) Evaporated Moisture Content of Paper (W) The moisture content (Mo%) at the dryer outlet can be known by a measuring instrument as well as the basis weight, but the paper is sampled at the dryer inlet. Method based on JIS (method to actually determine the moisture content by drying the paper and weighing it)
There is no choice but to ask in. If this moisture content is set to Me (%),
【0032】[0032]
【数15】 [Equation 15]
【0033】[0033]
【数16】 水分量(BD・Mwo)との差に等しいので、[Equation 16] Since it is equal to the difference with the water content (BD ・ Mwo),
【0034】[0034]
【数17】 となり、数式14を代入すると次式に書き直すこともで
きる。[Equation 17] Therefore, by substituting the equation 14, it can be rewritten as the following equation.
【0035】[0035]
【数18】 (3.3)紙の蒸発潜熱(H)の算定 ドライヤ筒全てにおいて紙の蒸発温度は正確に言えば同
一温度ではないので、温度の関数であるところの水の蒸
発潜熱の値はドライヤの入口から出口までは必ずしも同
一ではない。しかし水が蒸発する速度は紙の含水率が30
%ぐらいまでは変化の少ないことが知られており(この
期間の乾燥を恒率乾燥と呼称する)、蒸発温度の変化も
少ない。そこで、ドライヤ筒の70%以上が此の区間に入
ることと、実操業では乾燥する紙の銘柄が決まると恒率
乾燥期間の変化が少ないこと等から、実用上は紙の蒸発
温度をドライヤ筒全体の紙の平均温度に等しいと仮定し
て紙の平均蒸発潜熱(H)はその平均温度における水の
蒸発潜熱に等しいとおく。 (3.4)蒸気から供給される熱量(q)の計算 抄紙機の多筒式ドライヤは筒を数本ずつ同一蒸気圧力群
として蒸気ヘッダーを共通化し、ドライヤの入口部分か
ら徐々に蒸気圧力を上昇させて乾燥するのが、一般的な
使い方である。従って群毎に蒸気温度が異なることによ
り当然供給蒸気熱量も異なってくるので、いまi 番目の
供給熱量をqi とおくとドライヤ全体(n群に分割され
ている場合)の供給蒸気熱量(q)は下式となる。[Equation 18] (3.3) Calculation of latent heat of vaporization (H) of paper Since the vaporization temperature of paper is not exactly the same temperature in all dryer cylinders, the latent heat of vaporization of water, which is a function of temperature, is the inlet of the dryer. From exit to exit is not necessarily the same. However, the rate of water evaporation is 30
It is known that there is little change up to about 10% (drying during this period is called constant rate drying), and there is little change in evaporation temperature. Therefore, since 70% or more of the dryer cylinder enters this section, and the constant rate drying period does not change much when the brand of paper to be dried is determined in actual operation, the evaporation temperature of the paper is practically set to the dryer cylinder. The average latent heat of vaporization (H) of the paper is assumed to be equal to the average temperature of the entire paper and is equal to the latent heat of vaporization of water at that average temperature. (3.4) Calculation of heat quantity (q) supplied from steam In a multi-cylinder dryer of a paper machine, several steam cylinders are used as a common steam pressure group, and steam pressure is gradually increased from the inlet of the dryer. A common use is to raise and dry. Therefore, the heat value of the supplied steam will naturally differ depending on the steam temperature for each group. Therefore, if the i-th supplied heat value is qi, then the heat quantity of the supplied steam (q) for the entire dryer (if it is divided into n groups). Is the following formula.
【0036】[0036]
【数19】 数式6を各群に適用すると、[Formula 19] Applying Equation 6 to each group,
【0037】[0037]
【数20】 と書ける。この式を数式19に代入すると、[Equation 20] Can be written. Substituting this equation into Equation 19,
【0038】[0038]
【数21】 となる。[Equation 21] Becomes
【0039】ここで乾燥面積Ai は紙に接触しているド
ライヤ筒の接触面積をi群の筒本数(mi)だけ積算した
値であるが、実際に紙がドライヤに接触している面積は
ドライヤ筒全周ではないので、計算を簡単にする為、こ
こでは全周であると仮定する。この仮定によって総括熱
伝達係数は真値より小さく算出されるが、当該水分率計
算の過程では、総括熱伝達係数は定数として使用するの
で、実測水分率との合わせ込み(後で説明)の段階で乾
燥面積の余剰分は補正されることとなり、水分率計算に
おいて問題は発生しない。よってi番目の群の紙幅1m
当たりの乾燥面積(Ai)は次式によって計算する。Here, the dry area Ai is a value obtained by integrating the contact area of the dryer cylinders in contact with the paper by the number of cylinders (mi) in the i group, but the area where the paper actually contacts the dryer is Since it is not the entire circumference of the cylinder, it is assumed here that it is the entire circumference in order to simplify the calculation. Under this assumption, the overall heat transfer coefficient is calculated to be smaller than the true value, but since the overall heat transfer coefficient is used as a constant in the process of calculating the moisture content, it is necessary to combine it with the measured moisture content (explained later). Therefore, the surplus of the dry area is corrected, and there is no problem in calculating the water content. Therefore, the paper width of the i-th group is 1 m
The dry area per unit (Ai) is calculated by the following formula.
【0040】[0040]
【数22】 ここで、Ki,jはi番目の群内のj番目のドライヤ筒の乾
燥効率を表し、紙を乾燥するドライヤ筒のそれを1.0 の
基準値として、ドライヤ筒の使い方に応じて比率を設定
する。 乾燥面積に乾燥効率(Ki,j )を乗じたものを新たに
(Ai )と置き換えたのは群の中でドライヤ筒によって
は紙の乾燥に全く寄与しない(例えば蒸気吹き込み口の
弁を全閉状態で運転する)筒や一部しか寄与しない(例
えば紙とドライヤ筒の接触面の間にカンバスが存在する
=シングルカンバスと呼称)筒がある場合、計算式が複
雑になるのを避ける為にとった処置である。また一般に
ドライヤ筒の直径は特殊な場合(例えばドライヤ入口の
最初のドライヤ筒だけ機械的制約から直径を若干小さく
する場合がある)を除いて大半が全ドライヤ筒同一直径
である。そこで直径を(D)とおくと、D=Di とな
る。よって数式22は次のように書ける。[Equation 22] Here, Ki, j represents the drying efficiency of the j-th dryer cylinder in the i-th group, and the ratio of the dryer cylinder that dries the paper is set as a reference value of 1.0 according to the usage of the dryer cylinder. . The fact that the drying area multiplied by the drying efficiency (Ki, j) is newly replaced by (Ai) does not contribute to the drying of the paper depending on the dryer tube in the group (for example, the valve of the steam inlet is fully closed). To avoid complicating the calculation formula when there is a cylinder that operates in a state) or a cylinder that contributes only partly (for example, there is a canvas between the contact surface of the paper and the dryer cylinder = single canvas) This is the action taken. Further, in general, most of the dryer cylinders have the same diameter except for a special case (for example, only the first dryer cylinder at the entrance of the dryer may be slightly reduced in diameter due to mechanical restrictions). Therefore, if the diameter is set to (D), then D = Di. Therefore, Equation 22 can be written as follows.
【0041】[0041]
【数23】 これを数式21に代入すると、[Equation 23] Substituting this into Equation 21,
【0042】[0042]
【数24】 となり、更に(3.3)項で述べた通り、紙の蒸発温度
もドライヤ全群通して同一温度と見なすことができるの
で、紙の蒸発温度(tpi)を(tp)に置き換えると数式
24は、[Equation 24] Then, as described in section (3.3), the evaporation temperature of the paper can be regarded as the same temperature through all the dryers. Therefore, if the evaporation temperature (tpi) of the paper is replaced by (tp), Equation 24 becomes ,
【0043】[0043]
【数25】 となる。次に蒸気の飽和温度(ti )の計算であるが、
飽和温度を直接測定することも可能であるが、実際の抄
紙機においてはドライヤ内の蒸気の飽和温度は蒸気ヘッ
ダー内の蒸気圧力の飽和温度に等しいと仮定して計算す
るのが、最も経済的、且つ実用的である。この計算式は
色々の式が広く一般に使用されているが、本発明では一
例として次の近似式を使用する。[Equation 25] Becomes Next is the calculation of the saturation temperature (ti) of steam.
It is possible to measure the saturation temperature directly, but in an actual paper machine, it is most economical to calculate assuming that the saturation temperature of steam in the dryer is equal to the saturation temperature of steam pressure in the steam header. , And practical. Although various formulas are widely used in this calculation formula, the following approximate formula is used as an example in the present invention.
【0044】[0044]
【数26】 この飽和温度を数式25において使用する。 (3.5)熱収支と「実測のU値」の計算 [Equation 26] This saturation temperature is used in Equation 25. (3.5) Calculation of heat balance and "measured U value"
【0045】[0045]
【数27】 ここで数式25と27を熱収支の基本数式9に適用する
とq=qw +Qrとなる。ここでQr はドライヤ全体の
熱損失である。この式に数式25、27を代入すると、[Equation 27] When Equations 25 and 27 are applied to the basic equation 9 of the heat balance, q = qw + Qr. Here, Qr is the heat loss of the entire dryer. Substituting equations 25 and 27 into this equation,
【0046】[0046]
【数28】 となる。数式28におけるUi (i番目の群の総括熱伝
達係数)も実際は群によって多少数値が異なる。これは
総括熱伝達係数が紙の温度によって多少変わる性質があ
るためである。然しその変化量は先に仮定した諸条件に
比べれば無視できる大きさなので各群の総括熱伝達係数
は其の平均に等しいと仮定し、新たに(U)と定義す
る。この仮定によって総括熱伝達係数は真値とは多少異
なるが、当該水分率計算の過程では、総括熱伝達係数は
定数として使用するので、実測水分率との合わせ込み
(後で説明)の段階でUの真値との差分は補正されるこ
ととなり、水分率計算において問題は発生しない。よっ
て数式28は次のように書ける。[Equation 28] Becomes Ui in Equation 28 (overall heat transfer coefficient of the i-th group) is actually slightly different depending on the group. This is because the overall heat transfer coefficient has a property of slightly changing depending on the temperature of the paper. However, since the amount of change is negligible compared to the previously assumed conditions, it is assumed that the overall heat transfer coefficient of each group is equal to its average, and is newly defined as (U). Although the overall heat transfer coefficient is slightly different from the true value due to this assumption, the overall heat transfer coefficient is used as a constant in the process of calculating the moisture content, so at the stage of combining with the measured moisture content (explained later). The difference from the true value of U will be corrected, and no problem will occur in the moisture content calculation. Therefore, Equation 28 can be written as follows.
【0047】[0047]
【数29】 この式からUを求める式に変換すると、[Equation 29] Converting this expression to the expression for U,
【0048】[0048]
【数30】 となり、またQr =0の場合は、[Equation 30] And when Qr = 0,
【0049】[0049]
【数31】 となる。この式が実際の抄紙機における「実測のU値」
を求める具体的な一般式である。[Equation 31] Becomes This formula is the "measured U value" of an actual paper machine.
Is a specific general formula for obtaining.
【0050】(Qr )を極力小さくする為に、実際のド
ライヤ装置ではドライヤ筒の外側にフードを設置して熱
回収を行い効率を上げるような工夫がこらされている。
そして実操業に於いては、抄造する紙の銘柄が定まれば
フードの運転条件(排気湿度や排気温度その他各ダンパ
の開度等)が定まり、熱損失の量はフードの運転条件に
よって定まる一定値として扱うことが出来る。ここで熱
損失をゼロと仮定したW場合としない場合とで、総括熱
伝達係数(U)の意味が異なる。ゼロと仮定した場合は
熱損失の影響が総括熱伝達係数(U)の値に反映されて
いるが、そうでない場合はドライヤ筒の乾燥のみの そ
れに限定されることである。言い換えれば、前者の場合
はフードの効率の良否も加味された値であるので、「フ
ードの効率も含めた総括熱伝達係数(U)」であり、後
者は「ドライヤ筒と紙との間に限定した総括熱伝達係数
(U)」と言うことが出来る。ここで数式30を使うか
31を使うかは、水分率を出す計算式にQr を入れるか
否かの選択の問題だけである。すなわち、数式30でU
を求めたら、水分率を出す式にQr を入れれば良いし、
数式31で求めたらQr を入れなければ良いだけであ
る。In order to make (Qr) as small as possible, in an actual dryer device, a hood is installed outside the dryer cylinder to recover heat and improve efficiency.
In the actual operation, if the brand of paper to be made is determined, the operating conditions of the hood (exhaust humidity, exhaust temperature, etc. of each damper, etc.) are determined, and the amount of heat loss is determined by the operating conditions of the hood. Can be treated as a value. Here, the meaning of the overall heat transfer coefficient (U) differs depending on whether the heat loss is assumed to be zero or not. If it is assumed to be zero, the effect of heat loss is reflected in the value of the overall heat transfer coefficient (U), but if not, it is limited to that of the dryer cylinder only. In other words, in the former case, the quality of the hood is also taken into consideration, so it is the “total heat transfer coefficient (U) including the efficiency of the hood”, and the latter is the “between the dryer tube and the paper. Limited overall heat transfer coefficient (U) ". Whether Equation 30 or 31 is used here is only a matter of selecting whether or not to include Qr in the equation for calculating the water content. That is, in Equation 30, U
If you obtain, you can add Qr to the formula that gives the moisture content,
If it asks by Numerical formula 31, it will suffice if Qr is not entered.
【0051】水分率の計算結果には関係ないので、実用
上問題の出ない範囲で出来るだけ計算式が単純になる方
が得策である。実施例は数式31を使ったので、これ以
降の説明には数式31を使って説明する。Since it has nothing to do with the calculation result of the moisture content, it is better to simplify the calculation formula as much as possible within the range where practically no problem occurs. Since the embodiment uses Expression 31, Expression 31 will be used for the following description.
【0052】(3.6)「実測のU値」を使ったドライ
ヤ入口の紙の水分率の計算 これまで、ある操業条件下における実測データを使った
「実測のU値」を計算する具体的な方法を述べてきた。
次にこのU値の平均値(実際には数多く実測のU値を求
め、その平均を取る)をその操業条件下に基ずく既知の
総括熱伝達係数として扱った水分率の計算方法を説明す
る。まず既知の総括熱伝達係数をUAVGとおく。また計
算についての理解を容易にするため、求めるドライヤ入
口の紙の水分率をX〔 % 〕とおき、その時の含水率を
Xweとすると数式27の中のMweをXweに置き換えられ
るので数式17は、(3.6) Calculation of Moisture Content of Paper at Dryer Inlet Using "Actually Measured U Value" Up to now, a concrete procedure for calculating "actually measured U value" using measured data under a certain operating condition I have described various methods.
Next, an explanation will be given of a method of calculating the moisture content, in which the average value of the U values (actually, a large number of actually measured U values are obtained and the average is taken) is treated as a known overall heat transfer coefficient based on the operating conditions. . First, the known overall heat transfer coefficient is set as UAVG. Further, in order to facilitate understanding of the calculation, if the moisture content of the paper at the dryer inlet to be obtained is set to X [%] and the moisture content at that time is set to Xwe, Mwe in Equation 27 can be replaced with Xwe. ,
【0053】[0053]
【数32】 となり、これを数式27に代入すると、[Equation 32] And substituting this into Equation 27,
【0054】[0054]
【数33】 用すると、q=qw (Qr =0と仮定)であるから、[Expression 33] Using q = qw (assuming Qr = 0),
【0055】[0055]
【数34】 となり、数式34よりXweを求める式に変換すると、[Equation 34] Then, when converted to the formula for obtaining Xwe from Formula 34,
【0056】[0056]
【数35】 となる。一方蒸発水分量(BDW)は数式14より、[Equation 35] Becomes On the other hand, the amount of evaporated water (BDW) is
【0057】[0057]
【数36】 となり、Xweから水分率(X)を求める式は数式15の
MweをXweに、Me をXに置き換えて変形すればよいか
ら、[Equation 36] Therefore, the equation for calculating the moisture content (X) from Xwe can be modified by replacing Mwe with Xwe and Me with X in Equation 15,
【0058】[0058]
【数37】 となる。[Equation 37] Becomes
【0059】ここで数式36、37、38は水分率を求
める本発明の具体的な計算式で、この式で使う数値を以
下にまとめると、 となる・ (3.7)「計算で算出した水分率」の「絶乾水分率」
への合わせ込み(校正) として扱い、且つ計算を単純化するために種々の仮定を
設けてあるので、算出した水分率(以降、計算水分率と
言う)と真値との間には誤差が存在する。この誤差を小
さくして計算水分率を真値に合わせ込む作業が校正(キ
ャリブレーション)である。この作業は他の計器類の校
正と同様な方法で行う。まず、ドライヤの入口の実際の
紙をサンプリングし、JIS法に基ずく方法で水分率
(以降、絶乾水分率と言う)を測定する。勿論、サンプ
リングする時に計算水分率も得ておく。実際には入口の
水分の真値を知ることは不可能なので、絶乾水分率を便
宜上真値として代用するのが一般的な方法で、実用上も
問題ないので普通は絶乾水分率との合わせ込みを行う。
よって、Y軸を計算水分率、X軸を絶乾水分率とするグ
ラフにデータをプロットして(図4)、X軸とY軸の相
関を取り、この相関が1:1となるように、UAVG(実
測のU値)の値を加減をする。この作業によって、今ま
で計算の都合上種々設定してきた仮定が結果的にはUAV
G に全て包含されて補正される事となるので、種々の仮
定と実際との隔たりが小さい程、真値と誤差が小さくな
る。若し、誤差が無視出来ないほど操業条件に大きな差
が発生する場合には、別のUAVG の値(誤差が許容範囲
に入るような数値)を設定して使えば実用上は特に問題
はない。Equations 36, 37 and 38 are concrete calculation formulas of the present invention for obtaining the moisture content, and the numerical values used in this formula are summarized below. It becomes (3.7) "Moisture content calculated by calculation""Absolute dry water content"
Adjustment to (calibration) Since various assumptions are made in order to simplify the calculation, there is an error between the calculated water content (hereinafter referred to as the calculated water content) and the true value. The operation of reducing this error and matching the calculated water content to the true value is calibration. This work is performed in the same way as the calibration of other instruments. First, the actual paper at the entrance of the dryer is sampled, and the moisture content (hereinafter referred to as absolutely dry moisture content) is measured by a method based on the JIS method. Of course, the calculated moisture content is also obtained when sampling. Actually, it is impossible to know the true value of the water content at the inlet, so it is a common method to substitute the absolute dry water content as the true value for convenience. Make adjustments.
Therefore, plot the data on a graph with the calculated moisture content on the Y-axis and the absolute dry moisture content on the X-axis (Fig. 4), and take the correlation between the X-axis and the Y-axis so that this correlation is 1: 1. , UAVG (measured U value) is adjusted. As a result of this work, the assumptions that have been set variously for the sake of calculation have resulted in UAV
Since it is included in G and corrected, the smaller the difference between various assumptions and the actual, the smaller the true value and the error. If there is a large difference in operating conditions so that the error cannot be ignored, there is no problem in practice if another UAVG value (a value that allows the error to be within the allowable range) is set and used. .
【0060】[0060]
【本発明の実施例と計算例】実際の抄紙機に数式35〜
37を適用した時の計算例を次に示す。実施例では図5
の様な乾燥装置及び操業条件で実施し、ここでは「実測
のU値」は既に実測されて既知であることを前提とし
た。[Embodiments and Calculation Examples of the Present Invention] Equations 35 to 35 in an actual paper machine
A calculation example when 37 is applied is shown below. In the embodiment, FIG.
The drying apparatus and the operating conditions as described above were used, and it is assumed here that the “measured U value” has already been measured and known.
【0061】(1)計算条件 操業中のドレネージシステムにおける各運転データと定
数は次の通りである。 各群のドライヤ筒の本数と運転蒸気圧力は表1の通りで
ある。 (2)水分率の計算 前項の計算条件を、数式35に適用して計算した結果は
表2の通りである。然るに、数式36より、 となり、また数式16より、 となり、数式35より、 となり、数式37より、求めるドライヤ入口の紙の水分
は、 となって、ドライヤ入口の紙の水分率 55.9 %を得る。(1) Calculation conditions The operation data and constants of the drainage system during operation are as follows. Table 1 shows the number of dryer tubes in each group and the operating steam pressure. (2) Calculation of Moisture Content Table 2 shows the results of calculation by applying the calculation conditions of the previous section to the equation 35. Therefore, from Equation 36, And from Equation 16, Therefore, from Equation 35, From Equation 37, the moisture content of the paper at the dryer inlet is calculated as Thus, the moisture content of the paper at the dryer inlet is 55.9%.
【0062】最近の大型抄紙機の制御システムは図6の
様に制御システムに分散型コンピュータ制御システムA
と、坪量水分制御システムBを導入する場合が殆どであ
る。そして両システム間は通信によるデータの送受信が
行われている。本発明は以上詳述した通りドライヤ入口
の水分率を連続に計算するプログラムを分散型コンピュ
ータ制御システムAに事前に入力して置く。ドライヤ出
口における紙の坪量・水分・走行スピードに関するデー
タは坪量水分制御システムBから上記コンピュータシス
テムAの演算装置に取り込むと同時に、ドライヤの蒸気
圧力データを上記演算装置に取込み、これらドライヤ出
口のデータとドライヤから検出された蒸気圧力データと
から、予じめ設定されたドライヤの総括熱伝達係数を用
いてドライヤの蒸発水分量を求め、この蒸発水分量に上
記ドライヤ出口における紙の水分量を和し、ドライヤ入
口における紙の水分率を容易に且つ連続に演算できる。
演算結果はオンライン水分計を設置した場合と同様に、
CRTに表示したり帳表に記緑したり、また制御にも使
用出来る。図中Cはドライヤ出口側に設置したシステム
Bの坪量・水分センサーである。又ドライヤ出口におけ
る紙のスピードを検出する手段は紙巻取りリールの駆動
モータMから検出する既知の方法を採る。同様に、図6
に示すドライヤの蒸気圧力データを検出する手段も既設
の検出装置を使用できる。A control system for a recent large-sized paper machine is a distributed computer control system A as shown in FIG.
In most cases, the basis weight moisture control system B is introduced. Data is transmitted and received by communication between the two systems. In the present invention, as described in detail above, a program for continuously calculating the moisture content at the dryer inlet is input in advance to the distributed computer control system A and placed. Data relating to the basis weight, moisture and running speed of the paper at the dryer outlet are loaded from the basis weight moisture control system B into the computing unit of the computer system A, and at the same time, the vapor pressure data of the dryer is loaded into the computing unit and the dryer outlet From the data and the steam pressure data detected from the dryer, use the preset overall heat transfer coefficient of the dryer to determine the amount of water evaporated in the dryer, and then use this amount of water evaporated to determine the amount of paper moisture at the dryer outlet. Therefore, the moisture content of the paper at the dryer entrance can be calculated easily and continuously.
The calculation result is the same as when the online moisture meter is installed.
It can be displayed on the CRT, marked in the table, and used for control. C in the figure is the grammage / moisture sensor of the system B installed on the dryer outlet side. As a means for detecting the speed of the paper at the dryer outlet, a known method of detecting from the drive motor M of the paper take-up reel is adopted. Similarly, FIG.
The means for detecting the vapor pressure data of the dryer shown in (1) can also use the existing detection device.
【0063】[0063]
【発明の効果】本発明の実施により、紙のドライヤ入口
における平均水分率をドライヤ入口に水分測定装置を設
置することなくオンラインで連続に入手でき、その効果
は非常に大きい。例えば、プレス用毛布(脱水部に使用
する補助用具で紙と共に走行するエンドレスの毛布)の
脱水状況の把握や毛布交換の最適時期の管理等、即ち乾
燥条件の管理に利用して大きな成果を上げることができ
る。即ち従来例の如くドライヤ入口にB/M計を設置し
てスキャンする装置を省約し、ドライヤ出口における紙
の坪量・水分とスピードのデータと、ドライヤの蒸気圧
力データとから、予じめ設定されたドライヤの総括熱伝
達係数を用いることによって、容易に且つ連続的にドラ
イヤ入口の紙の水分率を入取でき、これを抄紙機の操業
管理に有効に使用できる。ドライヤの入口にB/M計を
設置してスキャンする装置を排することができるから、
この装置の設置に伴なう、ドライヤ温度,湿度,紙カス
等による外乱要因を除去して高信頼の水分率測定が行な
え、更には上記装置の設置に伴なう保守管理を排し、又
装置設置スペースも割愛でき、装置の合理化とコスト削
減を達成できる。By carrying out the present invention, the average moisture content of the paper at the dryer inlet can be continuously obtained online without installing a moisture measuring device at the dryer inlet, and the effect is very large. For example, it can be used to grasp the dehydration status of a press blanket (an endless blanket that runs with paper as an auxiliary tool used in the dehydration section) and to control the optimal time for blanket replacement, that is, to control the drying conditions and achieve great results. be able to. That is, as in the conventional example, a device for scanning by installing a B / M meter at the dryer inlet is omitted, and the prediction is made from the data of the basis weight, moisture and speed of the paper at the dryer outlet and the steam pressure data of the dryer. By using the set overall heat transfer coefficient of the dryer, the moisture content of the paper at the dryer inlet can be taken in easily and continuously, and this can be effectively used for the operation management of the paper machine. Since the B / M meter can be installed at the entrance of the dryer and the scanning device can be eliminated,
It is possible to remove the disturbance factors such as dryer temperature, humidity, and paper dust accompanying the installation of this device to measure the moisture content with high reliability, and to eliminate the maintenance management accompanying the installation of the device. The space for installing the device can be omitted, and rationalization of the device and cost reduction can be achieved.
【図1】抄紙機に用いられる典型的な多筒式ドライヤの
構成を示した図である。FIG. 1 is a diagram showing a configuration of a typical multi-cylinder dryer used in a paper machine.
【図2】紙がドライヤ筒に接触して乾燥が行われ、熱的
に平衡状態にあるドライヤ部分の断面図で、この図はt
1 なる高温蒸気から凝縮蒸気ドレンとドライヤ筒そし
て紙を通してt4 なる水蒸気に熱量qが単位時間に流
れている時の温度分布を示す図である。FIG. 2 is a cross-sectional view of a dryer portion in which the paper comes into contact with a dryer cylinder and is dried, and is in a thermal equilibrium state.
FIG. 3 is a diagram showing a temperature distribution when a heat quantity q is flowing in a unit time from a high-temperature steam of 1 to a steam of t4 through a condensing steam drain, a dryer cylinder, and a paper sheet.
【図3】水分率(Me%)の紙が或る通過速度(SP
D)にてドライヤ装置を通過中に、蒸気から熱量(q)
の供給 を受けて蒸発水分量(W)が蒸発され、ドライ
ヤ出口で水分率(Mo%)、坪量(BW)の紙となって
連続に系外に出ている図である。FIG. 3 shows a paper having a moisture content (Me%) at a certain passing speed (SP
Heat quantity (q) from steam while passing through the dryer device in D).
FIG. 3 is a diagram in which the amount of evaporated water (W) is evaporated by the supply of the water and the paper having the water content (Mo%) and the basis weight (BW) is continuously discharged from the system at the dryer outlet.
【図4】絶乾水分率をX軸、計算水分率をY軸にし、計
算で算出した水分率の絶乾水分率の合わせ込み(校正)
を示したグラフである。[Figure 4] Absolute dry moisture content on the X-axis, calculated moisture content on the Y-axis, and fitting of the absolutely dry moisture content of the calculated moisture content (calibration)
It is a graph showing.
【図5】実際に本発明を適用したドライヤの群分けとそ
の運転データを表す図である。FIG. 5 is a diagram showing grouping of dryers to which the present invention is actually applied and operation data thereof.
【図6】本発明を実施した時のシステム構成の概略図で
ある。FIG. 6 is a schematic diagram of a system configuration when the present invention is implemented.
【表1】 [Table 1]
【表2】 [Table 2]
Claims (1)
出する手段と、ドライヤ出口において紙の走行スピード
を検出する手段とを備えると共に、ドライヤの蒸気圧力
を検出する手段を備え、更に予じめ設定されたドライヤ
の総括熱伝達係数を用い上記ドライヤ出口の紙走行スピ
ード,坪量,水分と上記ドライヤの蒸気圧力とからドラ
イヤの蒸発水分量を求めこの蒸発水分量に上記ドライヤ
出口の紙の水分を和しドライヤ入口の紙の水分率を演算
する演算装置を備えることを特徴とする抄紙機における
ドライヤ入口の紙の水分率を連続的に測定する装置。1. A means for detecting the basis weight and moisture of the paper at the dryer outlet, a means for detecting the traveling speed of the paper at the dryer outlet, and a means for detecting the vapor pressure of the dryer, further comprising: Using the overall heat transfer coefficient of the dryer set for the dryer, the amount of evaporated water in the dryer is calculated from the paper running speed at the dryer outlet, basis weight, moisture and steam pressure of the dryer. An apparatus for continuously measuring the moisture content of the paper at the dryer inlet in a paper machine, which is equipped with a computing device for summing the moisture and computing the moisture content of the paper at the dryer inlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3296335A JPH07100915B2 (en) | 1991-10-15 | 1991-10-15 | A device that continuously measures the moisture content of paper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3296335A JPH07100915B2 (en) | 1991-10-15 | 1991-10-15 | A device that continuously measures the moisture content of paper |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05107208A JPH05107208A (en) | 1993-04-27 |
JPH07100915B2 true JPH07100915B2 (en) | 1995-11-01 |
Family
ID=17832213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3296335A Expired - Lifetime JPH07100915B2 (en) | 1991-10-15 | 1991-10-15 | A device that continuously measures the moisture content of paper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07100915B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI119574B (en) * | 2004-11-12 | 2008-12-31 | Metso Paper Inc | Method and system in a paper machine and software product |
US20060162887A1 (en) * | 2005-01-26 | 2006-07-27 | Weinstein David I | System and method to control press section dewatering on paper and pulp drying machines using chemical dewatering agents |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753938A (en) * | 1972-04-18 | 1973-08-21 | Edwards R Montague | Thermoplastic sheet material |
-
1991
- 1991-10-15 JP JP3296335A patent/JPH07100915B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05107208A (en) | 1993-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4629109B2 (en) | Method, system and software in paper machine | |
EP3647491A1 (en) | Method, system, rotating machine element and computer program product for measuring the moisture of a fibre web in a tissue machine | |
JPH0860582A (en) | Method for controlling moisture content of product in papermaking exchange in papermaking machine and control unit therefor | |
Calvo et al. | Influence of process operating parameters on CO2 emissions in continuous industrial plants | |
Ottosson et al. | A mathematical model of heat and mass transfer in Yankee drying of tissue | |
Chen et al. | Energy system diagnosis of paper-drying process, Part 1: Energy performance assessment | |
JP2012163257A (en) | Evaporation load control system of dryer | |
JPH07100915B2 (en) | A device that continuously measures the moisture content of paper | |
Chen et al. | Energy system diagnosis of paper-drying process, Part 2: A model-based estimation of energy-saving potentials | |
CN111926606B (en) | Online monitoring method for energy efficiency of drying part of paper machine | |
US11802374B2 (en) | Method of determining the moisture content of a web of cellulose pulp | |
Nilsson | Heat and mass transfer in multicylinder drying: Part I. Analysis of machine data | |
US20100319559A1 (en) | Method and device for controlling a printing machine | |
US2611974A (en) | Method of measuring the moisture content of a running web | |
US3989935A (en) | Method and apparatus for controlling a material treater | |
US7249424B2 (en) | Method and device for controlling the moisture or coating quantity profile in a paper web | |
US4312219A (en) | Apparatus for measuring hot surface drying rate of light weight porous materials | |
US20030108661A1 (en) | Method and arrangement for determining the profile of a coating layer | |
FI115144B (en) | calendering | |
FI79198B (en) | FOERFARANDE OCH APPARATUR FOER MAETNING OCH REGLERING AV TORKLUFTENS FUKTHALT I EN TORKMASKIN FOER TEXTILMATERIAL. | |
Bruce et al. | Control of mixed-flow grain dryers: an improved feedback-plus-feedforward algorithm | |
US11828021B2 (en) | Method and device for the production and/or processing of a nonwoven glass fabric web | |
Ekvall et al. | Improved web break strategy using a new approach for steam pressure control in paper machines | |
Ekvall | Dryer section control in paper machines during web breaks | |
JP3509557B2 (en) | A method and apparatus for estimating the maximum possible speed of a paper machine |